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Gottesman-Kitaev-Preskill qubit synthesizer for propagating
light
Kan Takase 1,2✉, Kosuke Fukui 1, Akito Kawasaki 1, Warit Asavanant1,2, Mamoru Endo 1,2, Jun-ichi Yoshikawa2,
Peter van Loock 3 and Akira Furusawa 1,2✉

Practical quantum computing requires robust encoding of logical qubits in physical systems to protect fragile quantum information.
Currently, the lack of scalability limits the logical encoding in most physical systems, and thus the high scalability of propagating
light can be a game changer. However, propagating light also has difficulty in logical encoding due to weak nonlinearity. Here, we
propose a synthesizer that encodes Gottesman-Kitaev-Preskill (GKP) qubits in propagating light by exploiting the nonlinearity of
photon detectors. This synthesizer is based on an approach what we call Gaussian breeding, leading to the following four
advantages: (i) systematic and rigorous synthesis of arbitrary GKP qubits, (ii) use of minimal resources, (iii) high fidelity and high
success probability, and (iv) robustness against loss. There has been no protocol that incorporates all these advantages, and thus
the proposed synthesizer excels in both performance and feasibility. By employing our method, one can generate GKP qubits using
a few to several squeezed light sources, beam splitters and photon detectors.
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INTRODUCTION
Quantum computers are expected to outperform classical
computers in certain tasks. For quantum computers to become
a technology that changes our lives, it is necessary to protect
fragile quantum information and ensure the reliability of
computation. The basic idea for this is to encode quantum
information redundantly as a logical qubit in a high-dimensional
Hilbert space1,2. However, encoding of logical qubits is typically
challenging for any physical system, for different reasons. For
example, scalability is a critical issue in stationary two-level
systems, because each logical qubit should be encoded in a
quantum many-body system. A logical qubit with high redun-
dancy is encoded in 103 to 104 physical qubits, and millions or
more physical qubits are required to perform practical tasks3.
Spatial parallelization and control of such a large number of
physical qubits are far beyond the current techniques that deal
with tens to hundreds of physical qubits4,5.
For avoiding the problem of scalability, encoding a qubit in an

oscillator is a promising approach. Each logical qubit can be
encoded in just one oscillator thanks to its infinite-dimensional
Hilbert space. Thus, we can realize robust encoding by con-
catenating a reasonable number of qubits in oscillators. A prime
example is the Gottesman-Kitaev-Preskill (GKP) qubit6. The GKP
qubit is a powerful logical qubit, due to its intrinsic robustness,
living in a quantum error correction code space. Ideally, the GKP
qubit is a superposition of equally-spaced position eigenstates,
but is usually approximated as a superposition of squeezed
coherent states, as shown in Fig. 1a. Given data qubits and
ancillary magic states, which is GKP qubits with a special
superposition coefficient, fault-tolerant and universal quantum
computing is possible using only linear operations on position and
momentum, which are called Gaussian operations6–10.
Quantum computation using GKP qubits can be defined in any

type of quantum harmonic oscillator, but the challenges for its

realization vary greatly depending on the physical system.
Although it is relatively easy to generate GKP qubits in nonlinear
systems such as trapped ions11 and superconducting circuits12,
interacting the generated qubits for quantum computing is
difficult. The reason is that the qubits are localized apart as
matter or standing waves, so they are difficult to have any
interactions. In addition, the cost of Gaussian operations necessary
for the logical operation on GKP qubits is high due to intrinsic
nonlinearity of the system. In contrast, in propagating light, GKP
qubits are difficult to generate but easy to use. A scalable platform
that can input multiple GKP qubits and perform arbitrary Gaussian
operations has already been demonstrated13–16. Therefore, gen-
eration of GKP qubits in propagating light is one of the most
desired breakthroughs for realizing practical quantum computers.
The obstacles preventing the generation of GKP qubits is the

lack or weakness of natural nonlinearity of propagating light.
Although it is known that matter-light11,12 or light-light6 nonlinear
interactions enable logical encoding, they are challenging to
realize in propagating light. A promising approach to circumvent
this is to leverage the nonlinearity of photon detectors, which has
been widely used experimentally17–20. How to exploit the
nonlinearity of the photon detectors for the logical encoding,
however, is a highly nontrivial questions and have been a topic of
current researches. One approach is a cat breeding protocol21,22

that utilizes interference of multiple Schrödinger cat states and
homodyne measurements. In this protocol, it is necessary to
prepare initial cat states with large amplitudes, as the intervals
between the superimposed squeezed coherent states decrease
with each breeding steps. Generating such cat states requires the
detection of a large number of photons, easily exceeding
hundreds in total. Additionally, this protocol only allows for the
generation of specific codewords of the GKP qubits. Another
approach to generate GKP qubits based on Gaussian Boson
sampling has also been recently investigated23–26 as it is expected
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to be more advantageous than the cat breeding protocols in
terms of resource requirements. The experimental requirements
are expected to be minimal as the sytem consists only of
experimentally accessible elements, single-mode squeezed states
and beam splitters, in addition to the photon detectors. A
downfall of this approach is that parameters of the Gaussian
Boson sampling system for the GKP qubit generations must be
determined numerically. This problem, however, is complex
enough to exhibit quantum supremacy19,20, making it unrealistic
to find parameters in the general case. Even if we restrict the
target state to the standard Pauli codewords, only solutions have
been found that either give limited error correction capability or
have a very low generation rate.
Here, we propose a GKP qubit synthesizer that can generate an

arbitrary superposition state of GKP qubits with high fidelity and
high generation rate. Figure 1b is an operating image. When a
user specifies a GKP qubit with arbitrary superposition coefficients,
the synthesis procedure is given as a combination of abstract
functional blocks. Then, by converting each functional block into a
physical circuit and simplifying the whole circuit, the actual
synthesis system having Gaussian Boson sampling configuration
will be specified. These procedures are so easy that an actual
experimental setup like Fig. 1b can be readily derived even by
calculations by hand. Our formulation allows to incorporate the
benefits of two distinct state-generation methods while circum-
venting their drawbacks: it is systematic and comprehensible like
the cat-state breeding protocol and resource saving like the
Gaussian Boson sampling as a state synthesizer. For this reason,
we can refer to our protocol as Gaussian breeding. Note that
Gaussian breeding can be achieved with fewer resources than
Gaussian Boson sampling. For example, only three beam splitters
are used in 1b, whereas six beam splitters are used in a Gaussian
Boson Sampling of the same size. In addition, Gaussian breeding
exhibits robustness against photon losses in that state deteriora-
tion due to photon loss does not accumulate so much even if the
system scale becomes large. These features show that our GKP
synthesizer based on Gaussian breeding is highly feasible and a
practical breakthrough in the development of optical quantum
computers.

