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Quantum simulation of preferred tautomeric state prediction
Yu Shee 1,2, Tzu-Lan Yeh3, Jen-Yueh Hsiao4, Ann Yang3, Yen-Chu Lin3,5✉ and Min-Hsiu Hsieh4✉

Prediction of tautomers plays an essential role in computer-aided drug discovery. However, it remains a challenging task nowadays
to accurately predict the canonical tautomeric form of a given drug-like molecule. Lack of extensive tautomer databases, most likely
due to the difficulty in experimental studies, hampers the development of effective empirical methods for tautomer predictions. A
more accurate estimation of the stable tautomeric form can be achieved by quantum chemistry calculations. Yet, the computational
cost required prevents quantum chemistry calculation as a standard tool for tautomer prediction in computer-aided drug discovery.
In this paper we propose a hybrid quantum chemistry-quantum computation workflow to efficiently predict the dominant
tautomeric form. Specifically, we select active-space molecular orbitals based on quantum chemistry methods. Then we utilize
efficient encoding methods to map the Hamiltonian onto quantum devices to reduce the qubit resources and circuit depth. Finally,
variational quantum eigensolver (VQE) algorithms are employed for ground state estimation where hardware-efficient ansatz
circuits are used. To demonstrate the applicability of our methodology, we perform experiments on two tautomeric systems:
acetone and Edaravone, each having 52 and 150 spin-orbitals in the Slater Type Orbital - 3 Gaussian (STO-3G) basis set, respectively.
Our numerical results show that their tautomeric state prediction agrees with the Coupled Cluster Singles and Doubles (CCSD)
benchmarks. Moreover, the required quantum resources are efficient: in the example of Edaravone, we could achieve chemical
accuracy with only eight qubits and 80 two-qubit gates.
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INTRODUCTION
Tautomers are constitutional isomers that spontaneously convert
to one another in dynamic equilibrium. The process of this
interconversion is called tautomerization. Typical tautomerization
involves the movement of a proton from one position to another
and rearrangement of a double bond within the molecule. Other
types of tautomerisms include annular, ring-chain, and valence
tautomerisms1–3. One well-known example of tautomerization,
and quite often involved in the field of drug development, is the
keto-enol tautomerism, in which the carbonyl double bond (keto
form) is interconverted to an alkene double bond (enol form). This
is accompanied by the shift of the alpha proton in the keto form
to the hydroxyl group in the enol form, as illustrated in Fig. 1.
Tautomerization plays an important role in biological systems.

Non-Watson-Crick base pairing can occur due to tautomerization
of nucleic acid base pairs. Such nucleic acid mismatches induced
by tautomerization result in spontaneous mutagenesis and hence
genetic instability4,5. In the case of drug molecules, the movement
of proton within the molecules will lead to the conversion from a
hydrogen bond donor to a hydrogen bond acceptor or vice versa,
which is essential for the analysis of structure-activity relationship
(SAR). Moreover, it has been estimated that more than a quarter of
marketed drugs can exhibit tautomerism6 and analysis of chemical
databases showed that 10-30% of potential drug molecules have
potential tautomers7–11. Prediction of tautomeric states of
compounds of interest is therefore an important subject in the
field of computer-aided drug design.
State-of-the-art algorithms for tautomeric prediction usually

involve enumeration of possible tautomers, followed by prediction
of the dominant form or estimation of the tautomer popula-
tions12–16. The estimation of tautomeric ratios in aqueous medium
can be achieved by pKa calculations. Such algorithms usually aim

to provide a list of possible tautomeric forms with ratios of the
corresponding species, since it is important to estimate the
population of the tautomers due to the small differences in their
free energies that could be easily compensated by the interaction
with proteins. Previous efforts on pKa estimation rely on empirical
pKa prediction models. For example, Epik Classic utilizes
Hammett-Taft linear free energy relationship (LFER)17. However,
such empirical methods are known to have limited accuracy,
partly due to the under-coverage of chemical space in the
database18,19. This could be problematic as the lack of experi-
mental parameterization for novel chemical scaffolds prevents
accurate prediction against novel compounds. Moreover, experi-
mental challenges in obtaining the relative tautomer stability as
well as isolating the distinct tautomeric forms could also be the
cause of prediction uncertainty15. One potential rational solution
to this would be prediction methods based on electronic
structures. Indeed, more recent focuses have shifted to
quantum-mechanics-based (QM) pKa prediction20–22. Such QM-
based methods, however, are computationally demanding and
may not be practical for applications like large-scale virtual
screening. It should also be noted that solvent is another
important factor in determining tautomeric ratios in solution.
Computational quantum chemistry provides a more accurate

