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Extracting quantum dynamical resources: consumption of
non-Markovianity for noise reduction
Graeme D. Berk1,2, Simon Milz 3,4,5,6, Felix A. Pollock 1 and Kavan Modi 1,7✉

A great many efforts are dedicated to developing noise reduction and mitigation methods. One remarkable achievement in this
direction is dynamical decoupling (DD), although its applicability remains limited because fast control is required. Using resource
theoretic tools, we show that non-Markovianity is a resource for noise reduction, raising the possibility that it can be leveraged for
noise reduction where traditional DD methods fail. We propose a non-Markovian optimisation technique for finding DD pulses.
Using a prototypical noise model, we numerically demonstrate that our optimisation-based methods are capable of drastically
improving the exploitation of temporal correlations, extending the timescales at which noise suppression is viable by at least two
orders of magnitude, compared to traditional DD which does not use any knowledge of the non-Markovian environment.
Importantly, the corresponding tools are built on operational grounds and can be easily implemented to reduce noise in the
current generation of quantum devices.

npj Quantum Information           (2023) 9:104 ; https://doi.org/10.1038/s41534-023-00774-w

INTRODUCTION
Even the most promising platforms for quantum computing1,2 are
inherently plagued with complex quantum noise3–6, which must
be significantly reduced to meet the threshold required for error
corrected quantum computing7–9. This has led to a flurry of
techniques for noise characterisation and control10,11, including
dynamical decoupling (DD)12–19.
The goal of DD is to remove the interference from the

environment to implement a desired dynamics. This is achieved
by open-loop control, i.e. applying a fixed sequence of unitary
interventions, which have the effect of cancelling the influence of
the environment, somewhat analogously to how the rotation of a
spinning top keeps it upright. However, the successful application
of DD techniques on existing devices often requires faster control
than is feasible. Still, it may be possible to loosen these limitations
by devising DD schemes that cancel the influence of the
environment in a more bespoke way, by accounting for the
ability of the environment to carry a memory20, a property known
as non-Markovianity6,21. This connection between noise suppres-
sion and quantum memory and its application to DD-like
techniques has been conjectured but is still lacking a formal
quantitative description22,23.
In the search for a birdseye view of quantum control and noise

mitigation techniques, we turn to the formalism of quantum
resource theories24, which has had tremendous success in
quantifying the utility of properties like entanglement and
coherence25–27 as well as resources embedded within transforma-
tions28–31. A quantum resource theory consists of a set of potential
resource objects, and a set of free, i.e. implementable transforma-
tions on those resources. Using these transformations, one can
partition the potential resource objects into: free resource objects
that can be readily produced under the free transformations
alone, and non-free ones which require the experimenter to have

access to some additional ‘resourceful quantity’ to acquire. These
resourceful quantities may be properties like entanglement and
coherence, and are typically used to quantify the ability perform
tasks like the production and distillation of arbitrary states25,26,
and communication32. They are quantified by resource mono-
tones. When considering the usage of non-Markovianity for noise
suppression, loosely speaking, the resource at hand is the memory
present in the noise, while the free operations consist of the
control that pulses that the experimenter can apply. However, to
date, no resource theory currently exists for noise reduction—
arguably one of the most important goals in quantum physics in
the present era. The most similar task described by existing
literature is the distillation of many noisy channels into fewer
noiseless ones33. While this is important in its own right, it cannot
describe noise reduction on the entire system of interest, as is
sought for DD.
We argue that the reason why a resource theoretic quantifica-

tion of noise reduction techniques like DD does not yet exist, is
that the necessary resource objects are multitime quantum
processes, as opposed to states or channels used in the previous
resource theory literature. This is because multitime correla-
tions34,35 are crucial to the efficacy of DD.
Recently, a resource theory of multitime processes36 was built

around the process tensor formalism6,37, enabling multitime
correlations to be probed and quantified using resource mono-
tones. Alas even with multitime quantum process frameworks
such as these, it seems like noise reduction is impossible, as it
would explicitly involve making a resource object—the noisy
process that is to be ‘de-noised’—more valuable under free
transformations—something strictly forbidden in all resource
theories.
Our innovation is to sidestep this apparent impossibility by

concentrating resources in the temporally separated subsystems
of a process’ multitime Choi state, analogously to how more
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traditional resource distillation concentrates resources held in
spatially separated subsystems. Mathematically, this requires a
notion of temporal coarse-graining for multitime processes, whose
property of irreversibility accounts for how aptly chosen control at
a short timescale translates to noise suppression at a long
timescale. By introducing resource theories of temporal resolution
(RTTR), we provide the mathematical framework which, through
temporal coarse-graining, unifies channel and multitime resource
theories, thus enabling a clear quantification of the resources
needed for noise suppression, including but not limited to DD. In
particular, closely aligned with DD we provide the resource theory
of independent quantum instruments (IQI), a prototypical resource
theory of temporal resolution for noise reduction.
Subsequently, we apply the tools of semi-definite optimisation

to our process tensor formalism, to search for optimal DD
sequences within the resource theory of IQI. This optimisation is
informed by the specific non-Markovian correlations within a
multitime process, whose characterisation is already known.
Finally, the optimisation methods we present in this work are
numerically demonstrated to produce a drastic lengthening in the
timescales for noise suppression, as compared to traditional DD.
Finally, the ‘noise-tailored’ optimisation methods we present in
this work are numerically demonstrated to produce a drastic
lengthening in the timescales for noise suppression when
compared to traditional, noise-agnostic, DD. This result adds to
the growing body of work towards minimising noise by
characterising and harnessing the respective properties of the
underlying noise process10,38–41. Importantly, while resource
theories have made great mathematical strides, their direct
impact on quantum technologies has arguably been limited. Our
results aim to provide concrete means to close this gap.

RESULTS
A resource theory is a mathematical structure consisting of a set of
potential resource objects, and a set of implementable free
transformations upon those resource objects. From that starting
point, one can deduce which resources are free, which are costly,
and find monotones (i.e. functions that do not increase under free
operations) that quantify the value of any given resource object.
To translate this abstract formalism into a description of DD, there
are two prerequisites. Firstly, noise processes must be cast as
resources, and DD must be seen as transformations of those noise
processes. Secondly, there must be a mechanism by which DD
sequences can decrease noise under resource non-generating
operations (i.e. those performable in DD setups). Below, the first
issue is addressed using the process tensor framework, and the
second is resolved by irreversibility of temporal coarse-graining.
For a detailed summary of the notation we employ throughout
this paper, see supplementary Table 1.

Physical scenario
Any quantum noise can be modelled as an evolution operator T se

t:0
jointly acting on the system (s) of interest and its environment (e)
for some time t. In order to minimise the formation of s-e
correlations, DD applies control operations on s at n intermediate
times. This divides the evolution T se

t:0 into time segments
n̂ ¼ ft1; ¼ ; tng. The resulting n step noise process on s then
has a concise representation as a quantum comb42, also known as
a process tensor Tn̂6,37,43, consisting of sequences of s-e evolution
maps

Tn̂ :¼ tre�eT se
t:tn�e � � � �eT

se
t1:0�eρ

e
0; (1)

where ρe0 is an initial environment state, and �e denotes
composition on the e subsystem, of functions. In this notation,
the partial trace and appending of states such as ρe0 are explicitly
considered as functions to be composed over e, and Tn̂ is an

object ‘with n open slots’ (see Fig. 1), i.e. it acts on n operations/
interventions on the system.
Tn̂ has a natural representation as a Choi matrix6 that lives on

2n+ 2 copies of s, two per intermediate intervention and one for the
initial input and final output, respectively. Importantly, Tn̂ incorporates
all pertinent memory effects between different points in time43,44 and
is a completely positive and trace preserving transformation. In what
follows, it will become apparant, that DD is simply a transformation of
the noise process Tn̂ that ‘untangles’ complex multitime correlations
in the process tensor—mediated by e—such that the temporal
correlations are isolated to s alone, i.e. information is preserved. We
depict this in Fig. 1.
Concretely, exercising any control over this process Tn̂,

including a DD sequence, amounts to contraction of the above
tensor with an analogous control tensor An̂ acting at intermediate
times n̂. The set of control operations is broad and may include
physical pulses as well as logical gates, depending on the
experimental scenario. We require that these experimental
interventions be performed at a timescale much faster than that
of the noise process. While this is a good approximation in most
relevant scenarios (where the control Hamiltonian is much
stronger than the noise Hamiltonian), a breakdown of this
assumption would prevent the required separation of experi-
menter and environment influences. We note that the assumption
of brief interventions is common to most DD techniques, and
discrete-time control more generally. The contraction of the noise
process with control sequence is denoted by

T0; :¼ Tn̂jAn̂½ �½ �: (2)

Here, the process tensor is on the left and the control tensor is on
the right by convention—see panel (a) of Fig. 1 for a depiction and
Sec. IC-A for details of our compact notation for tensor
contractions. A specific detail of importance is that the control
sequence is taken to include pre- and post- operations to the
whole dynamics, meaning that it has two spaces that will not
contract with the process in Eq. (2). Consequently, T0; is simply a
familiar quantum channel (not a scalar), where the set of
intermediate times is the empty set.

