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Revealing inherent quantum interference and entanglement of
a Dirac particle
Wen Ning 1,4, Ri-Hua Zheng1,4, Yan Xia1, Kai Xu 2,3, Hekang Li 2, Dongning Zheng 2,3, Heng Fan 2,3, Fan Wu 1✉,
Zhen-Biao Yang 1✉ and Shi-Biao Zheng 1✉

Although originally predicted in relativistic quantum mechanics, Zitterbewegung can also appear in some classical systems,
which leads to the important question of whether Zitterbewegung of Dirac particles is underlain by a more fundamental and
universal interference behavior without classical analogs. We here reveal such an interference pattern in phase space, which
underlies but goes beyond Zitterbewegung, and whose nonclassicality is manifested by the negativity of the phase space
quasiprobability distribution, and the associated pseudospin-momentum entanglement. We confirm this discovery by numerical
simulation and an on-chip experiment, where a superconducting qubit and a quantized microwave field respectively emulate
the internal and external degrees of freedom of a Dirac particle. The measured quasiprobability negativities agree well with the
numerical simulation. Besides being of fundamental importance, the demonstrated nonclassical effects are useful in quantum
technology.
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INTRODUCTION
The Dirac equation, which describes the wavefunction for a spin-
1/2 particle in the framework of relativistic quantum mechanics,
represents a cornerstone of modern physics. Over the past
century, this equation has been producing enduring profound
influences on a wide variety of fields of modern science and
technology, ranging from atomic physics to quantum electro-
dynamics1, and from material engineering2–5 to medical
imaging6.
Despite the fundamental importance of the Dirac equation, the

physics underlying its dynamical solution has not been fully
understood owing to the associated elusive phenomena, exem-
plified by Zitterbewegung (ZB)7, the oscillatory motion of a particle,
as a result of the interference between the positive and negative
energy components. For a free electron, the predicted ZB has an
amplitude on the order of the Compton wavelength, ℏ/mc ~
10−12 m, and thus cannot be unambiguously observed due to the
restriction of the Heisenberg uncertainty principle. Although
whether or not ZB really exists in relativistic quantum mechanics
is still an open question8–11, enduring efforts have been made to
its simulations with different quantum systems, including circuit
quantum electrodynamics11, ion traps12,13, ultracold atoms14–17,
semiconductor quantum wells18–23, graphene24–33, and moiré
excitons34. These investigations have shed new light on ZB, which
itself, however, is not a unique character of Dirac particles as
similar phenomena can also appear in some classical wave
systems35–40. This leads us to consider whether the ZB associated
with Dirac particles has a deeper quantum origin that can manifest
itself even without ZB. Answering this question is critical for
understanding the dynamical behaviors of Dirac particles at a
more fundamental level, but a deep exploration is still lacking.

RESULTS
Theoretical predictions
We here present an investigation on this important issue, and
unveil a universal quantum interference behavior in the position-
momentum space. The nonclassicality of this behavior is
manifested by the negativity of the phase space quasiprobability
distribution–Wigner function (WF), as well as by the quantum
correlation between the spatial and internal degrees of freedom.
These quantum signatures distinguish the ZB of the Dirac particle,
obtained by integrating the WF over the momentum, from the
trembling motion of classical wavepackets, and more importantly,
can express themselves even in the absence of any negative
component. We demonstrate this unique interference pattern
with a circuit, where the spinorial characteristic of a Dirac particle
is encoded in the two lowest energy levels of a superconducting
Xmon qubit41–43, while the position and momentum are mapped
to the quadratures of the photonic field. The measured WFs and
entanglement entropy agree well with theoretical predictions.
Furthermore, we simulate the Klein tunneling44,45 in a linear
potential field and observe mesoscopic superpositions of two
separated wavepackets in phase space.
We focus on the simplest case that the motion of a Dirac

particle is confined to one dimension (1D), for which the
Hamiltonian reduces to

HD ¼ cσy p̂þmc2σz : (1)