RESULTS
Basic functional blocks of GKP qubit synthesis
The first step in GKP qubit synthesis is to build a diagram like Fig. 2a
using functional blocks. Since the GKP qubit has a characteristic
periodical wavefunction, it is not difficult to clarify the synthesis
procedure by combining functional blocks that have specific effects
on the wavefunction. For example, if the codewords of qubits are
the target, the desired state can be synthesized by “bifurcating”
one Gaussian wavefunction iteratively, as shown in Fig. 2b. We
leave the physical realization of the basic functions like bifurcation
to the next section, and in this section we discuss how to
synthesize the GKP qubits at the functional block level.
First, we show the definition of the GKP qubit. In the following,

we suppose that the position and momentum operators satisfy a
commutation relation ½x̂; p̂� ¼ i. For simplicity, normalization is
omitted in the notation of quantum states below. We denote a
squeezed vacuum state by SΔj i ¼ ŜðΔÞ 0j i ¼ ei

lnΔ
2 ðx̂p̂þp̂x̂Þ 0j i, where

the squeezing operator gives Ŝ
yðΔÞx̂ŜðΔÞ ¼ Δ � x̂ and 0j i is the

single-mode vacuum state. The physical codewords of GKP qubits
j~kΔ;κi ðk ¼ 0; 1Þ are

j~kΔ;κi ¼
X1
s¼�1

e�
κ2
2 ðð2sþkÞ ffiffiπp Þ2 D̂ ð2sþ kÞ ffiffiffi

π
p� �" #

SΔj i; (1)

where D̂ðdÞ ¼ e�idp̂ ðd 2 RÞ is a position shift operator. These
codewords approach the ideal GKP codewords in the limit of
Δ, κ→ 0.
The functional blocks we need are coherent bifurcation and

damping. Coherent bifurcation Bw ½�� ðw 2 RÞ generates a super-
position of displaced squeezed vacuum states. This operator
satisfies

Bw D̂ðdÞ SΔj i� � ¼ D̂ðd � wÞ þ D̂ðd þ wÞ� �
SΔj i; (2)

Bw a ψj i þ b ϕj i½ � ¼ aBw ψj i½ � þ bBw ϕj i½ �: (3)

We denote an N-times iteration of coherent bifurcation as BðNÞ
w ,

BðNÞ
w ψj i½ � ¼ Bw BðN�1Þ

w ψj i½ �
h i

; Bð0Þ
w ψj i½ � ¼ ψj i: (4)

Fig. 1 Schematic of the GKP qubit synthesizer. a Wave functions of GKP qubits. Ideal codewords 0
�� �; 1

�� � are a superposition of position
eigenstates spaced by 2

ffiffiffi
π

p
. The approximated codewords ~0Δ;κ

�� �
; ~1Δ;κ
�� �

are a superposition of squeezed states (variance 1/2Δ2) with a
Gaussian envelope (variance κ2/2). b A synthesis example. As a user sets a target, the generation procedure is decided by combining basic
functional blocks. Then, an actual circuit that can generate the target is derived. This protocol can synthesize arbitrary GKP qubits
systematically.

K. Takase et al.

2

npj Quantum Information (2023)    98 Published in partnership with The University of New South Wales

1
2
3
4
5
6
7
8
9
0
()
:,;



A damping function is given by an operator e�tx̂2 (e�tp̂2 ), which
decreases the energy of a quatum state by multiplying a Gaussian
envelope e�tx2 (e�tp2 ) to the wave function of x (p).
Let us consider synthesis of the codewords ~0Δ;κ

�� �
; ~1Δ;κ
�� �

. As
shown in Fig. 2b and Methods, the GKP codewords can be
obtained from a squeezed vacuum state via suitable N-times
coherent bifurcation,

BðNÞffiffi
π

p SΔj i½ � � X̂
N ~0Δ;1=

ffiffiffiffiffi
Nπ

p
��� E

; (5)

where X̂ is a logical bit-flip operator. Note that the parity of
iteration N decides the parity of the output, ~0Δ;κ

�� �
or ~1Δ;κ
�� �

. If
necessary, the value κ ¼ 1=

ffiffiffiffiffiffi
Nπ

p
can be adjusted to a smaller

value by applying a damping operation. Then, the functional
diagram is given by Fig. 2a. More specifically, let us consider the
case shown in Fig. 1b where a user wants to generate ~1Δ;κ

�� �
with

10 dB squeezing. The initial state is a squeezed vacuum state
around 10 dB, Sδj i. The value of N should be odd, and adopted
N= 3 as it is enough to approximates a 10 dB codeword. We can
adjust the value κ � 1=

ffiffiffiffiffiffi
Nπ

p
by damping, but this is omitted here.