Resource theories for quantum processes
We now bring in the tools of resource theories of multitime
processes36 to uncover the resources of Tn̂ that allow for dynamical
decoupling. Any resource theory comprises of resource objects and
transformation on these objects. Here, noise processes Tn̂ are the
resource objects, while experimental control transforms one process
into another. To formalise this idea we introduce superprocesses Zn̂m̂
that map n intervention processes to m intervention processes36

T0m̂ ¼ Tn̂jZn̂m̂½ �½ �: (3)

Here, the tensor contraction notation from Eq. (2) is extended to
denote transforming one process into another with an operator
Zn̂m̂, see Fig. 1. Physically, this latter superprocess consists of pre-
and post- processing operations on the s and additional ancillary
system a, see Sec. Representation of Free Transformations for more
details. Just as the operations within An̂ were taken to be
effectively instantaneous, so are those of Zn̂m̂. For n= 0, i.e. the
case of channels T; the corresponding superprocess Z;; (mapping
channels to channels) is called a supermap and has been widely
studied28–30,33,45. In general, the superprocess Zn̂m̂ is a rather
flexible object that transforms processes on n times to processes
on m times. To connect these abstract objects to physically
relevant scenarios and to reveal the underlying mechanism of DD
and similar noise reduction methods, it is necessary to break this
transformation into two less general objects. The first is a
superprocess Zn̂n̂ that does not change the temporal structure
(in the sense that it leaves the number of times for interventions
invariant). The second is temporal coarse-graining which only
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changes the temporal structure, i.e. reduces the accessibility of the
underlying process to the experimenter. This—at first glance
artificial—two-step decomposition of superprocesses allows for
the identification, quantification and utilisation of resources for
noise reduction, as we demonstrate for DD.
A resource theory of multitime processes—defined by a set of

readily available free processes and the set of implementable free
superprocesses—provides a framework to describe how noise
processes can be manipulated. It naturally gives rise to a set of
monotones and resources24, i.e. non-increasing functions of the
process under the action of free superprocess (which are
determined by the respective experimental control). One such
resource that has been identified in some of these theories36 is
non-Markovianity. Our goal now is to quantify the role of non-
Markovian memory in protocols like DD. However, Zn̂n̂, the
superprocesses which DD employs, are resource preserving or
decreasing transformations in the sense that they cannot increase
the non-Markovianity of a given process Tn̂. In fact, since ideal DD
pulses are unitary, the non-Markovianity of a process will be the
same before and after a DD superprocess Tn̂ 7!T0n̂. As alluded to
above, It turns out that we need one more ingredient for
successful noise mitigation; we will show that DD consumes
multitime correlations under our two-part temporal coarse-
graining procedure, which is shown in Fig. 3a. In this light, the
goal of DD is to find an optimal superprocess such that the two-
part coarse-graining procedure most efficiently harnesses multi-
time non-Markovian correlations to produce correlations at the
system-level.

Temporal coarse-graining
Specifically, the goal is to transform a noisy process Tn̂ into a clean
quantum channel T0;. To accomplish this, one must first apply a
superprocess that yields the transformed (n-step) process T0n̂ and
then transform it to a channel T0; via temporal coarse-graining, see
the bottom two lines of Fig. 3a for a graphical depiction. The latter
consists of removing times available for intermediate interven-
tions by applying n−m identity maps I s

i . We denote this
operation corresponding to coarse-graining all but m̂ times by
In̂nm̂, where identities are applied to all times in n̂ that are not also
in m̂. Thus, for m̂ � n̂, we can re-express Eq. (3) as

T0m̂ ¼ Tn̂jZn̂m̂½ �½ � ¼ Tn̂jZn̂n̂jIn̂nm̂
� �� �

: (4)

Here, Zn̂n̂ maps between process tensors of the same type, while
In̂nm̂ can be seen as temporal coarse-graining from an n
intervention process to a m intervention process with m̂ � n̂.
The benefit of this two-tiered view point is that all non-trivial

allowed control can be delegated to the free superprocess Zn̂n̂,
whose purpose in noise reduction is to rearrange temporal
correlations such that the noise is destructively canceled upon
subsequent coarse-graining. This, in turn, concentrates the
system-level temporal correlations, a procedure that can be
thought of as analogous to resource distillation, where some
resource is concentrated among fewer spatially distinct subsys-
tems33,46. Here, the concentration of resources is temporal, rather
than spatial.
Noise reduction is possible because of the irreversibility of

temporal coarse-graining, see Sec. Proof of Obs.

Fig. 1 Dynamical decoupling of non-Markovian processes. a To decouple a system from its environment, an experimenter interacts with the
process Tn̂ (maroon) at intermediate times n̂ ¼ ft1; ¼ ; tng. This amounts to applying chosen control operations, and then temporally coarse-
graining the process. When the experimenter chooses to do nothing (left), the resulting channel is T; :¼ Tn̂jIn̂½ �½ �. When they instead apply a
traditional DD sequence (right) An̂ ¼ fI ;X ;Z;X ;Zg, the process is transformed as Tn̂ 7!T0n̂ ¼ Tn̂jZn̂n̂½ �½ � (Eq. (3)), where Zn̂n̂ ¼
fI ; I ;X ;X ;Y;Y;Z;Zg such that T0; :¼ T0n̂jIn̂

� �� �
¼ Tn̂jZn̂;½ �½ � (Eq. (2)) has greater mutual information than T; . b Information about the system

of interest s that flows into the environment e under a non-Markovian process is not necessarily lost. Instead, this information becomes
increasingly `tangled' in a complex web of multitime correlations. c DD `untangles' these multitime correlations into correlations held in s
alone, which in itself impedes the formation o f new s-e correlations in a Zeno-like manner. d Optimal dynamical decoupling (see Sec.II-G)
performs this conversion of correlations more efficiently, resulting in better noise reduction over longer timescales compared to a traditional
dynamical decoupling sequence.
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Observation 1
(Irreversibility of temporal coarse-graining) Temporal coarse-
graining In̂nm̂ : Tn̂ ! Tm̂ is an order reflecting operation. This is
that for all processes Tn̂ and m̂ � n̂

Tn̂jIn̂nm̂
� �� �

¼: Tm̂ 7!Zm̂m̂ T0m̂ ) Tn̂ 7!
Zn̂n̂ T0n̂; (5)

where T0m̂ :¼ T0n̂jIn̂nm̂
� �� �

. However, the converse of Eq. (5)—known
as the order preserving property—is not true in general.
Eq. (5) simply means that if a transformation is possible by

means of free superprocesses Zm̂m̂ from the coarse-grained
perspective, its corresponding fine grained transformation must

also be possible via some free superprocess Zn̂n̂. Importantly, the
converse of Eq. (5) is false in general, meaning that one is always
better off in the fine-grained picture than the coarse one.
Concretely, for every Zm̂m̂, there exists an Zn̂n̂, such that
Zm̂m̂ ¼ In̂nm̂ � Zn̂n̂, but not every In̂nm̂ � Zn̂n̂ corresponds to a free
superproess Zm̂m̂, see Fig. 2. When specifically concerned with the
task of information preservation, a stronger version of this
statement holds (Thm. 2 in Sec. Irreversibility Leads to Perceived
Non-Monotonicity): noise reduction is possible if and only if having
fine-grained access enables higher monotone values to be
achieved. In Sec. Noise Reduction Monotones and Sec. Multitimescale
Optimal Dynamical Decoupling we use the quantum relative
entropy to show that the efficacy of protocols like DD is directly
related to the consumption of non-Markovian correlations. Due to
the scaling of relative entropy with the dimension of its arguments
—which coarse-graining reduces—temporal resolution is almost
always a resource for noise reduction, going far beyond any
specific DD protocol. Crucially however, not all processes will be
amenable to DD (e.g. depolarising noise) regardless of how rapidly
the experimenter can act. This is why it is necessary to identify
other resources that can help with DD, like non-Markovianity.