Here c denotes the light speed in the vacuum, p̂ represents the
momentum operator of the particle with a rest mass of m, and σy
and σz are the Pauli operators that endow the Dirac particle a
spinor characteristic, manifested by a two-component wavefunc-
tion, where the spatial position and momentum are correlated
with the degree of freedom defined in an “internal space", which
will be referred to as pseudospin for simplicity. Unlike the
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Schrödinger equation, the Dirac equation is linear in both the
time- and space-derivatives, satisfying the Lorentz-covariance, and
includes the spin degree of freedom at the ab initio level by
describing the wave function in terms of a spinor. These features
have led to remarkable accomplishments, including predictions of
the spin-1/2 feature of electrons and the existence of anti-particles
indicated by the negative-energy component accompanying the
positive one, and introduction of the spin-orbit interaction that led
to a more refined fine structure description of the spectrum. These
predictions are based on stationary solutions of the Dirac equation
and show excellent agreements with experiments. As the
Hamiltonian commutes with the momentum operator, it is
illuminating to uncover the physics in the momentum representa-
tion, where the momentum operator p̂ can be taken as a
parameter p. For a specific value of p, HD has two eigenvalues
± Ep ¼ ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2c2 þm2c4

p
, with the corresponding eigenstates

ϕþðpÞ
�� � ¼ cosϕp; i sinϕp

� �T
and ϕ�ðpÞj i ¼ i sinϕp; cosϕp

� �T
,

where tanð2ϕpÞ ¼ p
mc. Suppose that the system is initially in the

product state

ψð0Þj i ¼
Z

dp ξp pj i Xj i; (2)

where ± Xj i ¼ 1ffiffi
2

p 1; ± 1ð ÞT and ξp denotes the wave function in
the momentum representation. Under the Dirac Hamiltonian, the
system evolves as

ψðtÞj i ¼
Z

dp pj iξpðcosφt Xj i � ie�2iϕp sinφt �Xj iÞ; (3)

where φt= Ept/ℏ. This directly yields the average position
evolution,

xðtÞh i ¼ xð0Þh i þ vð0Þh it
þ _

R
dp ξp

�� ��2xpð1� cos 2φtÞ;
(4)

where xp= dϕp/dp, xð0Þh i represents the average value of the
initial position, and vð0Þh i denotes the initial mean velocity. The
ZB, manifested by the last term, is observable only in the
intermediate regime where mc is comparable with p.
In the non-relativistic regime pj j � mc, the ZB amplitude A≃ λc/

2, where λc= ℏ/mc is the Compton wavelength, which sets the
lower bound for the uncertainty of the position, and consequently,
the ZB cannot be observed. In the far-relativistic regime pj j � mc,
A � _=2 ph i � δx, where δx= ℏ/2δp is the limitation of precision
attainable for any position measurement imposed by the
Heisenberg uncertainty relation.
As we have noted, ZB itself does not manifest quantum effects,

but is closely related to quantum entanglement between the
internal and spatial degrees of freedom, produced by their
coupling. Under the time evolution, the populations of two states
± Xj i become increasingly balanced, and the entropy tends to 1.
Due to this entanglement, the spatial quantum interference
appears when the WF is correlated with the projection of the
pseudospin along some basis, e.g., f ± Bj ig. The WFs associated to
± Bj i are respectively

W ± ðx; pÞ ¼ 1
π_

Z
dv ϕ�

± ðpþ vÞϕ± ðp� vÞe�2ivx=_; (5)

where ϕ± ðpÞ ¼ ξp ± Bh jðcosφt Xj i � ie�2iϕp sinφt �Xj iÞ. During the
evolution, the wavepacket is continually deformed under the
competition between the momentum-dependent and static
energy terms in the Dirac Hamiltonian, which leads to a nonlinear
dependence of the energy on the momentum. This nonlinear
process evolves an initial Gaussian wavepacket to a non-Gaussian
one, manifesting pseudospin-dependent quantum interference
signatures. The ZB phenomenon appears as the integral of the
weighted mixture of the two WFs over the momentum, which
reflects the classical probability distribution, but does not manifest
the underlying quantum nature. It should be noted that the

presence of ZB is challenged by the claim that the positive and
negative components could not be assigned to a single particle8,
however, recent experimental evidence indicates nature does not
prohibit the existence of a quantum superposition of a particle
with its antiparticle46. We further note that even when the particle
remains in the positive branch, there still exists phase space
quantum interference, though ZB disappears.