Coherent bifurcation and damping are also useful in synthesiz-
ing arbitrary GKP qubits. Arbitrary GKP qubits can be generated
from a seed state defined by

seedΔ;α;β

�� � ¼ α SΔj i þ β

2
� B ffiffi

π
p SΔj i½ �; (6)

where ∣α∣2+ ∣β∣2= 1. By applying an appropriate BðNÞ
w , now we get

BðNÞffiffi
π

p seedΔ;α;β

�� �� � � X̂
N
α ~0Δ;

ffiffiffiffiffi
Nπ

p
��� E

þ β ~1Δ;
ffiffiffiffiffi
Nπ

p
��� Eh i

; (7)

as shown in Fig. 2c and Methods. Figure 2d shows a possible
procedure of seed state generation with ∣α∣ ≥ ∣β∣ using coherent
bifurcation, damping, and a quadratic phase gate eitx̂

2
,

seedΔ;α;β

�� � � ŜðδÞ � e�t3 p̂
2 � eit2 x̂2 � e�t1 x̂

2 � Bð2Þ
w SΔj i½ � ðw � ffiffiffi

π
p

=2Þ;
(8)

with certain t1, t2, t3 and δ given in Methods. The approximation
gets better as w increases. Therefore, at the functional level,
arbitrary GKP qubits can be synthesized according to the
procedure shown in Fig. 2a.

Derivation of physical circuits
Here, we introduce how the abstract diagram of Fig. 2a translates
to a physical circuit of propagating light. In systems other than
optical traveling waves, bifurcation operations can be realized by
nonlinear interactions between oscillators and two-level systems.
Codewords of GKP qubits have been generated in trapped ions11

and superconducting circuits12 by using this type of interaction.
Since such nonlinear operations are not viable option in
propagating light, we propose a completely different methodol-
ogy using the nonlinearity of photon number measurements.
Derivation of the physical circuit is performed in the following two
steps. First, we clarify how to implement coherent bifurcation and
damping only using squeezed vacuum states, Gaussian opera-
tions, and photon number measurements. Next, a circuit
combining these functional blocks is readily transformed to a
highly feasible circuit that consists of squeezed vacuum states,
beam splitters, and photon number measurements as shown in
Fig. 1b.
In order to understand how to realize coherent bifrucation, we

decompose Eq. (2) into two equations,

Bw SΔj i½ � ¼ D̂ð�wÞ þ D̂ðwÞ� �
SΔj i; (9)

Bw D̂ðdÞ SΔj i� � ¼ D̂ðdÞBw SΔj i½ �: (10)

Equation (9) is realized by a generalized photon subtraction27, a
method for creating Schrödinger cat states. Figure 3a shows the
setup, where two squeezed vacuum states SΔ1j i1 and SΔ2j i2
interact by a beam splitter interaction B̂ with transmittance
T= 1− R followed by the detection of n photons. Any n is useful,
but below we assume n is even. This process Gw well

Fig. 2 Functional block diagram. a The diagram for the synthesis of arbitrary GKP qubits which consists of coherent bifurcation, damping,
and Gaussian oeprations. b Changes in the wavefunction during the synthesis of codewords from a squeezed state. c Generation of arbitrary
GKP qubits by using the seed state as an initial state. d Generation of a seed state from a squeezed state using coherent bifurcation, damping,
and Gaussian operations. This diagram shows the case of w ¼ ffiffiffi

π
p

.
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approximates Eq. (9),

Gw SΔj i½ � � D̂ð�wÞ þ D̂ðwÞ� �
SΔj i; w ¼

ffiffiffiffiffi
2n

p
Δ; (11)

when n ≥ 2, TΔ�2
1 þ RΔ�2

2 ¼ 1 and Δ�2
2 ¼ 1=ð1þ Δ�2

1 Þ (see Meth-
ods). Compared to conventional photon subtraction28, the
generalized photon subtraction can achieve a larger w for the
same n with a much higher success probability, which indicates
that the nonlinearity of the photon detector is efficiently
exploited. Unfortunately, though, Gw does not in general
implement Bw , because the non-commutativity D̂1ðdÞ; B̂

� �
≠ 0

leads to

Gw D̂ðdÞ SΔj i� �
≠ D̂ðdÞGw SΔj i½ �; (12)

which contradicts Eq. (10). We can avoid this problem by using a
different interaction. We propose the iterable generalized photon
subtraction ~Gw in Fig. 3b, where the beam splitter is replaced by a
quantum-non-demolition (QND) interaction Q̂ðgÞ ¼ eigp̂1 x̂2 and
Ŝ2ðΔ3Þ. The QND interaction is a fundamental entangling gate
and is commonly utilized for QND measurements of position and
momentum. Since Ŝ2ðΔ3ÞQ̂ðgÞ; D̂1ðdÞ

� � ¼ 0, now we do get

~Gw D̂ðdÞ SΔj i� � ¼ D̂ðdÞ~Gw SΔj i½ �; (13)

as required according to Eq. (10). The operation ~Gw equivalently
approximates Eq. (9) as Gw when n ≥ 2, Δ�2

2 þ g2Δ�2
1

� �
Δ�2
3 ¼ 1 and

Δ2
1 � 1 � Δ2

2 (see Methods). In the following, we put
c ¼ Δ�2

2 þ g2Δ�2
1

� �
Δ�2
3 . This process also obeys the linearity as

shown in Eq. (3). As a result, ~Gw is an implementation of coherent
bifurcation Bw . This operation inherits the advantages of the
generalized photon subtraction, such as large w, a high success
probability, and a high fidelity. The theory of coherent bifurcation
can be clearly described when c= 1, but in practice the case c ≠ 1
is also useful. According to generalized photon subtraction, the
width of the bifurcation w increases at the expense of the fidelity
of the output state when c > 1, and vice versa when c < 1. The

parameter c will be an important degree of freedom in actual GKP
state generation. Interestingly, this setup also realizes the
damping operation e�tp̂2 when n= 0. We can further realize a
damping about x by applying a π/2 phase rotation of the input
and output states. Therefore, we are able to generate arbitrary
GKP qubits by cascading the optical circuit in Fig. 3b.
Cascading the circuit in Fig. 3b, however, seems to pose an

experimental challenge29,30. Let us consider again the example of
Fig. 1b. A naive implementation of three coherent bifurcations is
shown in Fig. 3c. A QND interaction is realized with two beam
splitters and two online squeezers, so the whole circuit requires
four squeezed vacuum states, six beam splitters, nine online
squeezers, and three photon detectors. The parameters in Fig. 3c
are set to satisfy w ¼ ffiffiffi