Resource theories of temporal resolution
Throughout, we will choose the input-output correlations of the
resulting channel as a measure of success of noise reduction. On
the other hand, the resources used to obtain that success are a
property of the underlying multitime process. The addition of
temporal coarse-graining allows the gap between channel
resources and multitime resources to be bridged, creating a
resource theory that can compare processes interacted with at any
number of times. We call these resource theories of temporal
resolution (RTTR), in reference to the inherent value of being able

Fig. 2 Irreversibility of temporal coarse-graining. (Left) Temporal
coarse-graining transitions between levels of temporal accessibility/
resolution to the same underlying process: from fine resolution to
coarse resolution. (Right) This transition is inherently irreversible, as
described in Obs. 1. Fewer transformations are possible after
performing temporal coarse-graining than before. Explicitly, given
a process Tn̂ , one can immediately coarse-grain to Tm̂ (m ≤ n), or first
apply a superprocess Zn̂n̂ to obtain T0n̂, which is subsequently coarse-
grained to T0m̂. From this perspective, noise reduction occurs when
the application of Zn̂n̂ resulted in T0m̂ having greater mutual
information between its intputs and outputs compared to Tm̂.

Fig. 3 Resource theories and noise reduction. The relationship between resource theories of temporal resolution and noise reduction
methods. a Resource objects are noise processes Tn̂ , and free transformations can be represented as a superprocess Zn̂n̂ , followed by temporal
coarse-graining In̂nm̂, i.e. Tn̂ 7!T0m̂ :¼ Tn̂jZn̂n̂jIn̂nm̂

� �� �
. The diagram shows three intermediate interventions at times n̂ ¼ ft1; t2; t3g where the

superprocess is `plugged in', followed by full coarse-graining, i.e. m̂ ¼ ;. The properties of the noise process are encoded in the T channels
constituting Tn̂, while the capabilities of the experimenter are specified by the form and connectivity of the V (pre) and W (post) channels of
Zn̂n̂. b The relationship between the properties of Tn̂ , the respective free superprocesses which specify the RTTR, and the type of information a
technique achievable within that resource theory can preserve. All techniques listed here can be performed by an experimenter possessing
the full abilities of IQI. Restricting the superprocesses to a sub-theory of independent unitaries (IU), DD harnesses non-Markovian noise to
preserve a full quantum state. Restricting control to sequences of repeated unitaries (RU⊂ IU) the inducement of a decoherence free subspace
(DFS) harnesses symmetries to preserve a subspace. Both quantum error correction (QEC) and the quantum Zeno effect (QZE) can in principle
be performed for any kind of noise, but the extra ability of IQI over the independent entanglement breaking (IEB) theory means that QEC can
preserve a full quantum state, rather than just classical information. See Sec. DISCUSSION and the Supplementary Discussion for more details.
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to intervene at more times. Shown in Fig. 3a, a RTTR is obtained by
combining superprocesses and temporal coarse-graining, includ-
ing the possibility to convert multitime processes into channels.

Definition 1. (RTTR). A resource theory of temporal resolution
consists of a set T of potential processes Tn̂ with any non-negative
integer n 2 Z�0 of intermediate times, and a set Z of free
transformations Zn̂n̂, containing both experimentally implemen-
table superprocesses, and temporal coarse-graining, of the form
Zn̂m̂ ¼ Zn̂n̂jIn̂nm̂

� �� �
for any m̂ � n̂ (see Lem. 1). The free set of

transformations Z is associated with a set TF of free processes,
which can be obtained for free.

In Fig. 3b, we visualise how properties of an underling process
can be harnessed in a given RTTR, corresponding to a particular
noise reduction technique, preserving some desired subset of
information. This naturally reflects the fact that RTTRs differ in the
free operations they allow for, corresponding to what can ‘easily’
be implemented in a considered experimental situation.
To study the task of noise reduction we introduce a prototypical

RTTR—the resource theory of independent quantum instruments
(IQI)—that allows any pre-determined, memoryless sequence of
quantum operations at times m̂ ; ; � m̂ � n̂. This resource theory
encompasses DD as well as other important noise reduction
methods like quantum error correction (QEC). The free super-
processes in IQI contain arbitrary quantum operations, but allow no
memory, i.e. the action taken at one step cannot depend in an
adaptive way on that taken at a previous step. For fixed numbers of
times, superprocesses following this structure have been recently
explored within the resource theory ð;;QÞ, where ; denotes the
absence of memory and Q comprises all possible time-local
experimental interventions36. Also, observe that the only processes
which can be produced in IQI for free, consist of independent
channels that cannot convey any information. In this resource
theory, the problem of noise reduction can be framed as finding an
appropriate sequence of manipulations on the system, such that
after coarse-graining the information retained is maximised.

Noise reduction monotones
Noise reduction can be roughly viewed as the task of maximising
the information that a process can transmit. Naturally then, the
monotones in a resource theory describing noise reduction should
be ones that quantify various classes of temporal correlations,
which is indeed what we find for IQI. Treating the Choi state of a
process Tn̂ as its fundamental descriptor, it is possible quantify its
temporal correlations by considering two types of marginal states:

TMkv
n̂ :¼

Onþ1

j¼1

trjfTn̂g and Tmarg
n̂ :¼

O2ðnþ1Þ

k¼1

trkfTn̂g: (6)

The index j enumerates the constituent channels T j as in Eq. (1),
and k splits this further into the inputs and outputs of those
channels. The overline on an index signifies its complement.
Consequently, TMkv

n̂ only contains the Markovian (i.e. between
neighbouring times) temporal correlations of Tn̂, while Tmarg

n̂
contains no temporal correlations whatsoever. These processes
act as references with respect to which the quantum relative
entropy SðxkyÞ :¼ tr fx logðxÞ � x logðyÞg compares the original
process Tn̂ against. In IQI, we thus define three functions: the total
information I, non-Markovianity N, and Markovian information M,

IðTn̂Þ :¼ S Tn̂kTmarg
n̂

� �
; NðTn̂Þ :¼ S Tn̂kTMkv

n̂

� �
;

and MðTn̂Þ :¼ S TMkv
n̂ kTmarg

n̂

� �
:

(7)

All three of these functions are resource monotones in IQI.

Theorem 1. (I, N, and M are Monotones of IQI). Total mutual
information I, non-Markovianity N, and Markovian information M,

as defined in Eq. (7), are monotonic under the free transformations
of IQI.

Proof. Monotonicity under the free superprocesses of IQI is
established in Prop. 1, in the Methods Sec. Monotonicity of I, M, N
under Free Superprocesses of IQI, while monotonicity under
temporal coarse-graining is outlined in Methods Sec. Contractivity
of Relative Entropy Under Coarse-Grainings, and proved formally in
the Supplementary Methods ⬜.

Importantly, the total temporal correlations I are attributable to
either N—corresponding to memory due to interactions with the
environment—or M—corresponding to the capability to transmit
information between adjacent times,

IðTn̂Þ ¼ MðTn̂Þ þ NðTn̂Þ: (8)

See Sec. Derivation of Eq. (8), for a proof of this equality. Hence, the
trade-off between Markovian and non-Markovian correlations is a
‘zero-sum game’. As it turns out, the aim of DD is to increase M
potentially at the expense of N. However, there are still additional
complexities that must be addressed.

