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Quantum speed limit for complex dynamics
Mao Zhang1, Huai-Ming Yu 1 and Jing Liu 1✉

Quantum speed limit focuses on the minimum time scale for a fixed mission and hence is important in quantum information where
fast dynamics is usually beneficial. Most existing tools for the depiction of quantum speed limit are the lower-bound-type tools,
which are in fact difficult to reveal the true minimum time, especially for many-body systems or complex dynamics. Therefore, the
evaluation of this true minimum time in these scenarios is still an unsolved problem. Hereby we provide the operational definition
of quantum speed limit for a general target and propose a three-step (classification-regression-calibration) methodology based on
machine learning to evaluate the true minimum time in complex dynamics. Moreover, the analytical expression of the true
minimum time is also provided for the time-dependent Hamiltonians with time-independent eigenstates.
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INTRODUCTION
Quantum speed limit (QSL) is a fundamental topic in quantum
mechanics focusing on the characterization of minimum time for
quantum states to fulfill certain known targets, such as rotating a
state to its orthogonal states, or some angles quantified by certain
metrics. In principle, the target could be chosen flexibly due to the
problem of interest. In the year of 1945, Mandelstam and Tamm
provided the first lower bound for this minimum time based on
the uncertainty relation1. In 1996 Braunstein et al. extended the
lower bound to time-dependent Hamiltonians utilizing the
generalized uncertainty relation2 where the time-average variance
was applied. In 1998, Margolus and Levitin3 provided another
bound based on the mean energy. After these pioneer works, the
topic of QSL entered a period of rapid development in the next 20
years, especially in 2010s4–42.
Most existing tools in QSL belong to the lower-bound-type (LBT)

tools. The advantage of this type of tools is that they are easy to
compute, especially in numerical aspects. However, the disadvan-
tage of them are also significant. On one hand, most LBT tools are
dependent on the initial states. This dependence would cause a
problem that even the initial state cannot actually fulfill the given
target, the LBT tools would still provide finite results, which is
reasonable in mathematics since any finite value is a legitimate
lower bound of infinity. However, it also indicates that from these
tools one cannot acquire the information whether a state is
capable to fulfill the target. For example, consider a qubit
Hamiltonian ωσz/2 with σz(x) the Pauli Z (X) matrix and ω the
energy gap. For this Hamiltonian, the Mandelstam-Tamm and
Margolus-Levitin bounds for the state with the density matrix
1=2þ σx=4þ

ffiffiffi
3

p
σz=4 are 2π/ω and 2π=ð ffiffiffi

3
p

ωÞ. Here 1 is the
identity matrix. However, in fact this state cannot fulfill the target
π/2 at all since the maximum angle it can rotate under the given
Hamiltonian is only π/321. Hence, without the information whether
the target can be fulfilled, the conclusions based on the lower-
bound-type tools might be suboptimal since the results are
actually unphysical for the states unable to reach the target.
On the other hand, in the case that the Hamiltonians are time-

dependent, the LBT tools are usually functions of time9–20. As a
matter of fact, these formal time-dependent lower bounds are
difficult to reveal both the true minimum time and true physics

behind it. As clarified in ref. 21, in noncontrolled scenarios the true
minimum time for a fixed state to fulfill a given target is only a
fixed time point, and the results of LBT tools have to go across this
time point due to their time dependence. In the time before this
time point, the finite results of the LBT tools cannot reveal the fact
that this state is actually uncapable to reach the target in this time
regime. And in the time after this time point, the results of LBT
tools have to be no larger than this point since they are its lower
bounds, which indicates that in this time regime the attainability
of the LBT tools is lousy. These disadvantages of LBT tools could
be further magnified with the growth of system dimension or the
complexity of dynamics. Hence, locating the true minimum time
for the fulfillness of a given target in many-body systems and
complex dynamics is still an important yet unsolved problem.
Finding this minimum time or at least providing efficient
methodologies to search it is thus the major motivation of
this paper.