approach to describing molecular structures in drug design than
classical force field-based molecular mechanics methods. QM
calculations play a critical role for certain problems in the field,
such as metal binding in metalloenzymes, reaction mechanism
study, covalent inhibitor design23. Other applications of QM
methods include calculation of molecular properties, QM-based
descriptor for QSAR, parameterization of forcefields, and estima-
tion of protein-ligand binding affinities23–26. Major QM methods
used in the field of computer-aided drug discovery (CADD) can be
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classified to semi-empirical QM methods, Hatree-Fock (HF), post-
Hatree-Fock (pHF) methods, and density functional theory (DFT).
While quantum chemistry approaches have brought accuracy to
the calculations, their computational cost makes them unsuitable
as a daily tool in CADD except for the semi-empirical methods.
Depending on the level of theory, the integral transformation
could scale as high as OðM5Þ, where M is the number of atomic
basis functions (AOs)27.
Therefore, even though the aforementioned classical quantum

chemistry algorithms are well-designed, they still have unreason-
able time and space requirements for medium and large
molecules28. More often, applications of quantum chemistry
methods are used in specific drug design scenario and the
implementation of the QM methods is hard to generalize. This
poses severe limitations on the general use of quantum chemistry
methods in drug discovery, e.g., prediction of dominant product in
tautomerism, understanding the dynamics of protein folding, and
ligand binding free energy calculations.
Quantum simulation is considered one of the most promising

applications of quantum technology since it has the potential of
overcoming the exponential barrier of solving electronic structure
problems29,30. Jordon-Wigner (JW) transformation31 was found to
give mappings from fermionic creation and annihilation operators
to qubit operators32. This result paved the road to generically
simulate physical systems on well-controlled quantum computers.
Moreover, the quantum phase estimation (QPE) algorithm33–42

provides accurate spectral calculations for molecular Hamiltonian
with the potential of exponential speedup. However, the QPE
method is not applicable on current quantum devices because it
requires long coherence time and high gate fidelity. Instead,
several variational methods37,43–53 suitable for noisy intermediate-
scale quantum (NISQ) devices were proposed. One of the most
practical approaches is the variational quantum eigensolver (VQE)
algorithm43,44. VQE is a hybrid quantum-classical method that
approximates ground states of molecular Hamiltonian by var-
iationally tuning the ansatz parameters and is expected to give
better accuracy than CCSD results with polynomial costs.
Quantum simulation of small molecules has since then been

widely implemented. Researchers have worked towards molecules
(BeH2, H2O, and H12) with improved algorithms and hardware
design45,54,55. Others also provide strategies to simulate slightly
larger systems, such as CO2, C2H4, C18, and the nitrogenase iron-
sulfur molecular clusters56–58, using symmetries, fragmentation of
molecules, spin-model simplifications, or qubit encoding meth-
ods59–64. However, these quantum simulation results are still quite
limited in the problem size and often lack real world applications.
In this work, we aim to design a general methodology for a

pharmaceutical application, namely, the prediction of preferred
tautomeric states. We expect that our scheme could work for both
current and future quantum devices. Specifically, we presented a
hybrid quantum chemistry-quantum computation approach to
predict the dominant form of tautomers, where quantum
chemistry methods are used to construct the system of interest

and reduce the size of the Hamiltonian to meet current quantum
hardware requirement, and the reduced Hamiltonian was mapped
to qubits using qubit-efficient encoding (QEE)64 and subsequently
simulated with variational quantum eigensolver (VQE). We focus
on predicting the preferred tautomeric states by considering the
energetics of the states using quantum chemistry approaches to
make the system applicable on current quantum computing
schemes. This approach was practiced on two illustrative
examples, acetone and Edaravone. Our quantum simulation
results showed reasonable agreement with CCSD calculations.