Decoupling mechanisms
Due to monotonicity, all quantities in Eq. (8) can only shrink under
free transformations. However, since these quantities scale with
the dimension of the Choi state—which shrinks under coarse
graining—it is possible to produce a post-transformation process
T0m̂ :¼ Tn̂jZDD

n̂n̂ jIn̂nm̂
� �� �

which maximises M, e.g. a sequence of
identity channels, or some other sequence of unitaries in the
ideal case. In order to maximise M, the non-Markovianity N of the
resultant process must be minimised. Importantly, this is a
resource distillation task, but resources are concentrated amongst
temporally distinct subsystems rather than spatially distinct ones.
The temporal nature of the distillation task explains why DD in
particular can be performed on the entire system of interest, while
other noise reduction methods like quantum error correction only
preserve the logical qubits encoded by a larger number of
physical qubits.
This effect can also be compounded by a well established Zeno-

like effect47,48, where the rate of formation of system-environment
correlations (i.e. noise) is proportional to the amount already
present, which fast DD pulses keep low. However, when working
with slow pulses, DD cannot benefit from this effect, and its
efficacy reduces. However, DD methods that harness the non-
Markovian correlations of the noise may not be as constrained by
pulse rapidity requirements.

Multitimescale optimal dynamical decoupling
The success of noise suppression techniques can be quantified by
measuring I in the resultant process tensor after applying a
superprocess Zn̂n̂ (e.g. ZDD

n̂n̂ for traditional DD), followed by coarse-
graining

Im̂jZn̂n̂
ðTn̂Þ :¼ IðT0m̂Þ ¼ I Tn̂jZn̂n̂jIn̂nm̂

� �� �� �
: (9)

In general, I >M and further DD may be possible at the coarser
timescale defined by m̂. However, when m̂ ¼ ;, the mutual
information of the channel defined in Eq. (2) is recovered, I=M
holds, and no further DD is possible. Naturally, the important
figure of merit to gauge the success of a decoupling scheme is the
comparison between the standard decoupling scheme Im̂jZDDn̂n̂

, and
the case where no decoupling scheme is applied: Im̂ðTn̂Þ :¼
I Tn̂jIn̂nm̂
� �� �� �

.
Using this understanding of DD, the question of finding the

best noise suppression method amounts to finding a control
sequence Zn̂n̂, such that I;jZn̂n̂

is maximised. To achieve this goal,
i.e. to numerically find an ‘ideal’ control sequence we employ
an algorithm which we call optimal dynamical decoupling
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(ODD) (see Secs. Numerical Optimisation and IV-J for details on
(M)ODD) involving see-saw semidefinite program (SDP)49

optimisation to find an optimal pulse sequence for specific
process tensors, numerically demonstrating that a more
efficient consumption of N results in a greater preservation of
I – even at long timescales where traditional DD fails.
We test this resource theoretic characterisation of DD using a

prototypical model (see Sec. Dynamical Decoupling Technique and
Numerical Model for details), comparing the three cases I;, I;jZDD

n̂n̂
,

and I;jZODD
n̂n̂

. Our first result is to optimally decouple four evolutions,
i.e. the earliest quarter of the evolution depicted in Fig. 4a.
Figure 4b shows that ODD achieves significant noise reduction
over standard DD, especially at long timescales, suggesting that
the advantage of ODD is caused by a more efficient consumption
of non-Markovianity, which is not necessarily dependent on rapid
pulses. This advantage can also be attributed to the additional
requirement of knowledge of the process tensor, which traditional
DD does not require.
Now considering the entire duration of 16 evolutions

depicted Fig. 4a, the dimension of the corresponding Choi
state of the full process is too large to feasibly perform
the process characterisation, nor the pulse optimisation
required for ODD without approximation. Thus, we expand
upon the ODD technique by breaking this process into smaller
segments and iterate ODD over each of them sequentially (see
Alg. 1 setting C= 1, i.e. the optimisation occurs at one
timescale). The results on Fig. 4c show that this iterative ODD
method remains highly effective at long times, while tradi-
tional DD does not.
Yet, there are still more resources remaining untapped. Once

we find n pulses through this iterative method, we may coarse-
grain to a longer timescale and optimise the resultant process

again. This concatenation process can be repeated to optimise
over arbitrarily long timescales, while incurring little additional
computational cost. We call this layered approach multi-
timescale optimal dynamical decoupling (MODD), which is
related in spirit to concatenated dynamical decoupling
(CDD)50. The core steps of MODD are outlined in Alg. 1. In
our simulations we optimise at two different timescales,
corresponding to a value of C= 2 in Alg. 1. This is achieved
by coarse-graining from 16 evolutions to 4 during the
optimisation. Figure 4c shows that, while iterative ODD (MODD
at a single timescale C= 1) is able to preserve most of
information in a process, optimising at an additional coarser
timescale (C= 2) allows for further gains.
In Fig. 4d one can see the difference in each of our

monotones before and after the applied control plus coarse-
graining 16 evolutions into 4 evolutions: ΔN, ΔM, and ΔI. When
the change ΔN is negative, we observe corresponding positive
changes for ΔI and ΔM. We associate this behaviour with a
consumption of non-Markovianity resources that were present
in the initial process, but not in the final process. For the
standard DD procedure at long timescales, it is visible that this
behaviour breaks down; non-Markovianity no longer decreases,
and neither the total nor the Markovian mutual information
increase. However, MODD is capable of retaining this negative
ΔN, and the corresponding positive ΔI and ΔM for for
significantly longer timescales.

Numerical optimisation
We begin by outlining MODD in full generality.

Fig. 4 Numerical study of noise reduction. All evolutions last a duration Δt. The data is averaged 20 different process tensors and smoothed
in the time domain to average over oscillatory behaviour, and a 2σ confidence interval about the mean is shaded. a A process with 15
intermediate times has either no control applied Ref, (traditional) DD, CDD, ODD, or MODD. Ai are optimised at the short timescale, and Bi are
optimised after coarse-graining. b Effectiveness at preserving channel-level information I;jZn̂n̂

and I; for the first 3 intermediate interventions of
(a). A single period of traditional DD slows the loss of information by roughly one order of magnitude in Δt, while ODD is effective for the whole
range of Δt values tested. c Effectiveness at preserving channel-level information I;jZn̂n̂

and I; for the full duration. CDD shows a marginal
improvement over traditional DD. Both are significantly outperformed by ODD, which comes close to saturating mutual information for the
whole set of Δt values. Finally, MODD, obtains a small improvement over the already near-ideal result of ODD. d Changes in monotones, e.g.
ΔI ¼ Im̂jZn̂n̂

ðTn̂Þ � Im̂ðTn̂Þ, after coarse-graining from n= 15 intermediate interventions to m= 3, minus before that coarse-graining. For both
traditional DD and MODD, N is always lower with the protocol than without (ΔN is negative), indicating a conversion of non-Markovian
correlations N to system-level correlations M, resulting in an increase in I as well. The sharp decline in the effectiveness of traditional DD in (c)
begins at the peak in (d), suggesting that traditional DD loses effectiveness when it can no longer convert between N and M.
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Algorithm 1. MODD

The goal of Alg. 1 is to find an optimal DD sequence that accounts
for non-Markovian effects. Since process tensor characterisation scales
exponentially with the number of times considered, numerous
approximations are required to achieve this goal. However, given
these approximations, the complexity of process characterisation and
optimisation required for MODD scales linearly with n.
Firstly, Alg. 1 breaks the (potentially) untractably large full process

tensor on n times into computable m< n-time segments and finds
optimal pulse sequences for each segment. It optimises from the
earliest segment to the latest segment, using the pulses found for
earlier segments to produce subsequent segments, thus accounting
for potential non-Markovian effects. This leads a good—albeit not
necessarily optimal—guess for a length-n decoupling sequence. Both
to increase optimality, and to make use of potential long-scale
memory effects MODD can work from the finest available timescale
to the coarsest, via iterating temporal coarse-graining with the
optimisation procedure. Overall, this exploitation of short-term
memory effects (via ODD of the individual segments) and long-
term memory effects (by leaving open slots and optimising them in
the end) yields more optimal decoupling sequences than mere a
mere repetition of the ODD sequences obtained for a single segment
of length m, and we expect it to significantly outperform ODD
whenever long-scale memory plays a non-negligible role.
We emphasise that this procedure necessitates the maximisa-

tion of I;jZm̂i
j
m̂i
j

for a given process tensor Tm̂i
j
(Line 6 in Alg. 1).