RESULTS AND DISCUSSION
Operational definition of the quantum speed limit
The target in QSL could be quantified via different tools, such as the
Bures metric or various types of fidelity8–13, relative purity14–16, Bloch
angle16,17,21,22, gauge invariant distances18,19, and Wigner-Yanase
information20. Different tools usually lead to different mathematical
bounds or methods for the description of QSL, and a general and
unified methodology that fits all tools is still in lack. Recently, an
operational definition of the quantum speed limit (OQSL) was
proposed21 based on the Bloch angle, which is capable to be
extended to a general tool due to the fact that it is intrinsically a
methodology, rather than a concept. Denote ρ as the density matrix
of a quantum state, Φ as any type of metric or tool to quantify the
target and Φtar as the corresponding target value, then the
reachable state set can be defined as S :¼ fρ jΦðt; ρÞ ¼ Φtar; 9tg,
which is the set of states that can fulfill the target. Moreover, it is
possible that in some cases not all states in the state space, but the
states in a subset Q, are concerned. In this case, S can be further
expressed by S :¼ fρ j ρ 2 Q&Φðt; ρÞ ¼ Φtar; 9tg. Utilizing S, the
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OQSL (denoted by τ) can be defined by

τ :¼ min
ρ2S

t

subject to Φðt; ρÞ ¼ Φtar:
(1)

The Bloch vector is one of the most famous geometric
representations for the quantum state and has been widely
applied in many fields of quantum physics, such as the quantum
computation43 and quantum control44. In the Bloch representa-
tion, the density matrix can be expressed by

ρ ¼ 1
N 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2NðN � 1Þ

q
r!� λ

!� �
, where N is the dimension of ρ,

λ
!

is the vector of SU(N) generators, r! is the Bloch vector
satisfying j r!j � 1, and 1 is the identity matrix. The Bloch angle θ

between r! and its evolved vector r!ðtÞ is

θðt; r!Þ :¼ arccos r!� r!ðtÞ
j r!jj r!ðtÞj

� �
2 0; πð �. Denote Θ as the fixed

target, then the reachable state set can be rewritten into
S ¼ f r!j r!2 Q& θðt; r!Þ ¼ Θ; 9tg, and the OQSL reads
τ ¼ min r!2S t, subjecting to the constraint θðt; r!Þ ¼ Θ.
In the perspective of OQSL, when two tools to quantify the

target has a one-to-one correspondence, for example the angle of

relative purity arccos TrðρρðtÞÞ
Trðρ2Þ

� �
and Bloch angle (calculation details

are in the Supplementary Information), then the reachable state
sets for these tools are exactly the same, which means the results
of OQSL would also be equivalent. This equivalence reveals an
important fact that a physical target can be mathematically
quantified by different tools, yet the true minimum time to fulfill
the physical target should not be affected by this quantification
process since it is not physical.
The OQSL is closely related to the quantum brachistochrone

problem45,46, which focuses on searching the minimum time for a
given initial state to a fixed target state or the realization of a
target gate. In the language of OQSL, instead of a given initial
state, we can study the minimum time for a set of initial states, i.e.,
the aforementioned set Q, to reach a target state ρtar under a
given Hamiltonian. In this problem S can be expressed by S ¼
fρjρ 2 Q& eLðρÞ ¼ ρtar; 9tg where L is a superoperator satisfying
∂tρt ¼ LðρtÞ with ρt the evolved state of ρ. Furthermore, the OQSL
can be expressed by

τ :¼ min
ρ2S

t

subject to eLðρÞ ¼ ρtar:
(2)

Notice that if ρtar 2 Q, the optimal state in Q to reach ρtar must be
ρtar itself for any Hamiltonian and the corresponding time is
nothing but zero, which means this is a trivial case. Therefore,
ρtar∉Q should be satisfied to make sure the problem is nontrivial.
Here we still take the qubit Hamiltonian ωσz/2 as a simple
demonstration. The target state is assumed to be ð 0j i � 1j iÞ= ffiffiffi