RESULTS
To compare the relative stability of tautomers, one would need to
calculate the energies of the systems. Before jumping into detailed
calculation of the electronic structures, the most straightforward
and hand-wavy way to estimate tautomers’ relative stability is by
considering the difference in bond dissociation energy for a
simple system like the case of acetone tautomerism. The bond
dissociation enthalpy65 difference between C=O, C-C, C-H (keto
form, 745+ 347+ 413= 1505 kcal/mol) and O-H, C-O, C=C (enol
form, 467+ 358+ 614= 1439) is 66 kJ/mol (15.8 kcal/mol),
favoring the keto form. However, as the complexity of the
molecules increases, the relative stability could not be attributed
so easily. Factors like electrostatic effect, steric hindrance from the
other parts of the molecule and intra-molecular hydrogen bonds
need careful consideration as well. Commercial or publicly
available CADD tools deal with the tautomerism problem using
empirical or rule-based chemoinformatics methodologies, e.g.,
scoring tautomers based on the prediction of microstate and
microstate pKa values. There is, however, still room for improve-
ment with such an approach due to the lack of extensive
databases and over-parameterization of the prediction models.
In principle, two important factors decide the tautomeric

equilibrium. The relative potential energy difference, which
determines the equilibrium direction, accounts for the stability
between the isomers. On the other hand, the rate of isomer
interconversion depends on the activation energy. As tautomer-
ism involves bond breaking and bond formation, the best way to
handle this problem should be quantum mechanics-based
approaches by considering the energetics of the individual
tautomeric forms. Indeed, methods involving implicit solvent
density functional theory calculations have been implemented in
the tautomer enumeration and scoring workflow66. However, such
first-principle calculations are impractical for some of the CADD
tasks even with the computation resources nowadays. For
example, the enumeration of the tautomers and prediction of
dominant species of the compound library is an essential step at
the very beginning of a virtual screening campaign. A computa-
tional bottleneck on DFT calculations prevents practical applica-
tions of such algorithms from processing large databases. Here,
we suggest an alternative method by a quantum mechanics-
based computational scheme with current quantum computing
simulators to predict the relative stability of the tautomeric forms.
With the advent of quantum computing technologies, quantum
chemical approaches could play an important and applicable role
for tautomer predictions and computer-aided drug discovery
when implemented on future large-scale quantum devices.
In the following, we first present the quantum chemistry

overview of the two tautomeric systems: (1) acetone and its enol
form, and (2) Edaravone’s keto, enol, and amine forms in the STO-
3G basis set. Next, we introduce current challenges of simulating
medium-to-large molecules and our workflow that could con-
tribute to resolving the problems. Besides, we provide the
background of the qubit-efficient encoding methods for quantum
simulation. Lastly, we show the numerical results for the
implementation of our workflow with quantum simulations of
the two tautomeric systems.

Fig. 1 Keto-enol tautomerization in acetone. This schematic
represents keto-enol tautomerization in acetone, highlighting the
transfer of a proton (depicted in magenta) and the movement of a
double bond (in red). The staggered equilibrium arrows indicate a
preference for the keto form.
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Overview of systems
Acetone. We start with a relatively simple example of tautomer-
ization. Acetone exhibits keto-enol tautomerization, in which the
acetone and its enol form, propen-2-ol, interconvert to each other
(Fig. 2a). The relative stability of these two isomers can be easily
assessed by comparing their bond energy, and the keto from is
more stable than the enol form by about 16 kcal/mol. Figure 2a
shows the optimized geometries of the keto and enol forms of the
acetone at the level of 6-311++G(d,p) using B3LYP in the
Gaussian 16 program67. To enable quantum computing of
the system at a reasonable computational cost, we reconstituted
the molecules with the minimal STO-3G at the second-order
Møller-Plesset perturbation theory (MP2) level with 52 spin-orbitals.
The corresponding energy diagrams of the molecular orbitals near
HOMO/LUMO are shown in Fig. 2b for the keto and enol form,
respectively. The keto form is more stable than the enol form in
most cases because the C=O double bond is stronger than the
C=C bond. Polarization of the C=O double bond, as depicted in
electrostatic potential surface of the acetone, gives it a relatively
higher bond energy. The rearrangement of the double bond
between the keto and enol form is apparent from the shift of the π
bonding patterns of the HOMOs for the corresponding tautomers.