Concretely, it requires a solution of the following problem:

given Tm̂i
j

maximize I;jZm̂i
j
m̂i
j

ðTm̂i
j
Þ :¼ I Tm̂i

j
jZm̂i

j m̂
i
j
jIm̂i

j

h ih i� �
subject to Zm̂i

j m̂
i
j
jIm̂i

j

ii
¼ jA1 � � � � � Ami

j

ii
;

A1; ¼ ;Ami
j
are CPTP:

(10)

That is, one aims to maximise the mutual information between
input and output by optimising the CPTP maps Ak applied at
times tk. However, this problem is neither linear nor convex with
respect to the variables Ak , nor is the mutual information a
quantity that is amenable to simple direct numerical optimisation
techniques. To overcome the latter problem, we instead optimise
a proxy of the mutual information, namely the largest eigenvalue
of the Choi matrix of the resulting channel. Analogously, to re-
establish convexity and linearity, we do not optimise over the
CPTP maps A1; ¼ ;Ami

j
concurrently, but iteratively. This is

achieved via a see-saw semidefinite program (SDP), which can
be solved numerically efficiently. The details of this numerical
procedure can be found in Sec. Dynamical Decoupling Technique
and Numerical Model. Evidently, making the problem amenable to
simple numerical optimisation techniques comes with the draw-
back that one is not guaranteed to converge to a global maximum
of the mutual information between input and output. However,
the approach we choose suffices for our purposes since it already
demonstrates the consumption of resources in DD that we discuss
above, and indeed finds control sequences that vastly outperform
the traditional DD sequences (see Fig. 4b).

DISCUSSION
Given the results we present, what conclusions can be drawn
about non-Markovianity and noise reduction? It is an established
trend that as the environment starts to behave in a Markovian
manner, noise reduction via DD becomes more difficult. However,
non-Markovianity is not necessary for noise reduction, as our
counterexample in the Supplementary Discussion shows. Nor does
it appear that the presence of non-Markovianity is sufficient for
DD to take place, as suggested by Ref. 22. The mere consumption
of non-Markovianity does not imply that noise is being reduced
either (consider a superprocess consisting of uncorrelated ‘junk’
operations). Despite these complexities, our results allow us to
draw an unambiguous conclusion. Thm. 1 implies that non-
Markovianity is a resource for noise reduction in a strict
mathematical sense, and our numerical results shown in Fig. 4
suggest that methods that efficiently leverage this resource
correspond to improved performance at noise reduction, when
compared to DD methods that make no assumptions about the
noise process.
Contrasted with many other DD methods, (M)ODD requires

knowledge of the process tensor. Consequently, the observed
advantage of (M)ODD over standard periodic and DD and CDD
can be attributed to the value of this extra knowledge. Given this,
it is important to study how the performance of (M)ODD compares
to other techniques that assume knowledge of the environment.
Uhrig dynamical decoupling was originally conceived as an
optimal pulse sequence to preserve a qubit coupled to a bosonic
bath51. Moreover, locally optimised DD52 and optimised band-
width adapted DD53 both go a step further to assume explicit
knowledge of the spectral density of the noise, which makes them
more similar (at least in spirit) to our methods. Interestingly, Ref. 53

found the two latter methods significantly outperformed Uhrig
dynamical decoupling, demonstrating the value of this type of
knowledge. There are also other more recent attempts to optimise
noise reduction based on the characterisation of classical noise54.
It will be an important topic of future research to see how noise
reduction based on a fully quantum characterisation of the non-
Markovian process compares to these existing methods.
The applicability of RTTRs to noise suppression is not limited to

DD; even just within the constraints of IQI it is also possible to
implement the quantum Zeno effect (QZE), decoherence free
subspaces (DFS), and most importantly quantum error correction
(QEC). The sub-theory structure of IQI is summarised in panel (b) of
Fig. 3, and a more detailed discussion can be found in the
Supplementary Discussion.
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QEC requires syndrome measurements and conditional re-
preparations8,9—which are contained in IQI but are not unitary.
Hence, QEC can be studied within the scope of IQI, but not the more
restricted theory of independent unitaries (IU), which is sufficient for
DD. QEC can be seen as a kind of (spatial) resource distillation task, in
that a large number of noisy physical qubits are used to encode a
small number of fault-tolerant logical qubits. Since both DD and QEC
are encapsulated within IQI, we expect that resource theoretic tools
can be brought to bear on hybrid DD/QEC techniques55,56,
concentrating resources among both spatially and temporally distinct
subsystems, for further improved noise reduction.
Conversely, inducing a DFS13,57 requires only the repetition of a

single unitary, rather than a sequence of different unitaries,
meaning that it can be implemented under a stricter theory of
repeated unitaries RU⊂ IU⊂ IQI, where no clock-like memory of
which pulses to apply is allowed. Rather than non-Markovianity,
this harnesses symmetries in the system-environment interaction.
Again, nothing precludes a technique harnessesing both jointly.
Finally, the quantum Zeno effect (QZE)58 can be cast as the RTTR
of independent entanglement breaking (operations) IEB⊂ IQI,
where the repeated action is a measurement rather than a unitary,
and one can still preserve classical information.
The concrete link between a process’ amenability to DD and its

non-Markovianity has long been an elusive problem. In reconciling
these two properties, we have constructed a flexible resource
theoretic framework whose scope extends significantly beyond
just DD. Complex multitime processes can be characterised as
resource objects, their resource content can be quantified with
entropy monotones, and resource transformations corresponding
to optimised noise reduction can be applied via (M)ODD. Our
numerical results show that significant resources remain untapped
via traditional DD methods. Thus, extracting these untapped
dynamical resources has the potential to greatly extend the
domain of applicability of noise reduction techniques in the
current generation of NISQ devices.
Doing so will require characterisation of the noise process,

which has recently been achieved on a commercial-grade
device10, and refined in Refs. 38,59. Moreover, Refs. 10,38,39 used
the characterisation information for noise reduction, which is a
variant of optimal dynamical decoupling. We note that our
methods for (M)ODD, mitigate scalability concerns associated with
the characterisation of many-step processes. Additionally, Ref. 60

has compared a collection of the most prominent DD methods in
the literature on IBM quantum computers, and found that the
results were device specific, emphasising the importance of
tailoring DD to the specific hardware in question. A practical
further step towards the goal of improving DD, is to combine our
(M)ODD methods with optimisation of pulse spacing.
Interestingly, the resource theoretic approach to DD opens the

question of whether a useful bound on noise reduction may exist.
Already, our monotone I induces such a bound, but that bound is
not tight, since relative entropy scales with the dimension of its
argument. If such a bound can be found, characterisation of the
(correlated) noise on a quantum device would already provide the
fundamental efficiency limits of any noise reduction method.
A promising way forward towards an identification of such

fundamental bounds is the construction of a resource theory that
is similar to IQI, but is convex. IQI can be seen as a prototypical
resource theory for noise reduction, since it identifies all temporal
correlations as resources. However, we expect that some
correlations can be ignored on physically justifiable grounds, such
that a bound on noise reduction can be derived for that theory.
Moreover, since the experimenter in that theory would be more
powerful than the one in IQI, such a bound would be valid
here too.