π
p

; c ¼ 1 and Δ2
1 � 1 � Δ2

2. Implementa-
tion of such a complex circuit is difficult, where online squeezers
are especially costful. Here, simplifying the circuit by Bloch-
Messiah reduction31 is useful. Bloch-Messiah reduction transforms
a system of Gaussian states followed by Gaussian operations into
single-mode squeezed states followed by beamsplitters. In the
case of Fig. 3c, an equivalent circuit consists of four squeezed
vacuum states, three beamsplitters, and three photon detectors as
shown in Fig. 3d. This decomposition clearly increases the
feasibility. So far we have considered a basic example, but the
same methodology can be used to synthesize arbitrary GKP
qubits. When N photon detectors are used, the diagram of Fig. 2a
can be realized by at most N(N+ 1)/2 beam splitters32, as shown in
Fig. 3e. Note that while the setup in Fig. 3d, e has the same
configuration as state generation using Gaussian Boson sampling,
it is challenging to derive such a specific setup through numerical
analysis as conventionally done. In our approach, we can
efficiently reveal the desired setup by considering generation of
superposition through generalized photon subtraction and the
commutativity of the QND interaction and displacement opera-
tions. Additionally, in simple cases like generating standard Pauli

Fig. 3 Physical circuits of basic functions and the whole setup. a A setup of the generalized photon subtraction. Squeezed Schrödinger cat
states are generated from squeezed states. b The setup of the iterable generalized photon subtraction using a quantum-non-demolition
interaction. It implements the coherent bifurcation and the damping operation only with the help of a Gaussian ancillary state, Gaussian
operations, and a photon number measurement. c A naive implementation of the synthesis of ~1Δ;κ

�� �
with 10 dB squeezing by iterating three

coherent bifurcation. We assume that the same parameters are used in all bifurcation processes. d An equivalent circuit of (c) derived from the
Bloch-Messiah reduction. e General setup for arbitrary GKP qubit synthesis. When N detectors are used, it requires N(N+ 1)/2 beam splitters
at most.
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codewords, we can generate GKP qubits using only a minimal
number of beam splitters, specifically N beam splitters, instead of
the N(N+ 1)/2 beam splitters typically assumed in Gaussian Boson
sampling. This is a clear advantage that was not anticipated
before.

Performance
We conduct numerical simulations of GKP-qubit generation in a
Fock space up to 55 photons by using Strawberry Fields33. First,
we simulate generation of the codewords ~0Δ;Δ

�� �
; ~1Δ;Δ
�� �

. We
consider three cases where coherent bifurcation with
n= 6, 10, 16 is iteratively employed. We perform a damping
operation after iterating the bifurcation N times to increase the
fidelity to the target states. Table 1 shows the results of the
simulation. We can see that a smaller Δ is achieved by increasing
the value of n. When n= 16, Δ is below

ffiffiffiffiffi
10

p
(10 dB squeezing),

which is usually assumed as the fault-tolerant threshold34. All the
simulated states have a high fidelity F > 0.99. The cat breeding
protocol21,22 can generate similar states by using different iterative
oeprations, but each step reduces the interval between squeezed
states by 1=

ffiffiffi
2

p
. As a result, the number of detected photons

increases exponentially in cat breeding with the number of
iterations, whereas it increases only linearly in our protocol. Let’s
consider achieving Δ � ffiffiffiffiffi

10
p

in cat breeding. If we prepare cat
states using generalized photon subtraction, we would need four
cat states generated with detection of 64 photons for each,
requiring detection of 256 photons in total. Furthermore, the
success probability of such events is at most 2.0 × 10−10, and
achieving this would require squeezed light with r= 2.8 (24 dB). In
a numerical analysis of state synthesizers based on Gaussian
Boson sampling, Δ � ffiffiffiffiffi

10
p

and a high fidelity F > 0.999 are
achieved, but the success probability is kept as low as 10−2926.
On the contrary, if we aim to increase the generation success rate
to around 10−6, we currently only know of state generation
systems that yield states with fidelities below 0.99 and error
correction capabilities significantly below the target25. These
comparisons indicate the high efficiency of our protocol. Figure 4a
show how the wavefunctions of x and Wigner functions change by
iterating coherent bifurcation with n= 16. It can be seen from the
wavefunction that the protocol shown in Fig. 2b works. The

Wigner functions illustrate the characteristics of GKP qubits that
are often referred to as grid states.
For evaluation of this method, we calculate the success rate of

quantum error correction using the synthesized ~0Δ;Δ
�� �

in the
situation presented by Glancy and Knill35. In Fig. 4b, the rates
obtained by the simulation are shown in a scatter plot, and the
rates for the ideal states are shown in dashed lines. For the
theoretical lines, we assume in Eq. (1) to take the summation
from s=−m to m and calculate the rate for m= 0, 1,∞. The
theoretical lines show that the more squeezed states are
superimposed, the better the rate, and it is clearer when the
squeezing level is high. Round dots are the results with (n,N)= (4,
2), (4, 4), (6, 2), (6, 4), (10, 2), (10, 4), (16, 2), (16, 4) under the
condition of c= 1. The star-shaped points are the result of
c= 0.8, 0.9, 1.1 and 1.2 when (n, N)= (16, 4). The larger the value
of c, the higher the squeezing level, which is natural from the
principles of generalized photon subtraction. Note that the
fidelity F usually deteriorates as c increases, but here F > 0.994 is
satisfied even when c= 1.2. The simulation results are in good
agreement with the theoretical line of m=∞, indicating that the
synthesized states are of a high quality not only in fidelity but
also in error correction capability. In particular, the high rate
around 10 dB is a significant result that could not be verified in a
previous study25.
Next, we simulate generation of arbitrary GKP qubits

