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Deterministic Bell state measurement with a single quantum
memory
Akira Kamimaki 1,2, Keidai Wakamatsu 3, Kosuke Mikata3, Yuhei Sekiguchi 1,2 and Hideo Kosaka 1,2,3✉

Entanglements serve as a resource for any quantum information system and are deterministically generated or swapped by a joint
measurement called complete Bell state measurement (BSM). The determinism arises from a quantum nondemolition
measurement of two coupled qubits with the help of readout ancilla, which inevitably requires extra physical qubits. We here
demonstrate a deterministic and complete BSM with only a nitrogen atom in a nitrogen-vacancy (NV) center in diamond as a
quantum memory without relying on any carbon isotopes, which are the extra qubits, by exploiting electron‒nitrogen (14N) double
qutrits at a zero magnetic field. The degenerate logical qubits within the subspace of qutrits on the electron and nitrogen spins are
holonomically controlled by arbitrarily polarized microwave and radiofrequency pulses via zero-field-split states as the ancilla, thus
enabling the complete BSM deterministically. Since the system works under an isotope-free and field-free environment, the
demonstration paves the way to realize high-fidelity quantum repeaters for long-haul quantum networks and quantum interfaces
for large-scale distributed quantum computers.
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INTRODUCTION
The development of large-scale distributed quantum computers
requires quantum networks1–3 based on remote entanglement
to connect the computers4–10. This necessitates the use of
quantum repeaters11–15 or quantum interfaces16 that can
perform, with high fidelity, a deterministic and complete Bell
state measurement (BSM)17–20. The BSM is important not only
for extending the distance of photon transmission21 and for
routing photons over the networks but also for interfacing the
quantum state between photons and qubits in quantum
computers16,22–25. A complete BSM allows us to project any
two-qubit states into one of the four Bell states deterministically,
which typically requires quantum nondemolition measurement
known as single-shot measurement26–31. Due to the possibility
of quantum manipulation with communicating photons32–37, as
well as the rich coherence time of solid-state spins36,38–44, which
is over a minute for a nuclear spin44, nitrogen-vacancy (NV)
centers in diamond45–47 are of interest as core devices for
quantum repeaters with quantum memories (Fig. 1a). A
negatively charged NV center, in particular, has electron and
nitrogen (14N) nuclear spin composite systems and also
accompanies numerous carbon isotopes with a nuclear spin.
The measurement-based entanglement combined with a single-
shot measurement was previously demonstrated by utilizing a
nitrogen nuclear spin and the nearby carbon isotope spins as
the Bell states and utilizing an electron spin as the readout
ancilla17. Subsequently, unconditional quantum teleportation
between distant NV centers has been demonstrated based on a
high-fidelity (89% measured) deterministic BSM18 that reads out
the Bell states composed of electron and nitrogen nuclear spins,
respectively. In both of those studies, the BSM was achieved by
utilizing the entanglement of electron spins with the nitrogen
and carbon isotope spins. However, the underlying interactions
between an electron spin and other nuclear spins were also an

unavoidable factor for the readout infidelity. The composite
system of the NV center is formed by spin-1 triplets of a
nitrogen-14 nuclear spin and an electron spin so that the
required three states (two states for qubit basis and one for the
readout ancilla) can be inherently provided in the single spins,
eliminating the need to use additional ancilla qubits for the
readout. The spins, at a zero magnetic field, provide V- and Λ-
shaped three-level qutrits with degenerate ms ¼ ± 1 qubits and
an energy-split ms ¼ 0 ancillary state component owing to the
zero-field splitting of D0=2π ¼ 2:88 GHz for the electron (Fig. 1b)
and the nuclear quadrupole splitting of Q=2π ¼ 4:95 MHz for the
nitrogen (Fig. 1c). The coupled-system Hamiltonian is given as

H ¼ D0S
2
z � QI2z � ASzIz; (1)