METHODS
The Methods section of this paper is arranged as follows. We begin
with an explanation of the employed tensor contraction notation.
Next we show that coarse-graining is indeed irreversible, and
provide an interpretation in terms of monotones. After this we
outline a proof of the contractivity of relative entropy under
temporal coarse-graining (which is given in its entirety in the
Supplementary Methods). This is necessary for I, M, and N to be
monotones in IQI. Next, we show that I, M, and N are all individually
monotones in IQI, and prove that I can be partitioned into M+N.
The final section provides a description of the numerical model and
optimisation method used for the results of Fig. 4.
Also, see the Supplementary Discussion for a detailed discussion of

the parallel and sequential product structure of these theories, as well
as the sub-theory structure of IQI. The Supplementary Discussion also
contains a discussion of the Markovianisation of noise via dynamical
decoupling, and a summary of the notation used throughout this text.

Tensor contraction notation
It is convenient when working with process tensors, super-
processes, and control sequences/coarse-graining, to have a
shorthand notation that expresses how these objects fit together.
For this, we use a tensor contraction, which always reduces the
dimensionality of its inputs, but does not necessarily return a
scalar. This contraction is written in a bra-ket style

AâjBâb̂

� �� �
¼ Cb̂; (11)

where Aâ is a process tensor with intermediate times â, and Bâb̂ is
a control sequence (or coarse-graining) on â and b̂ that removes
all times in (or, graphically, all slots corresponding to) â n b̂.
Consequently, the output object Cb̂ in the above equation has
intermediate times b̂. In this paper, Tn̂jIn̂n;

� �� �
:¼ Tn̂jIn̂½ �½ � yields a

channel (i.e. a process ‘without slots’), since channels are what we
use to measure noise reduction. This notation for tensor
contractions can be turned into an inner product (in the sense
that it yields a scalar) by adding an initial state preparation and
taking the control sequence to include a measurement on the
final Hilbert space of the process tensor; the corresponding output
scalar then corresponds to the measurement statistics. However,
throughout we mostly deal with contractions to processes with
fewer slots, or full contractions to channels (not scalars).
We point out that the link product42 would also be an

appropriate choice of notation, but for our purposes our notation
is tailored to highlight the dual action of superprocesses in a way
that is analogous to the dual action of operators in bra-ket
notation. We will see this shortly below.
Translating traditional superoperator notation to ours, the

action of a process tensor on a control sequence is

Tn̂½An̂� :¼ Tn̂jAn̂½ �½ � ¼ trint Tn̂A
T
n̂

� 	
; (12)

where T is the transpose, ‘int’ corresponds to all intermediate
spaces between the initial input and final output spaces. For
generality, An̂ is taken to include pre- and post-processing
operations on these input and output spaces at times 0 and t
respectively. The action of a superprocess on a process tensor is

Zn̂n̂½Tn̂� :¼ Tn̂jZn̂n̂½ �½ � ¼ trupper Tn̂Z
Tupper
n̂n̂

n o
; (13)

where the ‘upper’ index denotes the Hilbert spaces on the upper
half of the superprocess, which join to the process tensor as in Fig. 3.
The full trio of objects is

Zn̂n̂½Tn̂�ð Þ½An̂� :¼ Tn̂jZn̂n̂jAn̂½ �½ �: (14)

Superprocesses have a dual action which in this notation
behaves much like how operators behave in bra-ket notation

T; ¼ T0n̂jAn̂

� �� �
¼ Tn̂jZn̂n̂jAn̂½ �½ � ¼ Tn̂jA0

n̂

� �� �
: (15)
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Note that when an object is on its own, as the resultant channel T;
is in Eq. (15), we omit the square brackets.

Representation of free transformations
Here, we provide a simple representation of all transformations in
RTTRs, which will be used to prove the irreversibility of coarse
graining (i.e. Obs. 1). To this end, we define a RTTR S= (T, Z) where
T is the set of potential processes for any non-negative integer
n 2 Z�0 of intermediate times, and Z are the free transformations
(both superprocesses and coarse-grainings).
Superprocesses consist of pre- and post-processing operations

to the s part of each evolution map in Eq. (1):

T se
tj :tj�1

7!T 0se
tj :tj�1

:¼ Vsa
α �saT se

tj :tj�1
�saWsa

α : (16)

The superprocess may potentially make use of additional ancillary
system a. The form and connectivity of Vsa

α and Wsa
α correspond to

experimental constraints (which in turn define what tasks can be
completed, see Fig. 1 for more details). The other kind of free
transformation in a RTTR is temporal coarse-graining which does
nothing other than removing times available for intermediate
interventions. For an arbitrary process Tn̂ with a set n̂ of times for
intermediate interventions, temporal coarse-graining to m < n
times is achieved by n−m identity maps I s

i on the system s

In̂nm̂ :¼ �
i2n̂nm̂

I s
i for ; � m̂ � n̂: (17)

The free-ness of temporal coarse-graining can be simply seen as a
consequence of the fact that choosing to do nothing is free.
Hence, it is possible to combine these two kinds of free
transformations into a fully general joint transformation.

Lemma 1. Given a resource theory of temporal resolution S, all
free transformations can be represented as

Zn̂m̂ ¼ Zn̂n̂jIn̂nm̂
� �� �

: (18)

Proof. A sequence of transformations in a resource theory of
temporal resolution can be written explicitly as

ZẑẑjIẑnŷ
� �� �

ZŷŷjIŷnx̂
� �� �

¼ Zb̂b̂jIb̂nâ
h ih i

; (19)

with ẑ 	 � � � 	 â. For any level of coarse-graining β̂ there exists a
fine grained view of the underlying process such that α̂ 	 β̂ such

that any Zβ̂β̂ can be expressed as Zβ̂β̂ :¼ Iα̂nβ̂jZα̂α̂jIα̂nβ̂
h ih i

for some

fine grained superprocess Zα̂α̂. This is possible because we allow
the identity, i.e. ‘do nothing’ action to be free within the resource
theory. As such, the actions of Zα̂α̂ at times α̂ n β̂ are identities,
ensuring that the fine and coarse pictures are physically
equivalent. Hence Eq. (19) can be re-written as

ZẑẑjZy
ẑẑj¼ jZa

ẑẑjIẑnâ
� �� �

:¼ Z0
ẑẑjIẑnâ

� �� �
; (20)

for a sequence of fine grained actions Zy
ẑẑ; ¼ ; Za

ẑẑ , and each Zα
ẑẑ is

the fine-grained equivalent of Zα̂α̂ ⬜.

Proof of Obs. 1
Lem. 1 provides the language with which it is possible to show
Obs. 1, that temporal coarse-graining is order-reflecting, i.e. at
least as many processes can be reached by applying a super-
process and then coarse-graining, compared to coarse-graining
and then applying a superprocess. We show that the latter can
always be re-written in the form of Lem. 1, but that the converse is
false in general.
The fact that temporal coarse-graining is order reflecting follows

straightforwardly from Lem. 1. By this lemma, the ‘coarse-grain
then apply control’ transformation In̂nm̂

��
In̂nm̂jZn̂jIn̂nm̂
� �� �

:¼ In̂nm̂
��
Zm̂

can always be represented by some ‘apply control then coarse-
grain’ transformation Z0

n̂jIn̂nm̂
��
for an appropriate choice of Z0

n̂.
To see why temporal coarse-graining is not in general also order

preserving, simply consider when n̂ 
 m̂ is a strict inclusion. This
Z0
n̂ will then be restricted in that no non-trivial actions may occur

at times in n̂ n m̂. There are fewer times to exert influence on the
system, naturally meaning that less can be done to transform it.
This observation shows that temporal resolution itself can be a

resource, since its presence increases the range of processes one
can transform to via free operations. This formalises the natural
intuition about the relation of temporal resolution and control,
and allows us to exploit this consequential connection.

Monotone interpretation of irreversibility
It is possible to re-frame irreversibility in terms of monotones. The
following inequality follows directly from the original definition of
irreversibility in Obs. 1.