2
p

with 0j i ( 1j i) the eigenstate of σz corresponding to the eigenvalue
1 (− 1). Q ¼ fρjTrðρσxÞ � 0g. Utilizing the spherical coordinates
of the Bloch vector r!¼ ηðsin α cosφ; sin α sinφ; cos αÞT, S in this
example reads r!j η ¼ 1; α ¼ π=2;φ 2 ½0; π=2�∪ ½3π=2; 2πÞ� �

,
and the OQSL τ= π/(2ω). This minimum time can be attained by
the state ð 0j i þ i 1j iÞ= ffiffiffi

2
p

. Calculation details can be found in the
Supplementary Information.
Compared to lower-bound-type QSLs, the advantages of OQSL

are that it can reveal the information that whether a state can
fulfill the target, and it is always attainable21. In the case of
complex dynamics, these advantages come at a price of high
computational complexity, which is not only due to the
optimization in the definition, but also the preliminary assumption
that S is known. For example, in the analytical calculation of the
OQSL, the search of S is the first step and usually finished by

finding the condition of ρ when the equation Φ t; ρð Þ ¼ Φtar has a
finite solution t. Then the evolution time to fulfill the target is
calculated and optimized under this condition to further obtain
the OQSL. In this case, the calculation of S and the optimization of
time are performed separably and thus their contributions to the
computational complexity are different. In the numerical evalua-
tion of OQSL, the contributions of these two processes are the
same when the brute-force search is applied since the search of S
in this method is based on the rigorous dynamics of each state.
When S is obtained, the corresponding time to fulfill the target for
each state is also obtained. Hence, the computational complexity
in this case is basically contributed by the search of S. However, it
is obvious that the brute-force search is not always feasible in
practice, especially when the dynamics is complex or the system
size is large, which is actually a non-negligible scenario in the
study of QSL23–26. Hence, finding methods for the evaluation of
OQSL that are friendly to the complex dynamics or large-size
systems is critical, and thus the major motivation of this paper.

The time-dependent Hamiltonians with time-independent
eigenstates
In many cases, the complexity of dynamics comes from the time
dependency of the Hamiltonian. The OQSL for a general time-
dependent Hamiltonian is difficult to obtain analytically. However,
for the time-dependent Hamiltonians with time-independent
eigenstates, the OQSL can be obtained analytically when taking
the Bloch angle as the quantification of target. In the energy
space, these Hamiltonians can be expressed by
HðtÞ ¼ P

iEiðtÞ Eij i Eih j, where the eigenstate Eij i is time-
independent for any i and the eigenvalue Ei(t) depends on time.
Many well-known models in quantum mechanics fit this scenario,
such as the one-dimensional Ising model with a time-varying
longitudinal field, the resonant Jaynes-Cummings model with
time-dependent coupling47–49, and the semiclassical qubit-field
model in the strong coupling regime50. For such Hamiltonians, we
present the following theorem.

Theorem. For a N-dimensional time-dependent Hamiltonian
whose eigenstates are all time-independent, the OQSL τ satisfies
the equationZ τ

0
EmaxðtÞ � EminðtÞ½ �dt ¼ Θ; (3)

where EmaxðtÞ and EminðtÞ are the maximum and minimum
energies of the Hamiltonian at time t. Further denoting the p-
dimensional set f Eminj ig and q-dimensional set f Emaxj ig as the
sets of eigenstates with respect to EminðtÞ and EmaxðtÞ, the optimal
states to reach the OQSL areP

i

1
N Eij i Eih j þ P

Ekj i 2 f Eminj ig;
Elj i 2 f Emaxj ig

ξkl Ekj i Elh j þ ξ�kl Elj i Ekh j;

where the matrix ξ (with kl th entry ξkl) satisfies N
2ξyξ � 1q with 1q

the q-dimensional identity matrix.