Edaravone. Edaravone is an FDA-approved drug for the treat-
ment of amyotrophic lateral sclerosis (ALS). The mechanism of the
action of Edaravone involves its radical scavenging activity. The
idea originated from a research program in Mitsubishi Yuka
Pharmaceutical Corporation, in which the scientists try to utilize
the radical-scavenging activity of phenol and avoid related
toxicity. The researchers believed that an aromatic heterocyclic
system with the potential of keto-enol tautomerization could exist
in the form with a hydroxyl group68. Edaravone exists in three

forms of tautomeric isomers - keto, enol, and amine (Fig. 3a), with
varying physicochemical properties. Moreover, the three forms of
Edaravone exhibit different antioxidant activity. Therefore, it is
important to know which form among the three dominates to
better understand the pharmacological effect of Edaravone.
Estimation of relative stability among the three tautomers for
Edaravone is not as trivial as for acetone, since the molecular
structure of Edaravone is much more complicated. For example,
the aromaticity of the N-substituted pyrazolone core in the three
isomers varies. Moreover, the surface charge distribution of the
three tautomers differs quite a lot and the twisted angles between
the pyrazolone and the N-substituted benzene are distinct
among the three according to the optimized geometries of the
forms (at the level of B3LYP/6-311++G(d,p) theory) as depicted in
Fig. 3a. Reconstitution of the electronic configuration using the
minimal STO-3G basis at MP2 level yields 150 molecular orbitals.
Energy diagrams of the molecular orbitals near HOMO/LUMO and
the HOMOs and LUMOs of the three tautomeric species do not
provide clear pictures for the relative stabilities of the three
species as in the case of acetone (Fig. 3b).
Notice that it is already computationally expensive to construct

the electronic structures of Edavarone at the MP2/STO-3G level of
theory. However, in the field of medicinal chemistry, there are
more compounds with larger sizes. It is therefore not an efficient
way to predict the thermodynamic stability of different tautomer
states by comparing the energies of the isomers using such
quantum chemistry calculation directly. Calculations based on
wave function approaches for pharmaceutical molecules remains
impractical even if the sizes of the system can be recused using
methods such as complete active space (CAS) approaches because
CI expansion scales exponentially and the affordable active size is
generally considered to be limited to 18 electrons in 18 orbitals69,

Fig. 2 Acetone tautomers and orbital energies. a Tautomeric isomers of acetone. The geometries were optimized at the B3LYP/6-311+
+G(d,p) level and the electrostatic potential surface generated by ESP_DNN93. b Hartree-Fock orbital energy levels around HOMO/LUMO as
calculated using the STO-3G basis set. The full list of molecular orbital eignevalues can be found in Supplementary Information.
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although the limit had been pushed to 22 electrons in 22 orbitals
with parallel multiconfigurational SCF implementation70.
In order to leverage the power of quantum computation, we

proceed as follows. Firstly, the second-quantized electronic
Hamiltonian can be written as

H ¼
X

pq

hpqa
y
paq þ

1
2

X

pqrs

hpqrsa
y
pa

y
qaras; (1)

where hpq and hpqrs are the overlap and exchange integrals. The
indices of the spin-orbitals are represented by p, q, r, and s in the
summation of Eq. (1). For example, the indices run from 0 to 51 for
acetone and from 0 to 149 for Edaravone because the molecules
in the STO-3G basis set have 52 and 150 spin-orbitals respectively.
To simulate electronic structure problems on quantum computers,
the creation and annihilation operators and the electronic states
have to be mapped to qubits.
Common qubit encoding methods are Jordan-Wigner, parity,