α ~0Δ;Δ
�� �þ β ~1Δ;Δ

�� �
. We target the three magic states6–8 with

α; βð Þ ¼ cos π
8 ; sin

π
8

� �
; 1ffiffi

2
p ; e

�iπ4ffiffi
2

p
	 


, and cos θ; sin θe�iπ4
� �

where

cos 2θ ¼ 1=
ffiffiffi
3

p
. Table 1 shows the simulation results. Magic states

exceeding the fault-tolerant threshold are generated with a high
fidelity F > 0.99. The success probability is smaller than for the case
of codeword generation, because now we have to include the
probability of generating seed states, which is about 10−5.
Figure 4c presents the Wigner functions of the simulated magic
states. We can see that more complicated grid structures
compared to the standard codewords can be successfully
synthesized. The significance of this is that, in particular, resources
of GKP magic states can be exploited to do universal quantum
computation9,10 by means of non-Clifford gate teleportation.

Table 1. Condition and results of the simulation.

Target state n N Success Squeezing Fidelity to

targetj i Probability 10 log10Δ
�2 (dB) X̂

N
targetj i

~0Δ;Δ
�� �

6 2 1.06 × 10−3 6.4 0.999

6 3 5.75 × 10−5 6.9 0.996

10 3 1.65 × 10−5 8.6 0.998

10 4 6.12 × 10−7 8.8 0.998

16 3 5.05 × 10−6 10.3 0.998

16 4 1.18 × 10−7 10.4 0.998

cos π
8
~0Δ;Δ
�� �þ sin π

8
~1Δ;Δ
�� �

16 3 2.22 × 10−10 10.2 0.997

16 4 4.97 × 10−12 10.6 0.998
1ffiffi
2

p ~0Δ;Δ
�� �þ e�iπ4ffiffi

2
p ~1Δ;Δ
�� �

16 3 3.53 × 10−10 10.3 0.995

16 4 8.06 × 10−12 10.5 0.997

cos θ ~0Δ;Δ
�� �þ e�iπ4 sin θ ~1Δ;Δ

�� � 	 16 3 2.37 × 10−10 10.3 0.996

16 4 5.32 × 10−12 10.4 0.997

	 cos 2θ ¼ 1=
ffiffiffi
3

p
:

We simulate the generation of the codewords and three kinds of magic states. We numerically perform the coherent bifurcation on squeezed states or seed
states N times. In each coherent bifurcation, n photons are detected and we assume

ffiffiffiffiffiffi
2n

p
Δ1 ¼

ffiffiffi
π

p
, Δ2= e, g= 1, and c= 1. The value of Δ2 is e in the case of

codewords and e1.16 in the case of magic states. Seed-state generation is simulated according to Eq. (8) with w ¼ ffiffiffi
π

p
. The probability shows the total success

probability including the generation of seed states.

K. Takase et al.

5

Published in partnership with The University of New South Wales npj Quantum Information (2023)    98 



Robustness against loss
Here, we discuss the effect of photon loss, which is the most
dominant experimental imperfection, and show the high feasi-
bility of this protocol. In the simulation, we assume that the
squeezers and the photon detectors have an efficiency η (loss
1− η) in the beam splitter configuration of Fig. 3e. In general,
photon loss degrades the generated state and reduces the success
probability. Figure 5a, b show the evaluation of these effects for
the cases of n= 6, 10, 16 and N= 3, 4. Figure 5a shows the
deterioration of Wigner negativity due to photon loss. The volume
of the negative part of a Wigner function is a standard indicator of
quantum non-Gaussianity of a quantum state. The existence of
non-zero Wigner logarithmic (log) negativity W log ¼
log
R
dxdp Wðx; pÞj j is necessary for universarity and quantum

error correction of Gaussian errors36,37. It is difficult to discuss how
much Wigner log negativity we need to demonstrate a GKP state
generation, but here we assume that W log > 0:2 is the first

experimental step to achieve. The reason is that when W log > 0:2
and N= 3, 4, more than 10% of the minimum value remains and
we would be able to observe the negative area of the Wigner
function. In that case, η= 0.91, 0.95, 0.97 or more are required for
n= 6, 10, 16, respectively. The squeezer loss is less than 3% in the
experiment that achieved the world record of −15 dB with optical
parametric oscillator38, and about 7% in the waveguide light
source39 compatible with photon number detectors. Photon
detectors with less than 5% loss have also been reported40,41.
For these reasons, the loss requirement for GKP qubit generation
is within a realistic difficulty range. Figure 5b shows the success
probability of state generation, showing that the success rate does
not decrease so drastically. If the success probability is too low,
state generation experiments become difficult. From the past
state generation experiments42,43, it is estimated that the
experiment is possible even with the existing technology if the
success rate is better than about 10−6–10−4. Therefore, in terms of
success probability, experiments up to N= 3 and experiments

Fig. 4 Simulation of GKP qubit synthesis. a Wavefunctions and Wigner functions of the synthesized state with n= 16. From the left,
N= 1, 2, 3, 4 and N= 4 followed by a damping operaiton. The broken lines are the wavefunctions of the target state. b No-error rate of
theoretical and simulated ~0Δ;Δ

�� �
state. Round dots are the results with various (n, N) under c= 1. the star-shaped points are the result with