Device and experimental scheme
The simulation is performed with a superconducting qubit of
angular frequency ω0 that encodes the internal state of the
simulated spinor, whose position and momentum are mapped
onto the two quadratures of the microwave field stored in a bus
resonator, defined as x̂ ¼ 1ffiffi

2
p ðay þ aÞ and p̂ ¼ iffiffi

2
p ðay � aÞ, where a†

and a denote the creation and annihilation operators for the
photonic field of angular frequency ωr. If we take ℏ= 1, x̂ and p̂
satisfy the same commutation relation as the position and
momentum operators. The qubit is subjected to two longitudinal
parametric modulations with amplitudes εj and angular frequencies
νj (j= 1, 2), and a transverse continuous microwave driving with an
amplitude Ω (Fig. 1a). With the choice ωr=ω0+ 2ν1, the resonator
is coupled to the qubit at the second upper sideband of the first
modulation with the effective strength η= λJ2(μ)/247, where Jn(μ) is
the nth Bessel function of the first kind, with μ= ε1/ν1.
When Ω≫ 2η, the transverse drive effectively transforms the
rotating-wave interaction into an equal combination of rotating-
and counter-rotating-wave interactions, simulating the coupling
between the internal and external degrees of freedom of the
spinor. Then the resulting effective Hamiltonian reduces to the
form of Eq. (1), with the correspondences σy ¼ i gj ihej � ijei gh j,
σz ¼ ej ihej � jgi gh j, c� ¼ ffiffiffi

2
p

η and m*c*2= ε2/4, where c* and m*

denote the effective light speed and mass of the Dirac particle in
the simulation, respectively (see Supplementary Note 1).
Before the experiment, both the resonator and the spinor qubit

are initialized to their ground states. The experiment starts with
the application of a pulse to the resonator, translating its state
along the p-axis in phase space by an amount of p0= 2, and thus
transforming the initial vacuum state to the coherent state i

ffiffiffi
2

p�� �
.

Then a π/2 rotation is performed on the test qubit, transforming it
from gj i to Xj i at the operating frequency ω0/(2π)= 5.26 GHz. The
initial qubit-resonator state is pictorially shown in Fig. 1b. After this
initial state preparation, two parametric modulations with
frequencies ν1/(2π)= 160 MHz and ν2/(2π)= 33.4 MHz are applied
to the qubit. These modulations, together with the transverse
microwave driving at the frequency ω0, couple the qubit to the
bus resonator with a fixed frequency of ωr/(2π)= 5.584 GHz,
effectively realizing the Dirac Hamiltonian in the rotating frame.
The ratio between the effective momentum and mass of the Dirac
particle is controlled by adjusting the modulation amplitudes ε1
and/or ε2. Detailed system parameters are shown in the
Supplementary Table 1.

ZB interference behaviors
We investigate the interference behaviors with the choice of
effective spinor frequency ω ¼ m�c� ¼ ffiffiffi

2
p

ηp0, with c� ¼ ffiffiffi
2

p
η,

which ensures that the Dirac particle described by the Dirac
equation HD has an initial momentum of p0. After a preset
evolution time, both the parametric modulations and microwave
driving are switched off. This is followed by Wigner tomography,
realized by performing a phase space displacement,
DðγÞ ¼ eγa

y�γ�a, to the resonator and then tuning an ancilla qubit
on resonance with the resonator. The photon number population
of the displaced resonator field, PnðγÞ, inferred from the measured
Rabi oscillation signals, directly yields the WF,
Wðx; pÞ ¼ 1

π

P
nð�1ÞnPnðγÞ47,48, where x ¼ ffiffiffi

2
p

Reγ and
p ¼ ffiffiffi

2
p

Imγ. The nonclassical features of the simulated Dirac
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particle can be revealed by the WFs of the resonator conditional
on the detection of the qubit state. The WFs correlated with the
measurement outcomes gj i and ej i are presented in the upper
panels of Fig. 2a, b, and the result irrespective of the test qubit’s
state is displayed in Fig. 2c, all measured after an evolution time
330 ns. As expected, during the evolution the initial Gaussian
wavepacket is split into two parts, propagating towards opposite
directions. The WF associated with each qubit state displays a
region of negativity that is a purely quantum-mechanical effect.
This result can be interpreted as follows. Under the Dirac
Hamiltonian, each component accumulates a phase that non-
linearly depends on the “momentum" and “mass" asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ ðm�c�Þ2

q
c�t. Such a process corresponds to a non-

Gaussian operation, turning a Gaussian state to a non-Gaussian
state. The two rods sprouting from the bulk of the distorted
wavepacket interfere with each other, resulting in a negative
quasiprobability distribution in the region between them. The
lower panels show the probability distribution PðxÞ with respect
to the quadrature x, obtained by integrating Wðx; pÞ over p.
Another important feature associated with the simulated particle