and Bravyi-Kitaev encoding where the qubit requirements are
OðNÞ where N is the number of spin-orbitals. For example, Jordan-
Wigner (JW) encoding uses N qubits to store the N spin-orbital
occupation number. In this encoding scheme, the 0j i qubit state
represents that the spin-orbital is not occupied while the 1j i qubit
state represents that the spin-orbital is occupied. The mappings of
the creation and annihilation operators for JW are

ayp ¼
1
2
ðXp � iYpÞ � Zp�1 � � � � � Z0; (2)

ap ¼ 1
2
ðXp þ iYpÞ � Zp�1 � � � � � Z0; (3)

where the Z Pauli strings address the fact that electronic
wavefunctions are anti-symmetric. For acetone and Edaravone in
the STO-3G basis set, JW encoding will map the electronic
structure problems to 52 qubits and 150 qubits. No meaningful
data would be collected for VQE using that many qubits on NISQ
devices because of decoherence. It is, therefore, important to
reduce the problem size.

Workflow
Here we propose a hybrid computational scheme for the
prediction of the preferred tautomeric state, comprising classical
quantum chemistry (using classical computers) and quantum
computation. The workflow involves (1) geometry optimization of
the isomers using density functional theory, (2) reconstruction
of the molecular orbital space in a minimal basis set, (3) reduction
of the MO space, (4) single point energy calculations of active MO
sets, (5) selection of the most representative active MO set, and
finally (6) energy calculation in Quantum computing scheme using
QEE, as illustrated in Fig. 4. We use the CCSD energies of the full
systems as the benchmark of our workflow performance.
Specifically, to reduce the problem size, we use quantum

chemistry methods to select active molecular orbitals (MOs) and
map the Hamiltonian onto fewer qubits using a qubit-efficient
encoding method. The geometries of the tautomeric isomers are
prepared and initially optimized using Avogadro71 with the
MMFF94 force field72–76 and further optimized at the level of 6-
311++G(d,p) using B3LYP77,78 in the Gaussian 16 program. Due to
limited resources for quantum computing, the molecules are
reconstituted with the minimal STO-3G at the MP2 level79,

Fig. 3 Edaravone tautomers and orbital energies. a Tautomeric isomers of Edaravone. The geometries were optimized at the B3LYP/6-311+
+G(d,p) level and the electrostatic potential surface generated by ESP_DNN93. b Hartree-Fock orbital energy levels around HOMO/LUMO as
calculated using the STO-3G basis set. The full list of molecular orbital eignevalues can be found in Supplementary Information.
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followed by the calculation of occupancies of natural orbitals
(NOs) using Gaussian 16. The STO-3G basis set has been widely
used in several pioneering works of computation chemistry with
quantum computing scheme45,54,55. Although the computational
cost has been greatly reduced with the minimal basis set, the
number of required qubits still exceeds the affordable amount of
current QC simulators or real quantum devices.
The reduction of the MO space is then achieved by considering

the occupation numbers and quantum hardware limitations. The
selection of active space was achieved mostly by excluding the
inner core and the outer virtual orbitals. In practice, the natural
orbitals with occupancy closest to 0 (completely virtual) or 2 (fully
occupied) were frozen or removed. Besides, quantum hardware
constraints and the efficiencies of the qubit-efficient encoding
method are also considered in the selection process. The reduced
second-quantized Hamiltonian is then encoded onto qubits.
The natural orbitals for Acetone and Edaravone tatutomers

calculated at the MP2/STO-3G level can be found in Supplemen-
tary Information. Selected combinations of active MOs are listed in
Supplementary Information for acetone and Edaravone, respec-
tively. After the active space selection from quantum chemistry
methods, we have 12 spin-orbitals (6 molecular orbitals) for
acetone, propen-2-ol, and the three tautomers of Edaravone. With
Jordan-Wigner (JW) encoding, the qubit count to simulate the
quantum systems is 12 qubits which is still a difficult task for noisy
intermediate-scale quantum devices without error mitigation.
Therefore, we use qubit-efficient encoding (QEE) to encode the
systems onto 8 qubits shown in Table 1 because it provides fewer
qubit counts and renders the systems to be suitable for the use of
hardware-efficient ansatzes. We then use a hardware-efficient
ansatz to simulate the systems with variational quantum
eigensolver (VQE).
Even though the qubit requirement is reduced by classical