Corollary 1. For any valid monotone M : T ! R�0 in a resource
theory of temporal resolution S, and all process tensors Tn̂ 2 T ,
with ; � m̂ � n̂

sup
Zn̂n̂2Zn̂n̂

M Tn̂jZn̂n̂jIn̂nm̂
� �� �� �

� sup
Zm̂m̂2Zm̂m̂

M Tn̂jIn̂nm̂
� �� �

jZm̂m̂

� �� �� �
:

(21)

The notation Zn̂n̂ denotes the set of free transformations from n̂
interventions to n̂ interventions. This holds true because mono-
tones in resource theories satisfy A↦ B via a free operations, then
M(A) ≥M(B) for all monotones, and Obs. 1 guarantees that the left
hand side of Eq. (21) can reach at least as many processes as the
right hand side. Given the same underlying dynamics, a finer
grained process tensor description will always be at least as
resourceful as the corresponding coarse-grained one.

Irreversibility leads to perceived non-monotonicity
What makes IQI suitable for describing noise reduction is that an
appropriately chosen superprocess may cause the mutual
information of the resultant channel to be higher than it would
be without that intervention. In other words, the ability to reduce
noise is inherently tied to the irreversibility of coarse-grainings.

Corollary 2. In the resource theory of temporal resolution IQI,
given any process Tn̂, there exists a superprocess Zn̂n̂ such that

I;jZn̂n̂ðTn̂Þ> I;ðTn̂Þ (22)

iff Cor. 1 is realised as a strict inequality for m̂ ¼ ;.

Proof. Consider Eq. (21) in the case of M= I and m̂ ¼ ;. Then, Cor.
1 reduces to

sup
Zn̂n̂2Zn̂n̂

I; Tn̂jZn̂n̂½ �½ �ð Þ � I;ðTn̂Þ: (23)

Observe that the supremum on the right hand side disappears
because free superprocesses in IQI with no intermediate
interventions In̂jZn̂n̂jIn̂½ �½ � are just mutually independent pre- and
post-processing, and cannot increase mutual information (due to
the data processing inequality), i.e.

sup
Zn̂n̂2Zn̂n̂

I Tn̂jIn̂½ �½ �j In̂jZn̂n̂jIn̂½ �½ �½½ð Þ ¼ I;ðTn̂Þ: (24)

Thus, if Cor. 1 holds as a strict inequality, then there will exist a
superprocess Zn̂n̂ satisfying the strict inequality for Eq. (23).
Conversely, if there exists any I;jZn̂n̂ðTn̂Þ> I;ðTn̂Þ, Cor. 1 will be a
strict inequality for the same reason that mutually independent
pre- and post-processing cannot increase mutual information.
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Thus, noise reduction requires the irreversibility of temporal
coarse-grainings ⬜.

Contractivity of relative entropy under coarse-grainings
As a pre-requisite for IQI to be considered a useful resource theory
for describing information preservation, we require that mutual
information is respected as a monotone. It is already known that
free superprocesses Zn̂n̂ that do not change the number of times
respect this quantity36. Here, we show that mutual information is
also contractive under temporal coarse-graining and thus a
meaningful monotone of IQI. The proof of contractivity, which
can be found in the Supplementary Methods, consists of showing
that coarse-graining is a linear and positive operation that is trace
preserving on the set of processes. As demonstrated in Ref. 61

(Thm. 1), these properties ensure contractivity of relative entropy
(and thus mutual information). Specifically, trace preservation, and
positivity are shown by writing the Choi state of a process, before
and after coarse-graining, in terms of the composition of channels
acting on maximally entangled states. Linearity is shown directly.

Monotonicity of I, M, N under free superprocesses of IQI
Clearly, mutual information IðTn̂Þ is a metric of how well a process
Tn̂ retains information, and likewise for its constituents M and N.
However, to show that our resource theory IQI actually treats the
preservation of information as valuable, it should be true that
those functions are all monotones under the free transformations.
Here we show that I, M, and N are monotonic under free
superprocesses of IQI. Importantly, our contractivity result proved
in the Supplementary Methods guarantees that they are also
monotonic under coarse-grainings, and hence the transformations
of IQI more broadly, since all free transformations can be
represented as a combination thereof. It is also the case that I is
a faithful monotone in this theory. Note that monotonicity of
these quantities does not conflict with our notion of ‘increasing’
these monotones throughout the text, since the reference is the
case of no direct experimental intervention, not the pre-
transformation process (see Fig. 2).

Proposition 1. Markovian information M and Non-Markovianity N,
as defined in Eq. (6) and Eq. (7), respectively, are monotonic under
the free superprocesses of IQI.

Proof. In resource theory IQI, all experimental interventions are
temporally local, which means that they cannot increase correla-
tions between temporally separated subsystems. To demonstrate
this for the case of M, a free superprocess Zn̂n̂ is applied to Tn̂, and
Markovian information takes the form

M Tn̂jZn̂n̂½ �½ �ð Þ
¼ S Tn̂jZn̂n̂½ �½ �ð ÞMkvk Tn̂jZn̂n̂½ �½ �ð Þmarg
� �

¼ S
Nnþ1

j¼1
trj Tn̂jZn̂n̂½ �½ �f gk

N2ðnþ1Þ

k¼1
trk Tn̂jZn̂n̂½ �½ �f g

 !

¼ S
Nnþ1

j¼1
trjfTn̂gjZn̂n̂

" #" #




 N2ðnþ1Þ

k¼1
trkfTn̂gjZn̂n̂

" #" # !

¼ S TMkv
n̂ jZn̂n̂

� �� �
k Tmarg

n̂ jZn̂n̂

� �� �� �
� S TMkv

n̂ kTmarg
n̂

� �
¼ MðTn̂Þ:

(25)

j indexes the evolutions of the process tensor, while h labels the
input and output Hilbert spaces. The third line follows from the
second because free superprocesses are temporally local in IQI,
implying that the marginals (either full or Markovian as in Eq. (6))
of the transformed process equals the the transformation of the
marginals, i.e. Tn̂jZn̂n̂½ �½ �ð ÞMkv ¼ TMkv

n̂ jZn̂n̂

� �� �
, and Tn̂jZn̂n̂½ �½ �ð Þmarg ¼

Tmarg
n̂ jZn̂n̂

� �� �
. The final line uses the contractivity of relatve entropy

under free superprocesses36. The same type of argument can be
applied to show that I and N are monotones, so we will not repeat
it ⬜.

It should be noted that this feature of the independent
quantum instruments theory does not hold for all RTTRs.
Specifically, when the individual actions within the superprocess
are connected by memory, the second line in Eq. (25) will not
equal the third, and these quantities may no longer be
monotones. For example, some (but not all) non-Markovian
processes may be considered free in a theory that allows for
convex mixtures of the allowed superprocesses in IQI, meaning
that N is no longer a monotone.
Most importantly, since we understand IQI as a resource theory

for noise reduction, the fact that N is a monotone in this theory
means that non-Markovianity is a resource for noise mitigation in
general.

Invariance of I, M, N under Superprocesses of IU
We present a brief proof that total mutual information, Markovian
information, and non-Markovianity are not only monotonic, but
also invariant under DD sequences, and the free superprocesses of
IU more broadly, i.e. sequences of unitaries. We emphasise that
this invariance is with respect to superprocesses is in the absence
of coarse-graining, i.e. only holds at a single level of temporal
resolution. Again, this does not contradict the possibility of noise
mitigation/DD, since the reference is not the process before
transformation, but the result which would be obtained if the
experimenter did not intervene.

Proposition 2. I, M, and N are invariant under the free
superprocesses of IU.

Proof. We show this invariance directly for I, using the same
argument as in our proof of Prop. 1:

I Tn̂jZn̂n̂½ �½ �ð Þ ¼ S Tn̂k Tn̂jZn̂n̂½ �½ �ð Þmargð Þ

¼ S Tn̂jZn̂n̂½ �½ �k
N2ðnþ1Þ

h¼1
trhf Tn̂jZn̂n̂½ �½ �g

 !

¼ S Tn̂jZn̂n̂½ �½ �k
N2ðnþ1Þ

h¼1
trhfTn̂gjZn̂n̂

" #" # !