The proof is given in the Supplementary Information. As a
matter of fact, this theorem covers Theorem 1 in Ref. 21 due to the
fact that Eq. (3) reduces to τ ¼ Θ=ðEmax � EminÞ when the
eigenvalues are time-independent. As a simple demonstration,
consider the Hamiltonian H(t)= f(t)σz with f(t) a time-dependent
function. It is obvious that the eigenstates of this Hamiltonian are
independent of time. Hence the corresponding OQSL is given in
the theorem above. In the case that j R t

0 f ðt1Þdt1j is upper bounded
by cf, S is fully determined by the value of cf, which leads to the
following corollary.
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Corollary. For the Hamiltonian H(t)= f(t)σz where f(t) satisfies
j R t

0 f ðt1Þdt1j � cf , no state can fulfill the target Θ if cf <Θ/2.

In the case that cf ≥Θ/2, S is symmetric about z axis in the Bloch
sphere, similar to the time-independent Hamiltonian ωσz/221. This
is due to the fact that in this case the dynamics of all states in the
Bloch sphere are the precessions about z axis, and thus it obeys
the rotational symmetry about z axis. Therefore, S can be fully
expressed by the angle between the Bloch vector and z axis
(denoted by α). More specifically to say, when cf ∈ [Θ/2, π/2], S ¼
f r!jα 2 ½αf ; π � αf �g with αf ¼ arcsin sinðΘ=2Þ

sin cf

� �
, and S ¼ f r!jα 2

½Θ=2; π � Θ=2�g when cf > π/2. Furthermore, the OQSL satisfiesR τ
0 jf ðtÞjdt ¼ Θ=2. A physical example here is
f ðtÞ ¼ �gμBB cosðωtÞ=251 with g the Lande factor, μB the electron
magnetic moment and B cosðωtÞ a periodic magnetic field. Due to
the fact j R t

0 f ðt1Þdt1j � gμBB=ð2ωÞ, S is determined by the ratio
between B and ω. The OQSL reads τ ¼ arcsinð ωΘ

gμBB
Þ=ω, and the

optimal states are the states in the xy plane. It is obvious that τ ≤ π/
(2ω) as arcsinð�Þ is always less than or equal to π/2. This upper
bound is nothing but the time when the first degenerate point
occurs, which leads to an interesting phenomenon that all targets
can be fulfilled before the first degenerate point occurs with the
states in the xy plane. In the case that a bounded control u(t)
(∣u(t)∣≤ub) is invoked, f(t) becomes uðtÞ � gμBB cosðωtÞ=2 and the
upper bound of j R t

0 f ðt1Þdt1j can always overcome π/2 at a long
enough time. Hence, in this case S ¼ f r!jα 2 ½Θ=2; π � Θ=2�g
and the OQSL satisfies

R τ
0 jgμBB cosðωtÞ=2� uðtÞjdt ¼ Θ=2. The

minimum τ with respect to u(t) (denoted by τmin) satisfies the
equation gμBB sinðωτminÞ=ð2ωÞ þ ubτmin ¼ Θ=2, and τmin �
Θ=ðgμBBþ 2ubÞ for a small ω. The calculation details are in the
Supplementary Information.
Another practical scenario to apply Theorem 1 is the one-

dimensional Ising model with a longitudinal field, where two
boundary conditions (periodic and open) exist. Let us first consider
the case of periodic boundary condition, in which the Hamiltonian
reads H=J ¼ �Pn

j¼1 σ
z
j σ

z
jþ1 �

Pn
j¼1 gðtÞσz

j with σz
nþ1 ¼ σz

1. Here
J > 0 is the interaction strength of the nearest-neighbor coupling,
and g(t) is a global time-dependent longitudinal field. σz

j is the
Pauli Z matrix for jth spin. The spin number n ≥ 3. In this case, the
minimum energy is− n[1+ ∣g(t)∣], and the maximum energy is
n− η[2− ∣g(t)∣] when ∣g(t)∣ < 2 and n[∣g(t)∣− 1] when ∣g(t)∣≥2. Here
η≔ [1+ (−1)n+1]/2. If ∣g(t)∣≥2 for all time t, the OQSL satisfies the
equation