(n, N)= (16, 4) under c ≠ 1. c Wigner functions of the synthesized magic states over 10 dB squeezing.
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with N= 4 and small n are already feasible. From the above, the
generation of 7 dB GKP qubits that requires (n, N)= (6, 3), (6, 4) is
within the scope of existing technology. Generation of GKP qubits
over 10 dB, including magic states, would also be feasible by
improving photon loss and the rate of state generation.
The fact that 7 dB GKP qubits can be generated with current

technology is an encouraging result for the realization of an optical
quantum computer. For (n, N)= (6, 3), detection of 18 photons is
required in total, but a large photon loss of 9% is allowed in the
squeezer and photon detectors, respectively. This makes us
confident that this synthesizer may be loss tolerant to a certain
extent. In fact, it has a desirable property: the quality of the
generated states in a lossy environment is dominated by n rather
than n ×N. Figure 5c, d show the Wigner functions that result from N
iterations of n− photon addition and coherent bifurcation with
n= 6, respectively. We assume that in both cases the state
generation is conducted in a beam splitter configuration like Fig. 3e
and the squeezers and the photon detectors have an efficiency
η= 0.95. In the case of photon addition, both the log negativity and
minimum value deteriorate as ðW log;WminÞ ¼ ð0:54;�0:030Þ;
ð0:36;�0:014Þ; ð0:26;�0:009Þ; ð0:21;�0:007Þ with N= 1, 2, 3, 4. In
coherent bifurcation, on the other hand, the log negativity increases
as ðW log;WminÞ ¼ ð0:17;�0:066Þ; ð0:32;�0:060Þ; ð0:45;�0:084Þ;
ð0:56;�0:074Þ. Such a desirable property can be explained as

follows. When N= 3, the number of detected photons in three steps
is (n1, n2, n3)= (6, 6, 6) in both Fig. 5c, d. This event includes various
possibilities, such as (n1, n2, n3)= (6, 7, 8) measured as (6, 6, 6) due to
photon loss. In the case of Fig. 5c, a state orthogonal to the target is
generated, except when it is truly (n1, n2, n3)= (6, 6, 6). Since the
probability of such a true event occurring is proportional to
ηn1þn2þn3 , the quality of states such as fidelity and log negativity
deteriorates as the total number of detected photons increases. On
the other hand, the contamination due to the unexpected events is
suppressed in the iteration of bifurcation, because even such events
generate states somewhat close to the target. When there is no loss,
the fidelity of the resulting states between (n1, n2, n3)= (6, 6, 6) and
(n1, n2, n3)= (8, 6, 6), (6, 8, 6), (6, 6, 8) is 0.95, (n1, n2, n3)= (8, 8, 6), (8, 6,
8), (6, 8, 8) is 0.88, (n1, n2, n3)= (8, 8, 8) is 0.76. As N increases, the
number of photon detection patterns that give states close to the
target also increases. Thus, the quality of the generated state is less
affected by N. Detection of an odd number of photons like
(n1, n2, n3)= (6, 6, 7) gives a state orthogonal to the target, because it
flips the parity of photon number components. Interestingly, such
events are suppressed when N ≥ 2. Figure 5e is the probability of
obtaining n3= n when N= 3, (n1, n2)= (6, 6). and η= 1 is assumed.
It shows that we are more likely to detect an even number of
photons than an odd number of photons. This is because even n3
leads to a constructive interference of wavefunctions like in Fig. 2b,

Fig. 5 Effect of photon loss. a Winger log negativity when the squeezers and the photon detectors have an efficienfy η. b Success
probabilities under the same condition as (a). c Wigner functions obtained by iteration of photon addition with η= 0.95. The right side is the
circuit of photon addition. The interaction strength was adjusted so that bifurcation operations in (d) and photon additions have similar
success probabilities. TMS; two-mode squeezing. d Wigner functions given by iteration of coherent bifurcation with η= 0.95. e Probability to
detect n photons in the third photon detector in the iteration of coherent bifurcation with η= 1. We assume that six photons were detected in
the first and the second photon detectors.
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but odd n3 leads to a destructive interference. The probability is
given by

R
dx ΨðxÞj j2, where Ψ(x) is an unnormalized wavefunction

of a generated state, and thus n3 is more likely to be even. As above,
the proposed protocol has a non-accumulative property of photon
loss, in which the state does not degrade even if a lossy circuit is
iterated. Such robustness against photon loss is an important factor
in the generation of complex states like GKP qubits.

DISCUSSION
This work provided a theoretical framework for systematically
generating arbitrary GKP qubits in propagating light. At present,
there are two directions for a further theretical improvement of this
protocol. The first is optimization of various parameters. For
simplicity, most of the simulations in the present research iterate
exactly the same bifurcation. Experimental feasibility may be
improved by using different parameters in each step. For example,
by removing the constraint of detecting the same number of
photons at each step, it could be possible to obtain the desired
state with a smaller number of detected photons and a higher
probability. Another important aspect is to improve the generation
success probability using displacement. In the proposed method,
the probability P(k) of detecting k photons satisfies P(k) > P(k+ 1),
so the probability of detecting around 10 photons is at most several
percent. However, since the displacement operation can remove
this constraint, the success probability may be drastically improved.
In fact, it is known that a quantum state called a cubic phase state
can be generated quasi-deterministically by applying a displace-
ment operation before photon number measurement6. Incorporat-
ing the displacement operation into the proposed method may
lead to quasi-deterministic generation of GKP qubits.
In experiment, increasing the trial rate of state generation, which

enables verification of state generation with lower success prob-
ability, is a straightforward direction. In recent years, the emergence
of single-mode waveguide squeezers has made it possible, in
principle, to generate high-purity states at a trial rate of 10 THz39.
Thus, a success probability of 10−10 is high enough for demonstrating
state generation, and even quasi-deterministic generation is possible
by using a quantum memory with a reasonable life time of 1ms44. In
practice, the dead time of photon detectors would limit the trial rate.
A transition edge sensor enables photon number resolving detection
over 20 photons17,45, but the existing sensors are slow and the trial
rate is limited to several MHz43. Developing faster transition edge
sensors46 or use of superconducting nano wires for photon number
resolving measurement47–49, which can operate at 100MHz, could be
a possible solution. Even with these sub-GHz electronics, wavelength-
division-multiplexed state generation50 could exploit the full
bandwidth of the squeezed light. Although the original proposal
utilizes on-line nonlinear elements for wavelength conversion,
quantum teleportation across different wavelength bands would be
another feasible option. Reducing photon loss is also an essential
research direction. Achieving fault tolerance would require much
lower loss than demonstrating state generation. It is not easy to
estimate the acceptable loss for fault tolerance, but numerical
simulations of quantum error correction is one of the most feasible,
applicable methods.
As mentioned in the introduction, the advantage of propagat-

ing light is that once the GKP qubits are generated, quantum
computing can be readily performed. Therefore, it is important not
only to pursue the generation of high-quality states, but also to
actually perform multimode operations on the generated GKP
qubits, which is demanding in other physical systems. For
example, injecting GKP qubits into quantum processors or using
them for demonstration of quantum error correction and non-
Clifford operations are a meaningful application. The proposed
synthesizer will enable such fundamental research on fault-
tolerant quantum computing and will be a powerful driving force
for the development of practical optical quantum computers.