where Sz and Iz are the z component of the spin-1 operator of the
electron spin and the nitrogen nuclear spin, respectively, and
A=2π ¼ 2:17MHz is the hyperfine coupling between the two spins.
The energy-level diagram of the system is shown in Fig. 1d. The
Bell states are composed of inherently degenerate qubits, which
we call geometric spin qubits20,31,35,37,48–55, according to the
computational basis states j± 1ie for the electron and j± 1iN for
the nitrogen (dashed area in Fig. 1d). These states are operated by
the universal holonomic quantum gate with polarized microwave
(MW) and radiofrequency (RF) pulses via the ancilla states j0ie andj0iN54. The geometric spin qubits j± 1ie on an electron and j± 1iN
on a nitrogen atom are analogous to the polarization qubits on
photons showing a geometric nature and have been demon-
strated in terms of geometrically entangled emission35 and
absorption37 of a photon. In this paper, we propose and
experimentally demonstrate a novel scheme for the deterministic
and complete BSM at a zero magnetic field with only a single
quantum memory on a nitrogen atom in an NV center in diamond,
without relying on any carbon isotopes, by exploiting the
electron‒nitrogen double qutrits at a zero magnetic field.
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RESULTS
The double qutrits-based complete Bell state measurement
The NV electron and nitrogen nuclear spins are individually
manipulated with arbitrarily polarized MW and RF pulses created
by two orthogonal wires54 as shown in Fig. 1a. Here, the MW
pulses are generated with the GRadient Ascent Pulse Engineering
(GRAPE) algorithm, which enables high-fidelity operations of
geometric spin qubits54,56. The MW (RF) pulses drive the unitary
operations on the electron (nitrogen nuclear) spins in the Rabi

frequency on the order of MHz (kHz). Figure 2a illustrates the
quantum circuit for the complete BSM consisting of a disen-
tanglement, which transforms the four Bell states into four
eigenstates, and four sequential measurements of the four
eigenstates. The Bell states defined as

Ψ±j ie;N ¼ 1ffiffi
2

p ð þ1;�1j i
e;N

± �1;þ1j ie;NÞ;
Φ±j ie;N ¼ 1ffiffi

2
p ð þ1;þ1j i

e;N
± �1;�1j ie;NÞ;

(2)

Fig. 1 Concept for utilizing the double qutrits. The schematic in a shows the diamond device where electron and nitrogen (14N) nuclear
spins are manipulated by a crossed-wire antenna54. b, c show an energy diagram of the V- and Λ-shaped three-level qutrit systems of the
individual electron (e) and nitrogen nuclear (N) spins at a zero magnetic field. D0 and Q are the zero-field splitting of the electron and the
nuclear quadrupole splitting of the nitrogen, respectively. d The energy diagram of the double-qutrit joint states coupled with hyperfine
interaction A. The four Bell states Ψ±j ie;N and Φ±j ie;N on the logical qubits are based on the ± 1; ± 1j ie;N computational bases (dashed area),
and the 0; 0j ie;N and ± 1; 0j ie;N states serve as readout ancilla (shadowed area).

Fig. 2 Scheme of the complete Bell state measurement (BSM). a The quantum circuit utilizing the two-qubit joint states. After the
entanglement generation, the BSM is achieved via the disentanglement operation consisting of CNOT (Controlled NOT) and Hadamard gates
followed by a single-shot measurement. b–d The procedure for measuring the þ1;þ1j ie;N state. First, (b) each computational basis is
selectively transformed to the 0; 0j ie;N state by applying GRAPE (GRadient Ascent Pulse Engineering algorithm)-optimized microwave (MW)
and radiofrequency (RF) pulses. Next, (c) the population is read out by irradiating a red laser pulse. Finally, (d) the probabilistic transition states
of ±1; 0j ie;N are initialized to the 0; 0j ie;N state by irradiating a GRAPE-optimized MW pulse.
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are transformed as Φþ�� �
e;N ! þ1;þj ie;N ! þ1;þ1j ie;N,

Φ�j ie;N ! þ1;�j ie;N ! þ1;�1j ie;N, Ψþj ie;N ! �1;þj ie;N !
�1;þ1j ie;N, and Ψ�j ie;N ! �1;�j ie;N ! �1;�1j ie;N by applying
an MW pulse for the Controlled NOT (CNOT) gate and RF pulses for
the Hadamard gate as depicted in Fig. 2b, where
±j ieðNÞ ¼ 1ffiffi

2
p ð þ1j ie Nð Þ ± �1j ieðNÞÞ. It should be noted that the

direct transition between ± 1j ieðNÞ states is not permitted, so the
geometric nature is also utilized for the realization of the
Hadamard gate55. Moreover, since the Hadamard gate for the
nitrogen qubit uses a geometric phase in j0ie subspace induced
by the RF pulse54, the electron qubit states j± 1ie are sequentially
transferred to j0ie to apply the geometric phase and then back to
the original states. Finally, each of the resulting eigenstates
(computational bases) ± 1; ± 1j ie;N can be measured with
quantum nondemolition readout by using an extra subspace in
the three-level systems (Fig. 2b–d). The details of the measure-
ment are discussed later.