active space selection methods, it is still hard to be implemented
on a quantum device as the circuit depth would not permit. For
JW encoding, some unphysical (e.g. not particle conserving or
violating other symmetries) electronic configurations are also
encoded. This necessitates the usage of chemical-inspired
ansatzes (e.g. the unitary couple cluster (UCC) ansatz) that often
have larger circuit depth so that the trial wavefunction only
represents the states in the chemical subspace. It is still possible to
use a hardware-efficient ansatz for JW encoded problems, but the
number of entangling layers has to be large. With more
entangling layers, the ansatz circuit would have better

expressibility80 and entanglement to include the solution space81,
but it may suffer from the vanishing gradient and the barren
plateau problem82–84. Thus, we resort to a qubit-efficient encoding
(QEE) method proposed in64 which provides an logarithmic saving
of qubit counts (8 qubits for QEE). Additionally, QEE only encodes
the physical (significant) electronic configurations such that low
depth hardware-efficient ansatzes are suitable for QEE encoded
problems.

Variational quantum circuits and parameter initialization. After
obtaining the qubit Hamiltonian from QEE, we employ two
different hardware-efficient ansatz, as illustrated in Fig. 5, for the
VQE algorithm. The first hardware-efficient ansatz consists of four
two-qubit entangling building blocks, and the layers are arranged
in a staggered form where Fig. 5a gives an example of two
hardware-efficient layers. The first ansatz used in this work
consists of at most 20 layers and eight parameterized Ry rotations
at each layer in the end. Therefore, the largest circuit in this form
has 80 CNOT gates and 168 parameters. While for the second/
alternative ansatz, each layer consists of seven CNOT gates and
eight parameterized Ry rotations shown in Fig. 5b. The largest
circuit in this form consists of 10 layers and has 70 CNOT gates and
80 parameters. We have also run this alternative ansatz circuit on a
noisy simulator where the circuit consists of four layers and has 28
CNOT gates and 32 parameters.
For the initial state, we have compared two initialization

Table 1. Comparison of qubit counts for Jordan-Wigner encoding and
qubit-efficient encoding for the tautomers of acetone and Edaravone.

Molecule Active Space
Orbitals

(Electrons,
MO)

JW Qubit
Count

QEE Qubit
Count

acetone 14-19 (4e, 6o) 12 8

propen-2-ol 14-19 (4e, 6o) 12 8

Edaravone
(keto)

44-49 (4e, 6o) 12 8

Edaravone
(enol)

44-49 (4e, 6o) 12 8

Edaravone
(amine)

44-49 (4e, 6o) 12 8

Calculations were done in the STO-3G basis sets and equilibrium bond
distances with some molecular orbitals being frozen/removed. Note that
the molecular orbital indices are ordered from the lowest to the highest
energies and the indices start from 0.

Fig. 5 The hardware-efficient ansatz circuit layers used in this
work. a Two hardware-efficient layers of the 8-qubit ansatz circuit.
Note that there are single-qubit parametrized Ry rotations on all the
qubits at the end of this ansatz circuit. b One hardware-efficient
layer of the alternative 8-qubit ansatz circuit. Note that there is no
single-qubit rotation at the end of this ansatz circuit.Fig. 4 Proposed workflow of preferred tautomeric state prediction.
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strategies. First, we have used the Hartree-Fock (HF) state as the
initial state where all the parameters are set to zero initially64. We
have also compared HF initialization with the Gaussian initializa-
tion strategy proposed in ref. 85. Zhang et al.85 proposed this
Gaussian initialization strategy to escape from barren plateau
where the initial parameters are sampled from a Gaussian
distribution. The Gaussian distribution used in this work has a
mean of 0 and a variance of 0.3.