¼ S Tn̂jZn̂n̂½ �½ �k Tmarg
n̂ jZn̂n̂

� �� �� �
¼ IðTn̂Þ:

(26)

As with Prop. 1, the second and third line are equal because the
free superprocesses of IU⊂ IQI are temporally local. The invariance
of M and N follow from the same argument, so we will not repeat
it here ⬜.

The fact that even the cleanest (i.e. unitary) interventions still
cannot increase the value of monotones highlights the pivotal role
of temporal coarse-graining in noise reduction.

Derivation of Eq. 8
In this subsection we demonstrate that important property that
the partition of IðTn̂Þ into NðTn̂Þ þMðTn̂Þ has no overlap, i.e. that
the trade-off between Markovian and non-Markovian correlations
is a ‘zero-sum game’. We express the difference between IðTn̂Þ and
MðTn̂Þ in terms NðTn̂Þ:
IðTn̂Þ � IðTMkv

n̂ Þ ¼ S Tn̂kTmarg
n̂

� �
� S TMkv

n̂ kTmarg
n̂

� �
¼ S Tmarg

n̂

� �
� S Tn̂ð Þ

� �
� S Tmarg

n̂

� �
� S TMkv

n̂

� �� �
¼ S Tn̂kTMkv

n̂

� �
¼ NðTn̂Þ:

(27)
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The above holds because TMkv
n̂ is a product of marginals of Tn̂,

while Tmarg
n̂ is a product of marginals of TMkv

n̂ . Hence, the mutual
information monotone can be partitioned into two contributions

IðTn̂Þ ¼ MðTn̂Þ þ NðTn̂Þ; (28)

allowing us to study the role of non-Markovianity (captured by
NðTn̂Þ) in information preservation.

Dynamical decoupling technique and numerical model
Noise model. The model used to generate the data underlying
Fig. 4 consists of a a single qubit system s, and a single qubit
environment e with a (Haar) randomly sampled initial pure state
ρe0, undergoing evolution for duration t under a randomly sampled
s-e Hamiltonian Hse whose operator norm is normalised to unity.
Specifically, these Hamiltonians are sampled by producing
matrices K whose entries are uniformily distributed in [0, 1], taking
Hse as the combination K+ K†, and subsequently normalising it by
its operator norm. The choice of a simple unitary noise model
ensures that DD is possible at least in principle. In a noise model
such as this, non-Markovianity will gradually accumulate as the
duration between pulses becomes longer, instead of information
being irreversibly lost to structureless noise.
We produce 20 samples of pairs fρe0;Hseg, generating an

ensemble of 20 sets of underlying dynamics. Due to the fact that a
two-qubit Hamiltonian does not equilibrate for long times, and
instead oscillates, combined with our use of a log scale to probe
many timescales, this oscillatory behaviour will tend to obscure
any real trends at long times. Hence, there is a need to average in
the time domain to smooth over these oscillations at long
timescales. Specifically, for each time data point, a window of 10
data points was averaged over to generate the value for that time.
For a given set of underlying dynamics, we study three levels of

temporal resolution: T1̂5, 1̂5 ¼ ft=16; ¼ ; 15t=16g, T3̂, 3̂ ¼ ft=4;
2t=4; 3t=4g, and T;, corresponding to a fine-grained process, an
intermediate process, and a channel. DD can be applied at the
fine-grained level, and/or at the coarse-grained level, by acting at
both timescales corresponding to CDD. Using these three levels of
temporal resolution, we can compute changes in monotones, e.g.
ΔI ¼ I3̂jZ1̂51̂5ðT1̂5Þ � I3̂ðT1̂5Þ, as well as the increase in channel-level
mutual information I;jZ1̂51̂5

ðT1̂5Þ � I;ðT1̂5Þ.

Applying MODD to noise model. We summarise the process of
applying MODD to the noise model above. In the case with n= 15
that we consider, we have the number of segments at the fine
timescale K0= 4, and the first segment being m̂1 ¼
ft=16; 2t=16; 3t=16g (see Fig. 4 (a)). Using this optimised
sequence, a maximally mixed state is placed into the input of
the dynamics at time t= 0 and the second segment on times
m̂2 ¼ f5t=16; 6t=16; 7t=16g is characterised (experimentally, this
would be done by tomography, for our numerical simulation, we
can directly compute it) and the corresponding sequence of
operations is optimised via ODD (see the SDP methods described
below in Sec. SDP Methods). This procedure is continued until all of
n̂ ¼ 1̂5 has optimised operations. We then coarse-grain Tn̂ (by
contracting it with the found sequence of operations Ai) to Tn̂0
where n̂0 ¼ ft=4; t=2; 3t=4g. This does not need to be further split
into segments, so we set K1= 1. Finally, we perform a last SDP
optimisation on Tn̂0 . This procedure then yields a sequence of n (in
our case, n= 15) operations that achieve a good level of
decoupling. In our numerical study we use two timescales
(C= 2): one fine timescale, and one coarse one, but in general
one can continue coarse-graining and optimising at longer
timescales. This is directly analogous to the levels of concatena-
tion in CDD.
Importantly, this multitimescale ODD approach overcomes the

exponentially bad scaling that ODD is plagued by on its own, since
it only requires the characterisation of n/m+ 1 processes on m

times (for one layer of coarse-graining). For example, for the case
n= 15 and m= 3 outlined above, MODD requires the character-
isation of five three-slot combs, each necessitating the experi-
mental collection of d16 probabilities, as compared to d64 for the
complete 15 slot process. Despite the linear scaling (with respect
to the characterisation of the m-slot process), the drawback of this
method is that it only finds local maxima based on a series of
individual optimisations, as opposed to a global optimisation over
the uncomputable full process. MODD mitigates this shortcoming
by following up the original optimisation with a ‘more global’
optimisation at a coarser timescale, thus exploiting both short-
and long-term memory effects.

SDP methods. As mentioned in Sec. Numerical Optimisation,
direct optimisation of a set of control operations for a given
process tensor Tn̂ requires the maximisation of I;jZn̂n̂

, i.e. one aims
to solve

given Tn̂
maximize I;jZn̂n̂

ðTn̂Þ :¼ I Tn̂jZn̂n̂jIn̂½ �½ �ð Þ
subject to Zn̂n̂jIn̂�� ¼ jA1 � � � � � An�� ;

A1; ¼Anare CPTP:

(29)

This problem is neither linear nor convex with respect to the
variables Ai , and the mutual information is not amenable to
simple optimisation techniques. Here, we overcome these issues
by iteratively optimising over each of the involved variables
individually and replacing the mutual information by a proxy,
specifically the largest eigenvalue of I;jZn̂n̂ðTn̂Þ. For a given
Tn̂jZn̂n̂jIn̂½ �½ �, computation of the largest eigenvalue is an SDP:

given Tn̂jZn̂n̂jIn̂½ �½ �
maximize λ ¼ trð Tn̂jZn̂n̂jIn̂½ �½ �EÞ
subject to 0 � E � 1

(30)

With this, in each iteration step, one can efficiently optimise over
one of the variables A1; ¼ ;An; E while keeping the others fixed.
For example, in order to optimise A1, one would solve the SDP

given A2; ¼An; E

maximize λ ¼ trð Tn̂jZn̂n̂jIn̂½ �½ �EÞ
subject to Zn̂n̂jIn̂�� ¼ jA1 � � � � � An�� ;

A1is CPTP:

(31)

Consecutively optimising all variables until the largest eigenvalue
λ does not change anymore then yields a heuristic guess for a
good sequence that maximises I;jZn̂n̂ðTn̂Þ which we compute as a
final step for the sequence A1; ¼ ;An obtained from the above
procedure. Evidently, the solutions found in this way are not
necessarily globally ideal; firstly, such an iterative approach is only
guaranteed to converge to a local, but not necessarily a global
extremum. Secondly, we only maximise a proxy for the mutual
information of the resulting channel, namely the largest eigenva-
lue of the resulting channel. Consequently, there might be better
solutions than the ones we provide, and more bespoke numerical
techniques to find ideal control sequences. In all the cases we
consider, though, this approach already yields significant advan-
tages over traditional DD sequences.
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