Quantum state tomography
We initially evaluate the process of disentanglement by quantum
state tomography (QST) of the four prepared Bell states, the states
after the CNOT gate, and the states after the Hadamard gate. As
shown in Fig. 3a, QST consists of a transfer of the arbitrary state
ψe;ψNj ie;N into the 0; 0j ie;N state and the repetitive readout of the
nuclear spin state via electron spin. Initially, the GRAPE-optimized
MW pulse transforms the ψej ie state, which is selected by the
polarization of the MW, into the 0j ie state regardless of the
nuclear spin state. Next, the RF pulse transforms the ψNj iN state,
which is also selected by the polarization of the RF, into the 0j iN
state conditioned on the electron spin state of 0j ie. As a result, the
population of the target state is stored in 0j iN and the others
remain in ± 1j iN, allowing repetitive readout of the target state via
the nuclear spin. The sub-sequence of the readout repeated 30
times consists of the initialization of the electron spin, the
mapping of the nuclear spin state into the electron spin state, and
the readout of the electron spin. The initialization is performed by

Fig. 3 Quantum state tomography (QST). a The pulse sequence of QST. An arbitrary state is mapped to the 0j iN state and repeatedly read
out by Ey resonant red laser (100 nW). The real part of the QST b after Bell state generation, c after the CNOT gate, and d after the Hadamard
gate. The basis labeled ±1; ± 1 for each state corresponds to the ± 1; ±1j ie;N state, respectively. Note that the RF-pulse polarizations for the
final state (d) are optimized, slightly increasing the fidelity compared with the others (b, c). For each state, the obtained fidelity F exceeds 90%.
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spin pumping into the 0j ie state by ± 1j ie-selective excitation to
the E1;2 excited state. The mapping is performed by the GRAPE-
optimized MW pulse to flip the 0j ie state into the ± 1j ie state
conditioned on the nuclear spin state of 0j iN. The readout is
performed by counting the photons of phonon sideband emission
during 0j ie-selective excitation to the Ey excited state. Figure 3b–d
shows the reconstructed density matrices of the Ψ±j ie;N and
Φ±j ie;N states after entanglement generation, the ± 1; ±j ie;N
states after the CNOT gate operation, and the ± 1; ± 1j ie;N states
after the Hadamard gate operation, respectively (fidelities are
shown in the figures). The obtained fidelities exceed 90% on
average for all three stages: the prepared Bell states, the states
after the CNOT gate, and the states even after the Hadamard gate.

The measurements of our device
We now demonstrate the complete BSM, which enables
deterministic discrimination of all four Bell states with only one
set of measurements. Figure 4a illustrates the pulse sequence for
the BSM. The measurements are carried out in the order of
Φþ�� �

e;N, Ψþj ie;N, Ψ�j ie;N, and Φ�j ie;N by selecting the MW-pulse
frequency and RF-pulse polarization (R or L) to transfer them into
the corresponding computational bases ± 1; ± 1j ie;N, which are
then selectively transformed again into the readout state 0; 0j ie;N
by the polarized MW and RF pulses. The 0; 0j ie;N state is
repeatedly measured in the ancillary space { 0; 0j ie;N; ± 1; 0j ie;N}.
In contrast to the case of QST, initialization by E1;2 excitation is no
longer available since it disrupts the state awaiting the next
measurement. Instead of using E1;2 lasers, we use the GRAPE-

Fig. 4 Complete BSM. a The pulse sequences of the single-shot measurements (the Φþ�� �
e;N measurement is described only as an example).

The BSM consists of selective transformation from the prepared Bell state into the readout state 0; 0j ie;N through the computational basis
± 1; ± 1j ie;N by corresponding GRAPE-shaped MW and polarized square-shaped RF π-pulses followed by a repetitive single-shot measurement
by Ey laser pulses for the measurement of 0; 0j ie;N and GRAPE-based MW π-pulses for the initialization (instead of E1;2 lasers), respectively. The
pulse sequences for the other measurements are the same as those for Φþ�� �

e;N (shown in the shadowed area) except for the GRAPE waveform
(targeting the upper or lower level) and the RF polarization (R or L) depending on the prepared Bell state. b The probability distribution of the
accumulated photon counts for the BSM. Magenta (blue) bars indicate that the obtained photon counts exceed (fall below) a threshold.
c Probability distributions of the Bell states after the thresholding discrimination. The red bars indicate that the discriminated state
corresponds to the prepared Bell state.
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optimized MW pulses to transform a part of the ± 1; 0j ie;N states
relaxed by the Ey excitation during the measurement of 0; 0j ie;N
(here, the þ; 0j ie;N state) back into the 0; 0j ie;N, allowing for
repetitive measurements of all the computational bases
± 1; ± 1j ie;N through the readout state 0; 0j ie;N. Photon counts
are accumulated by repeating the sub-sequences 25 times in a
similar way as for the QST. The Bell states are discriminated by the
conditions as