R τ
0 jgðtÞjdt ¼ Θ=ð2nÞ. Due to the fact thatR τ

0 jgðtÞjdt �
R τ
0 2dt ¼ 2τ, one can immediately finds that τ ≤Θ/

(4n). If ∣g(t)∣ < 2 all the time, Eq. (3) reduces to

2 n� ηð Þτ þ nþ ηð Þ R τ
0 jgðtÞjdt ¼ Θ. In this case τ 2 Θ

4n ;
Θ

2n�2η

h i
since

R τ
0 jgðtÞjdt 2 ½0; 2τ�. For a g(t) that is not always bounded

by 2, the integration in Eq. (3) needs to be calculated part by part
and the rigorous solution may not easy to be acquired in general.
However, in some cases a good approximation can still be
obtained since τ is usually small. Take gðtÞ ¼ B cosðωtÞ as an
example, where B and ω are the amplitude and frequency. In this
case, if ω is not very large, then τ ≈Θ/[2(n− η)+ B(n+ η)] when
B < 2 and τ ≈Θ/(2Bn) when B ≥ 2, which are nothing but the OQSLs
with respect to the constant field g(t)= B.
In the case of open boundary condition, the Hamiltonian reads

�Pn�1
j¼1 σz

j σ
z
jþ1 �

Pn
j¼1 gðtÞσz

j . The minimum energy
is− n[1+ ∣g(t)∣]+ 1, and the maximum energy is n+ η∣g(t)∣− 1
when ∣g(t)∣≤1, n− (2− η)[2− ∣g(t)∣]+ 1 when ∣g(t)∣ ∈ (1, 2), and
n[∣g(t)∣− 1]+ 1 when ∣g(t)∣≥2. For gðtÞ ¼ B cosðωtÞ with a not
very large ω, an interesting phenomenon occurs when B < 2 and n
is even. The OQSL in this case approximates to Θ/[n(B+ 2)− 2]
when B ≤ 1, and Θ/[n(B+ 2)+ 2(B− 2)] when B∈ (1, 2), which are

different from the OQSL under the periodic boundary condition.
These two OQSLs, as well as their difference, are quite robust to
global and local dephasing. Therefore, the OQSL may be used to
detect whether an even-numbered spin ring is ruptured,
especially when the number is not very large. More details are
in the Supplementary Information.

CRC methodology
The brute-force search is the most common method for the
numerical evaluation of OQSL and is easy to execute for simple
dynamics. However, when the evaluation of dynamics for one
state is too time-consuming, the entire brute-force search would
be impossible to finish as it usually requires executing thousand
and even million rounds of dynamics. In recent years, machine
learning has been successfully applied to quantum physics for the
simulation of complex dynamics, such as the theoretical dynamics
of many-body systems52–54 and realistic dynamics of experimental
systems55,56. With the help of trained neural networks, the
computing time to evaluate the dynamics significantly reduces
compared to the rigorous calculation. Therefore, such learning
techniques could be powerful tools to evaluate the OQSL. Hereby
we provide a three-step methodology (CRC methodology) based
on learning to evaluate the OQSL for complex dynamics. The three
steps are (1) classification; (2) regression; and (3) calibration, as
illustrated in Fig. 1. As a matter of fact, classification and regression
are two terminologies in supervised learning. Classification is a
problem to identify the categories of objects and regression is to
predict some values related to the objects.
The reachable state set S is crucial in the evaluation of OQSL. It