is the production of quantum entanglement between its internal
and external degrees of freedom. To quantitatively characterize the
behavior, we present the von Neumann entropy of the test qubit,
S ¼ �trðρqlog2ρqÞ, measured for different evolution time t in
Fig. 2d, where ρq denotes the reduced density operator of this
qubit. The measured results (red circles) agree with the numerical
simulation (blue curve), where the small fluctuations are due to the
fast Rabi oscillations. ZB is manifested in the time-evolving mean
position, which is related to PðxÞ by hxi ¼ trðρxÞ, where ρ is the
corresponding density matrix deduced by the measured WF data
(see Supplementary Note 5). This evolution, inferred from the
measured WF, is presented in Fig. 2e, which coincides with the
simulation (green curve), confirming that ZB has a deeper root that
is of pure quantum characteristic. We notice that the numerical

simulation curves of Fig. 2d, e both have high frequency vibrations.
The high-frequency signals mainly come from the first parametric
modulation with frequency 2π × 160MHz, whose Jacobi-Anger
expansion will produce two major frequency components of
2π × 160MHz and 2π × 320MHz around the dynamically resonant
frequency (see Supplementary Note 1).
Although ZB appears only when the system is in a superposition

of positive and negative components, phase space quantum
interference is actually a universal inherent characteristic of Dirac
particles, which can manifest itself even without negative
components. This point can be illustrated with the representative
example, where the momentum has a Gaussian distribution,
centered at p0 with the spread δp. When restricted to the positive
branch, the system state can be written as

ψðtÞj i ¼
Z

dp eiθpðtÞξp pj i ϕþðpÞ
�� �

; (6)

where ξp ¼ ðδp ffiffiffiffiffiffi
2π

p Þ�1=2
e�ðp�p0Þ2=ð2δpÞ2 . This implies that the

internal degrees freedom is necessarily entangled with the
momentum except for a plane wave with δp→ 0. As it is
experimentally difficult to prepare such an entangled state, we
reveal the associated quantum feature by numerical simulation.
The entanglement entropy as a function of δp is shown in Fig. 3a,
which is independent of the evolution time. We here have set
ℏ= c= 1 and m= p0= 1. Unlike the entropy, the phase space
interference pattern is time-dependent. To clearly reveal such an
interference behavior, we assume that δp= 1, and θp(0)= 0. The
unconditional WFs, for different evolution times under the ideal
Dirac Hamiltonian, are shown in Fig. 3b. Unexpectedly, the WF
displays a time-evolving quantum interference pattern, even
without correlating the result with the internal state. We note that
the phase space quantum interference effects were previously
predicted for some special states with both positive and negative
components11, but the presence of such effects without ZB has
not been revealed. The WFs correlated with gj i and ej i, together

0
0.1
0.2

22

0.3

00 -2

(a) (b)

(c) Qubit state Resonator state

Fig. 1 Diagram and pulse for simulating 1D Dirac particles. a Analog of the Dirac particle in a circuit. The internal and external degrees of
freedom of the Dirac particle are respectively encoded in a superconducting qubit and the field mode in a microwave resonator, whose
quadratures behave like the position (x) and momentum (p) of the particle. b Engineering of the Dirac Hamiltonian. The coupling between the
internal and external states of the spinor is simulated by transversely driving the qubit with continuous microwave, and longitudinally
modulating it with two alternating current (AC) fluxes. The first parametric modulation controls the qubit-resonator interaction at the second
upper sideband, which together with the transverse driving, effectively realizes the momentum term. The second parametric modulation
serves for adjusting the effective mass of the simulated particle. c Pictorial representation of the system’s initial state. The qubit’s state Xj i is
represented by its Bloch vector, while the resonator’s coherent state i

ffiffiffi
2

p�� �
is characterized by its WF.
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with the evolutions of mean position and entanglement entropy,
are displayed in the Supplementary Note 3.

Klein tunneling
Pushing one step further, we simulate Klein tunneling in a linear
potential field40,44. It was first noted by Klein that a relativistic
electron may exhibit a counter-intuitive behavior when con-
fronted with a semi-infinite step potential with V= 0 and V0 for
x < 0 and x ≥ 0, respectively. This occurs in the regime V0 > E+
mc2, for which the electron can propagate through the barrier
without damping, where it is transformed into a positron, where
E denotes the initial kinetic energy. In our setup, it is not easy to
engineer the step-shaped potential. However, a linear potential
can be added to the Dirac Hamiltonian in situ by applying a
continuous microwave to the resonator, given by V ¼ ffiffiffi