jΦþie;N : n1 � nc;

jΨþie;N : n1 < nc; n2 � nc;

jΨ�ie;N : n1 < nc; n2 < nc; n3 � nc;

jΦ�ie;N : n1 < nc; n2 < nc; n3 < nc; n4 � nc

(3)

where fn1; n2; n3; n4g are the photon counts for the successive
measurements in the Φþ�� �

e;N, Ψþj ie;N, Ψ�j ie;N, and Φ�j ie;N bases
and nc is the threshold of the photon counts, which is set to nc ¼ 1
in this demonstration. Figure 4b shows the probability distributions
of the accumulated photon counts. The distribution clearly
changes from a dark state (0.3 on average) to a bright state (1.8
on average) when the prepared Bell state corresponds to the
measurement state, indicating that the Bell states are well
discriminated by Eq. (3). It should be noted that the distribution
is kept bright for the following measurements after the
correspondence, since the population of the measured state
remains in the readout ancilla. The final measurement in Φ�j ie;N is
confirmed to be bright as n4 � nc, although it should be
determined by three measurements. All four Bell states are thus
equivalently discriminated deterministically. Figure 4c shows the
probability distributions of the measurement outcome after the
thresholding discrimination. Note that the discriminated Bell states
(red bars) correspond to the prepared Bell states with a fidelity of
FBSM ¼ 68% on average.

DISCUSSION
In our scheme, the BSM is achieved by utilizing the repetitive
single-shot measurement in 0j iN readout ancilla at a zero
magnetic field, whereas the conventional BSMs rely on the
electron spin18. In our device, the low extraction efficiency of
photons emitted from bulk diamond makes it difficult to
determine the all-prepared state using an electron-spin readout
(see Supplementary Note 1). Moreover, it is numerically demon-
strated that the enhanced fidelity in our scheme by introducing a
solid immersion lens (SIL) is still larger than that in the
conventional readout18 (see Supplementary Note 2), indicating
the significance and potential of the qutrit nature with the readout
ancilla.
The demonstrated scheme also plays a complementary role to

the conventional scheme. A recent report57 showed that quantum
repeaters can be realized by performing the BSM only at
intermediate nodes of communicating photons. On the other
hand, it has been proposed that NV centers can also serve as
interface devices for communicating photons58 with other qubits,
such as superconducting qubits59, which play a key role in
distributed quantum computers60–62. In considering such
schemes, the realization of the high-fidelity BSM without relying
on other spins and/or magnetic fields is also useful for a wide
range of applications in quantum technologies.
In summary, a deterministic and complete BSM has been

demonstrated at a zero magnetic field with only a single
quantum memory by fully exploiting the inherent qutrit nature
of electron and nitrogen spins in an NV center. The double qutrit
systems enabled nondestructive joint-state measurements with-
out relying on additional carbon isotopes or high photon
extraction efficiency from an electron, owing to the long

memory time of the nitrogen nuclear spin. The present
demonstration paves the way for realizing high-fidelity quantum
repeaters for long-haul quantum networks and quantum
interfaces for large-scale distributed quantum computers with
minimal physical resources.

METHODS
Diamond device and optical set up
We use a single naturally occurring NV center in a high-purity-
type IIa chemical vapor deposition-grown diamond with a <100>
crystalline orientation produced by Element Six. All measure-
ments are performed below 5 K to allow coherent control of the
electron orbital, and the sample is placed under an applied
magnetic field with three-dimensional coils to suppress the
geomagnetic field. Phonon sideband photons from an NV center
are emitted and detected by the following optical setup. The
system consists of a confocal microscope similar to those used in
previous studies; it has a green-laser path (515 nm in wavelength)
for nonresonant excitation and initialization of the charge state of
an NV center and the electron spin as well as two red-laser paths
(637 nm in wavelength) for the resonant excitation, initialization,
and readout of the electron spin. In addition, the path for
detecting the emitted photons is filtered by a dichroic mirror to
exclude the green and red lasers, and the photons are focused on
the avalanche photodiode (APD), selectively detected as the
phonon sideband.
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