METHODS
Important notations
We summarize the notations that appear in the main text in Table 2.

Coherent bifurcation
Here, we derive Eqs. (5) and (7). From the properties of BðNÞ

w , we
get

BðNÞ
w SΔj i½ � ¼

XN
l¼0

NCl � D̂ ð2l � NÞwð Þ
" #

SΔj i: (14)

When N≫ 1, the binomial coefficient NCl is well approximated by
a Gaussian function,

NCl �
ffiffiffiffiffiffiffiffiffiffiffi
22Nþ1

Nπ

s
exp � 2ðl � N=2Þ2

N

 !
: (15)

When each displaced squeezed state in Eq. (14) is enough
separated, we have

BðNÞ
w SΔj i½ �

��� ���2 ¼XN
l¼0

NClð Þ2¼2NCN � 22Nffiffiffi
π

p : (16)

When N≫ 1 and w ¼ ffiffiffi
π

p
, we get

ffiffi
π4

p
2N

BðNÞffiffi
π

p SΔj i½ � �
ffiffiffiffiffiffiffi
2

N
ffiffi
π

p
q PN

l¼0
exp � ð2l�NÞ ffiffiπpð Þ2

2Nπ

� �
� D̂ ð2l � NÞ ffiffiffi

π
pð Þ

 �
SΔj i

� ~kΔ;1=
ffiffiffiffiffi
Nπ

p
��� E

; k 
 N ðmod2Þ:
(17)

The generation of arbitrary GKP qubits is confirmed from Eq. (17),

ffiffiffiffiffiffiffi
π

p
22N

q
BðNÞffiffi

π
p seedj i½ � ¼ α

ffiffiffiffiffiffiffi
π

p
22N

q
BðNÞffiffi

π
p SΔj i½ � þ β

ffiffiffiffiffiffiffiffiffiffiffiffi
π

p
22ðNþ1Þ

q
BðNþ1Þffiffi

π
p SΔj i½ �

� X̂
N
α ~0Δ;1=

ffiffiffiffiffi
Nπ

p
��� E

þ β ~1Δ;1=
ffiffiffiffiffi
Nπ

p
��� Eh i

:
(18)

Damping operation
The damping operation is realized by supposing n= 0 in Fig. 3b,
where Q̂ðgÞ ¼ eigp̂1 x̂2 . When the input state is ψinj i, the output
state is

Ψoutj i1 ¼ 2 0h jŜ2ðΔ3ÞQ̂ðgÞ ψinj i1 SΔ2j i2: (19)

Table 2. Summary of important notations.

Notation Detail

Δ, κ Factor of squeezing and Gaussian envelope of the GKP
qubits

~0Δ;κ
�� �

; ~1Δ;κ
�� �

Physical codewords of the GKP qubits

Bw Ideal coherent bifurcation with a displacement factor w

BðNÞ
w N-time iteration of Bw

e�tx̂2 ; e�tp̂2 Damping operators of x and p

Gw Generalized photon subtraction
~Gw Iterable generalized photon subtraction

c A dominant parameter of the quality of ~Gw

n Detected photon number in each ~Gw
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Note that Ψoutj i1 is not normalized. The wave function of this state is

Ψoutðp1Þ ¼
Z

dp2 ψinðp1Þe�
Δ2
2
Δ2
3

2 ðp2�Δ�1
3 gp1Þ2 � e�1

2p
2
2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Δ2

2Δ
2
3

1þΔ2
2Δ

2
3
π

r
ψinðp1Þ � exp � 1

2 �
g2Δ2

2

1þΔ2
2Δ

2
3
p21

h i
:

(20)

This process therefore implements a damping operation e�tp̂2 with

t ¼ g2Δ2
2

2ð1þΔ2
2Δ

2
3Þ
. We can also realize a damping about x by applying a

π/2 phase rotation of the input and output states.
The parameters in Eq. (8) explicitly are

t1 ¼ 1
4w2

ln
α

β

����
����; t2 ¼ 1

4w2
arg

β

α

� �
; t3 ¼ Δ2

2
4w2

π
� 1

� �
; δ ¼

ffiffiffi
π

p
2w

:

(21)

In Eq. (8), we can omit the term ŜðδÞ � e�t3 p̂
2
when w ¼ ffiffiffi

π
p

=2, but
more accurate seed states are obtained as w becomes larger thanffiffiffi
π

p
=2. This is because the term eit2 x̂

2 � e�t1 x̂
2
, which is intended to

multiply β/α to the displaced terms of Bð2Þ
w SΔj i½ � ¼ D̂ð�2wÞ�

þ2þ D̂ð2wÞ� SΔj i, works more accurately. Instead, we have to
adjust the variance and displacement of the squeezed states when
w >

ffiffiffi
π

p
=2. The damping e�t3 p̂

2
increases the variance of the

squeezed states by convolving a Gaussian e�
1
4cx

2
to the wave

function about x. Finally, we get the desired state by applying
ŜðδÞ. Besides the generation of seed states, the damping
operation also can be used to adjust the envelope of the GKP
qubits. When Δ>1=

ffiffiffiffiffiffi
Nπ

p
, we can get square-lattice GKP qubits,

e�tx̂2 ½αj~0Δ; ffiffiffiNp
wi þ βj~1Δ; ffiffiffiNp

wi� � αj~0Δ;Δi þ βj~1Δ;Δi, up to normaliza-
tion by choosing a proper t.