is not only essential for the further calculation of OQSL, but also
reveals information that whether a state is capable to fulfill the
target. Hence, the first step (classification) in CRC methodology is
to find S. In this step, a reasonable number of quantum states and
corresponding binary labels (0 or 1) consist of the training set.
Quantum states and binary labels are the input and output of the
neural network. In our calculation, label 1 (0) represents the state
is in (not in) S. The performance of the trained network can be
tested via a test set. After the training and performance
verification, a large number of random states are input into the
network to construct S according to the outputs. In the following
the learned reachable state set in this step is denoted by Slearn.
The second step is regression. In this step, a subset of Slearn and

the corresponding time to reach the target consist of the training
set. The time to reach the target is extracted from the rigorous
dynamics. Notice that it is possible some states in this subset
cannot fulfill the target and need to be removed from the training
set since Slearn could be slightly different from S in practice. After
the training and performance verification, all states in Slearn will be
input into the trained network, and the minimum output (τlearn)
and corresponding states (ρlearn) are extracted. The performance
of τlearn relies on the performance of the trained neural network in
this process. Usually enlarging the scale of the training set is a
possible way to improve the performance of learning. However, in
many cases this improvement is not always positively correlated
to the scale growth of the training set. In the meantime, choosing
an appropriate neural network would also be helpful, yet whether
a network is appropriate usually needs to be thoroughly tested
case by case. Moreover, large-scale models or quantum machine
learning are also possible candidates to further improve the
performance of τlearn, and we will continue to investigate this
problem in the future.
In principle τlearn could be treated as an approximation of OQSL.

However, if the methodology stops here then the accuracy of
learned OQSL would be strongly affected by the residuals, namely,
the differences between the true and predicted values. In the
meantime, ρlearn may not be the actual optimal state in the
neighborhood due to the existence of residuals. To further
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improve the methodology’s performance, we introduce the third
step: calibration. In this step, a reasonable region around ρlearn in
the state space is picked, and the dynamics of enough random
states in this region are calculated rigorously. Then the minimum
time to reach the target in this region (τopt) and corresponding
state (ρopt) are picked out. τopt is the final evaluated value of OQSL
in the methodology. Due to the fact that the process of calibration
is designed to reduce the influence of residuals, a general
principle for a proper region in calibration is that in this region it
should clearly show that whether ρlearn is a local minimum point.
To verify the validity of CRC methodology, we apply it in the

Landau-Zener model where the reachable state set and OQSL
have been thoroughly discussed via brute-force search among
about one million states21, and thus the methodology’s perfor-
mance is easy to be tested. The Hamiltonian for the Landau-Zener
model is H= Δσx+ vtσz with Δ and v two time-independent
parameters. In the step of classification, three training sets with
different numbers of data are used to train the network and about
one million states are used as the test set. The scores (correctness
of prediction) are no less than 99.59%, 97.83%, and 98.00% for all
training sets in the cases of Δ= 0, 1, and 2. In the step of
regression, the mean square errors of learning are on the scale of
10−5 for Δ= 0, 2, and no larger than 1.22 × 10−4 for Δ= 1. In the

last step, the region for calibration is chosen as [αlearn− 0.1,
αlearn+ 0.1] and [ϕlearn− 0.1, ϕlearn+ 0.1] where αlearn and ϕlearn

are the spherical coordinates of ρlearn, i.e., cosðαlearnÞ ¼ TrðρlearnσzÞ
and cosðϕlearnÞ ¼ TrðρlearnσxÞ= sinðαlearnÞ. The results of calibration
show that in this case ρlearn is just ρopt for all values of Δ, and the
corresponding τopt coincides with the exact OQSL obtained from
the brute-force search. The validity of CRC methodology is then
verified.
One advantage of CRC methodology is that it can deal with

controlled dynamics, where the brute-force-search evaluation is
usually difficult to realize due to the complexity of twofold
optimizations. In the meantime, CRC methodology can also deal
with noisy scenarios where the rigorous dynamics is usually
more time-consuming than the unitary counterpart. Let us still
consider the Landau-Zener model with the time-varying control
Hamiltonian u!ðtÞ � σ!. Here u!¼ ðuxðtÞ; uyðtÞ; uzðtÞÞ is the vector
of control amplitudes and σ!¼ ðσx ; σy ; σzÞ is the vector of Pauli
matrices. All control amplitudes are assumed to be in the regime
½� ffiffiffi