2
p

ϵx,
where ϵ is the amplitude of the drive, and set to be
2π × 0.39 MHz in our experiment. For simplicity, the simulation
is performed for the choice ε2= 0. Figure 4a, b showcase the WFs
of the resonator correlated with the states gj i and ej i of the
spinor qubit, respectively, and Fig. 4c presents the result
irrespective of the qubit’s state, all measured after an evolving
time t= 288 ns. As expected, the linear potential drags the phase
space evolution down along the p-axis by an amount

ffiffiffi
2

p
ϵt, but

does not affect the motion along the x-axis. The resulting cat-like
state was previously predicted to exist as a solution of a

relativistic spin-1/2 charged particle in an external magnetic
field49, but has not been characterized in previous simula-
tions50,51. To illustrate this phenomenon more clearly, we display
the time evolutions of the measured xh i and ph i in Fig. 4d, e,
respectively, where the dots and diamonds respectively denote
the results for wavepackets along the positive and negative
directions of the x-axis. The measured results imply that the two
wavepackets have the same momentum at each moment, but
move along the opposite directions. This can be explained as
follows. For x > 0, the momentum of the Dirac particle is given by
p2= (E− V)2−m2 (c= 1), with the group velocity vg= dE/dp=
p/(E− V)45. When the massless particle moves from left to right
with E < V, p is assigned with its negative solution, so that vg is
positive.

DISCUSSION
We have performed an investigation on the dynamical evolution
of the Dirac particle, showing that the competition between its
dynamic and static energies leads to a time-evolving phase
space quasi-probability distribution, which underlies its spatial
motion. The quantum interference signatures appear in the
phase space spanned by position and momentum, but
disappear when the momentum is traced out. We demonstrate
this discovery with numerical simulations and with a circuit
experiment, where a superconducting qubit represents the

0 50 100 150 200 250 300

-0.2

-0.1

0 sim.

exp.

0

2

4

-0.05 0 0.05 0.1 0.15 0.2 0.25

-2 -1 0 1 2
0

0.5

-2 -1 0 1 2 -2 -1 0 1 2

0 50 100 150 200 250 300
0

0.5

1

sim.

exp.

(d)

(e)

(a) (b) (c)

Fig. 2 Observation of phase space quantum interference. WFs correlated with the basis states gj i (a) and ej i (b) of the test qubit; (c) WF
irrespective of the test qubit’s state, all measured after an evolution time of 330 ns. Probability distributions PðxÞ with respect to the
quadrature x, shown in the lower panels, are obtained by integrating the WF Wðx; pÞ over p. d Entropy evolution of the test qubit. This
entropy is directly obtained from the density matrix of the qubit, measured irrespective of the resonator’s state. Symbols “exp." and “sim."
represent the experimental and corresponding simulated data, respectively. e Evolution of the average value of the resonator’s quadrature xh i.
The value at each point is extracted from the measured WF.
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internal degree of freedom, which is coupled to the microwave
field in a resonator that encodes the spatial degree of freedom.
The measured negativities of the WFs and entanglement
entropy distinguish the ZB of the Dirac particle from that
exhibited by the classical systems. In addition to fundamental
interest, the demonstrated nonclassicality can serve as a
resource for quantum-enhanced sensing52.

DATA AVAILABILITY
All data needed to evaluate the conclusions in the paper are present in the paper and
the Supplementary Materials. Additional data related to this paper may be requested
from the authors.
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Fig. 4 Simulation of Klein’s tunneling. The potential is simulated by applying a drive to the resonator with the strength ϵ= 2π × 0.39 MHz.
The simulation is performed without the second parametric modulation so that the system dynamics are analogous to a massless particle
penetrating a linear potential. a Measured WF of the resonator conditional on the detection of the spinorial state gj i. b Resonator’s WF
correlated with the detection of ej i. c Unconditional WF. These WFs are reconstructed for the system evolving from the initial ground state
g; 0j i for a time 288 ns. d, e Evolutions of the measured xh i and ph i. The dots and diamonds denote the measured values for wavepackets
along the positive and negative directions of the x-axis, and the triangles correspond to the results without discrimination between the
moving directions.

Fig. 3 Quantum characteristics in the positive branch. a Entanglement entropy versus the momentum spread. b WF evolution with a
momentum spread δp= 1. In the numerical simulations, the Dirac particle is supposed to have a mass of m= 1 and a Gaussian momentum
distribution with a mean value of p0= 1. For simplicity, we here take the natural unit with ℏ= c= 1.
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