Iterable generalized photon subtraction
The generalized photon subtraction27 is a protocol to generate
Schrödinger cat states. Figure 3a is the original setup defining the
single-mode operation Gw . We propose a setup in Fig. 3b as a
different implementation defining the modified, adapted single-
mode operation ~Gw , which can be used for the Gaussian breeding.
As the basic properties common to the both cases, the output
state is given by

Ψnj i1 ¼ 2hnjGi1;2; (22)

where Gj i1;2 is a two-mode Gaussian state. Note that Ψnj i1 is not
normalized. The wave function Gðx1; x2Þ ¼ 2 x2h j1hx1jGi1;2 can be
an arbitrary Gaussian function but it is enough to assume the
following form,

Gðx1; x2Þ ¼ jσj14ffiffiffi
π

p exp � 1
2
xTσx

 �
; x ¼ x1

x2

� �
; (23)

where σ is a 2 × 2 real symmetric matrix. Assuming σ22= 1 makes
it easier to handle this protocol analytically. First, we get

Ψnðx1Þ ¼ jσj
π

� �1
4 �σ12ð Þnffiffiffiffiffiffiffiffiffi

2nn!
p xn1 exp � 1

4Δ2
c

x21

� �
; (24)

Δ2
c ¼ 1

jσj þ σ11
: (25)

The function in Eq. (24) is well approximated by superimposed
Gaussian functions,

N Ψnðx1Þ½ � � N exp � 1

2Δ2
c

x1 �
ffiffiffiffiffi
2n

p
Δc

	 
2� �
þ ð�1Þn exp � 1

2Δ2
c

x1 þ
ffiffiffiffiffi
2n

p
Δc

	 
2� � �
;

(26)

where N ½�� represents normalization. The fidelity of this approx-
imation is

Fn ¼
2nþ

5
2e�

2n
3 n! Hn i

ffiffiffiffi
2n
3

q	 
��� ���
3nþ1ð2nÞ! 1þ ð�1Þne�2n½ � � 1� 0:03=n: (27)

The probability to detect n photons is

PðnÞ ¼
Z

jΨnðxÞj2 dx ¼
ffiffiffi
2

p ð2nÞ!
4nðn!Þ2 tnðt þ 2Þ�n�1

2; t ¼ g2
Δ2

Δ1
: (28)

When t= 4n, P(n) has a maximum value given by

PmaxðnÞ ¼ ð2nÞ!
2nðn!Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2nþ 1

r
n

2nþ 1

� �n

: (29)

In Fig. 3a, b, the squeezed state SΔ1j i1 can be regarded as the
input state. From Eq. (26), we can realize Eq. (9) when the
following conditions are satisfied,

σ22 ¼ 1; Δ2
c ¼ 1

jσj þ σ11
¼ Δ2

1: (30)

Let us derive a more specific expression for these conditions. The
elements of σ can be easily obtained from the calculation rule of
covariance matrices. In the case of Fig. 3a, the state Gj i1;2 ¼
B̂ SΔ1j i1 SΔ2j i2 gives

σ�1 ¼
ffiffiffi
R

p � ffiffiffi
T

pffiffiffi
T

p ffiffiffi
R

p
 !

Δ1 0

0 Δ2

� � ffiffiffi
R

p ffiffiffi
T

p

� ffiffiffi
T

p ffiffiffi
R

p
 !

¼ RΔ1 þ TΔ2

ffiffiffiffiffiffi
RT

p
Δ1 � Δ2ð Þffiffiffiffiffiffi

RT
p

Δ1 � Δ2ð Þ TΔ1 þ RΔ2

 !
;

(31)

σ ¼ RΔ�2
1 þ TΔ�2

2

ffiffiffiffiffiffi
RT

p
Δ�2
1 � Δ�2

2

� �
ffiffiffiffiffiffi
RT

p
Δ�2
1 � Δ�2

2

� �
TΔ�2

1 þ RΔ�2
2

 !
: (32)

Thus, Eq. (30) is given by

TΔ�2
1 þ RΔ�2

2 ¼ 1; Δ�2
2 ¼ 1

1þ Δ�2
1

: (33)

Under these conditions, the process in Fig. 3a is given by Eq. (11).
Similarly, in the case of Fig. 3b, the state Gj i1;2 ¼
Ŝ2ðΔ3ÞQ̂ðgÞ SΔ1j i1 SΔ2j i2 gives

σ�1 ¼ 1 0

0 Δ�1
3

� �
1 g

0 1

� �
Δ1 0

0 Δ2

� �
1 0

g 1

� �
1 0

0 Δ�1
3

� �
¼ Δ1 þ g2Δ2 gΔ2Δ3

gΔ2Δ3 Δ2Δ3

� �
;

(34)

σ ¼ Δ�2
1 �gΔ�2

1 Δ�1
3

�gΔ�2
1 Δ�1

3 Δ�2
2 þ g2Δ�2

1

� �
Δ�2
3

 !
: (35)

Thus, Eq. (30) is given by

Δ�2
2 þ g2Δ�2

1

� �
Δ�2
3 ¼ 1; Δ�2

1 Δ�2
2 Δ�2

3 ¼ 0: (36)

Note that Δ�2
1 Δ�2

2 Δ�2
3 ¼ 0 is unphysical, thus this condition should

be approximately satisfied by assuming Δ2
1 � 1 � Δ2

2 in addition
to the former condition. With these conditions, the process in
Fig. 3b is given by

~Gw SΔj i½ � � D̂ð�wÞ þ D̂ðwÞ� �
SΔj i; w ¼

ffiffiffiffiffi
2n

p
Δ: (37)

From the above, both setups in Fig. 3a, b can realize Eq. (9).
However, only Fig. 3b satisfies Eq. (10), as discussed in the main
text.
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