v
p

;
ffiffiffi
v

p �. Both the noiseless and noisy scenarios are studied. In
the noisy scenario, the dynamics is governed by the master
equation ∂tρ=− i[H, ρ]+ γ(σzρσz− ρ) with γ the decay rate,
which is taken as 0:5

ffiffiffi
v

p
as a demonstration. In this example, the

evaluation of OQSL for Δ= 0 via brute-force search among one
million states on a daily-use computer costs more than 830 days,
which reduces to 30 days when the CRC methodology is applied
(The actual computing time is less than the evaluation since
parallel computing is applied.). The result of CRC methodology
shows that all states in the state space can fulfill the target
Θ= π/2 under control in both noisy and noiseless cases.
Furthermore, the OQSL is very robust to the dephasing in both
noncontrolled and controlled cases, as shown in Fig. 2. In the
meantime, the controls can significantly reduce the OQSL when
Δ is not very large. However, this improvement becomes limited
with the increase of Δ. An interesting phenomenon is that
regardless of the existence of both noise and controls, the OQSL
always converges to Θ/(2Δ), which is nothing but the OQSL for
the Hamiltonian Δσx in the absence of noise21. This phenom-
enon on speed limit is difficult to be revealed by lower-bound-
type QSLs not only due to their dependence on both initial
states and time, but also the lousy attainability when controls
are involved.
Another example we studied is the transverse Ising model

with a periodic external field. The Hamiltonian is H=J ¼
� Pn

j¼1 σ
z
j σ

z
jþ1 � Pn

j¼1 gðtÞσx
j with gðtÞ ¼ B cosðωtÞ. In the

demonstration, the amplitude B is taken as 0.5 and the

Fig. 2 OQSL as a function of Δ in different cases. The solid black line,
red circles, blue squares, and yellow triangles represent the values of
OQSL for noiseless dynamics, noisy dynamics, controlled noiseless
dynamics, and controlled noisy dynamics, respectively. The cyan
dotted line represents Θ/(2Δ). The target Θ= π/2.

Fig. 1 CRC methodology to learn the OQSL for complex dynamics. The three steps are classification (gray box), regression (orange box), and
calibration (blue box).
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frequency ω/J= 1. Because of the enormous state space (2n), it is
difficult to construct a training set that is general enough for the
CRC methodology, especially when n is large. To feasibly apply
the CRC methodology, we need to analyze the state structure
first and reduce the state space for the study. A simple way to
categorize the states is based on the number of nonzero entries
in a certain basis, such as the basis f "j i; #j ig	n considered as
follows. "j i ( #j i) is the eigenstate of σz with respect to the
eigenvalue 1 (−1). Moreover, here we only consider the
noiseless dynamics and that Q is the set of pure states. The
ratios of reachable states for the target Θ= π/2 in the categories
of 2 (red pentagrams), 3 (green crosses), and 10 nonzero entries
(blue triangles) are given in Fig. 3. The ratio in each category is
obtained from 2000 random states. It can be seen that basically
all states in each category can fulfill the target when n is large,
which is reasonable as more target directions exist when the
dimension is high. Moreover, the ratio increases with the rise of
the nonzero entry number. More interestingly, the ratio in each
category basically fits the function 1=ð1þ anbe�cnd Þ, and the
parameters a,b,c,d can be found in the Supplementary Informa-
tion. The general behaviors of the ratio and the physical
mechanism behind it are still open questions that require
further investigation. The minimum time to reach the target for
all states in each category is also investigated and the specific
results are given in the Supplementary Information, which
indicates that in this example we only need to focus on the
states with few nonzero entries for the study of OQSL.
Next we perform the CRC methodology in the case of n= 10.

The methodology is applied to the categories of states with 2 to 5
nonzero entries. Here we present the result in the category of 2
nonzero entries, and others are given in the Supplementary
Information. 22500 and 7500 states and corresponding labels are
used as the training and test sets for the classification. The best
score of the trained network we obtained is 94.55%. Then about
one million states are input into this network, and the result shows
that 7.71% states can fulfill the target, close to the result (5.15%)
obtained from 2000 random states. In the regression process,
22500 and 7500 states consist of the training and test sets. The
best mean square error is 8.95 × 10−4 and the corresponding τlearn
is 0.24, close to the true evolution time (0.19) of ρlearn. About
10000 states in the neighborhood of ρlearn are used in the
calibration and the final result is 0.18. Combing the results of the
other three categories, the final value of OQSL obtained from the

CRC methodology is 0.18, which can be realized by certain states
with 2 nonzero entries.

METHODS
Training sets and neural networks in the CRC methodology
In both cases of controlled Landau-Zener model and transverse
Ising model, 22500 and 7500 datasets are generated for training
and testing in the classification and regression processes. Each
dataset is composed of the initial state and corresponding time to
reach the given target. In these datasets, the initial states are
generated randomly and the time is solved via rigorous dynamics.
In the case of controlled Landau-Zener model, the optimal control
is obtained via the automatic differentiation. In the case of
transverse Ising model, the initial states are expressed by the
matrix product state which is implemented via Julia package
ITensors57, and the time for reaching the given target is calculated
with time evolving block decimation technique. In the process of
calibration, 10000 datasets are generated in a reasonable
neighborhood of ρlearn.
The Python package sklearn58 is used in this paper to build and

train the neural networks for the classification and regression
processes. In the cases of noncontrolled and controlled Landau-
Zener models, the layer number of the neural network is 5 to 6,
and each layer contains about 250 neurons. The hyperbolic
tangent function and rectified linear unit function are chosen as
the activation loss function in the classification and regression,
respectively. In the case of transverse Ising model, the neural
networks in classification for the states with 2, 3, 4, and 5 nonzero
entries are all activated by the hyperbolic tangent function. With
respect to the regression, the activation loss function for the
neural networks is rectified linear unit function for the states with
2 nonzero entries, logistic function for those with 3 nonzero
entries, and identity function for those with 4 and 5 nonzero
entries.
In the process of classification, average cross-entropy loss

function is used to train the neural networks, which is of the form

f ðx̂; x;WÞ ¼ � 1
m

Xm
i¼0

xi ln x̂i þ ð1� xiÞ lnð1� x̂iÞ½ � þ α

2m
jjWjj22;

(4)

where x and x̂ represent the true results and the results predicted
by the neural network. m is the number of datasets. W is the
weight matrix of the neural network and αjjWjj22 ¼ α

P
ijW

2
ij

represents the penalty term. And in the regression, the loss
function in the training is the mean square error function,

f ðtpre; text;WÞ ¼ 1
2m

Xm
i¼0

tðiÞpre � tðiÞext
h i2

þ α

2m
Wk k22; (5)

here tpre and text are the time predicted by the regression neural
network and the exact time obtained via rigorous dynamics. More
details of the methods can be found in the Supplementary
Information.
In the case that Bloch angle is used to quantify the target, when

the value of Θ is changed the reachable state set changes
accordingly, which means all the neural networks in the CRC
methodology have to be retrained. How to train general neural
networks that work for all target values is still a very challenging
problem, and requires further and continuous investigations in the
future.

DATA AVAILABILITY
The data that support the findings of this study are available from J.L. upon
reasonable request.

Fig. 3 Ratio of states that can fulfill the target Θ= π/2 in different
categories. The red pentagrams, green crosses, and blue triangles
represent the ratios for the states with 2, 3, and 10 nonzero entries.
The dash-dotted red, dotted green, and dashed blue lines represent
the corresponding fitting functions.
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CODE AVAILABILITY
The code used in this study is available from J.L. upon reasonable request.
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