Numerical results
We investigate the performance of our workflow with several
numerical experiments. First, the CCSD energies for the full
systems of the tautomers in the STO-3G basis set are calculated
and are considered our benchmark for energy estimation
performance. Second, energy calculations of VQE with hardware-
efficient ansatz on a noiseless quantum simulator are performed
for both the acetone and the Edaravone tautomers. Third, VQE
energies on a noiseless quantum simulator for the acetone system
using an alternative ansatz circuit are obtained. Lastly, a noisy
simulation (with the noise model detailed in Supplementary
Information) of the acetone system has been done using four
layers of the alternative ansatz circuit.
The CCSD energies of the full systems and the active-space

systems in the STO-3G basis set are computed. For the acetone
system (Table 2), the full system CCSD energy of the enol form
relative to the keto form is 24.070 kcal/mol, and the active-space
system CCSD energy of the enol form relative to the keto form is
23.766 kcal/mol. For the Edaravone system (Table 3), the full

system CCSD energy of the enol form relative to the keto form is
13.726 kcal/mol and the CCSD energy of the amine form relative
to the keto form is 25.947 kcal/mol. While for active-space system
of Edaravone, the CCSD energy of the enol form relative to the
keto form is 9.197 kcal/mol and the CCSD energy of the amine
form relative to the keto form is 25.398 kcal/mol.
For the VQE results of acetone shown in Fig. 6, we use two

different parameter initialization strategies (Gaussian and HF) and
investigate how different number of ansatz circuit layers affect
VQE calculations. For acetone in Fig. 6a with 20 circuit layers using
Gaussian initialization, the keto form has an error of 0.135 kcal/mol
and the enol form has an error of 0.258 kcal/mol which are well
below chemical accuracy (1 kcal/mol). It can be seen that more
entangling ansatz layers provides lower VQE error (see Fig. 6a) and
better estimations of the relative energy gaps between the keto
and enol forms of acetone (see Fig. 6b). Besides, VQE calculations
of active-space systems have the same trends with CCSD
calculations of the full systems for the predictions of stability
between the tautomers (see the dotted lines in Fig. 6b). However,
for the case where initial states are HF states, the VQE results are
often found to be trapped in local minimum or barren plateau.
This can be clearly observed from the keto form of acetone in Fig.
6c where the final states are almost the same as the initial HF
state. While for the case where Gaussian initialized parameters are
used, the VQE shows faster convergence to chemical accuracy
(require lower circuit depth) where only 12 circuit layers are
needed to reach chemical accuracy. Also, the relative energy gaps
between the keto and enol forms of acetone are not accurate
when using HF intialization (see Fig. 6d).
Similar VQE results can be found in Fig. 7 for the Edavarone

system. For Edaravone in Fig. 7a with 20 circuit layers, the keto
form has an error of 0.730 kcal/mol, the enol form has an error of
1.006 kcal/mol, the amine form has an error of 1.168 kcal/mol
which are fairly close to chemical accuracy. Figure 7a also shows
that more entangling ansatz layers often provides lower VQE error
and better estimations of the relative energy (Fig. 7b). For the case
of HF initialization for Edavarone, the VQE errors and calculations
of relative energy gaps also reach similar accuracy in Fig. 7c and
Fig. 7d. However, it can still be observed that Gaussian
initialization has a better convergence with respect to the number
of circuit layers.
Additionally, we tested the performance of an alternative ansatz

(see Fig. 5b for a single layer) on the acetone system. The results in
Fig. 8 show that the energy gap estimation has reached chemical
accuracy with just 4 entangling layers (28 two-qubit gates). The
circuit depth and the two-qubit gate count are reasonable for
near-term quantum devices. Thus, we have run the circuit with the
parameters being set at the optimal point on a noisy simulator
(the noise model is based on the thermal relaxation channel with
specific values listed in Supplementary Information). The results
for noisy simulation can be found in Table 2 where the VQE errors
and the energy gaps are found to be close to chemical accuracy.

DISCUSSION
In this work, we have proposed a hybrid quantum-classical
workflow for the prediction of the relative stability of tautomers. It
is of the pharmaceutical industry’s interest to accurately predict
the preferred tautomeric state of a given molecules and its
computation methodology. However, the computational require-
ments using classical approaches for quantum chemistry are too
expensive, so we have made use of quantum simulation for
electronic structure calculations.
We are aware of some studies that are making the effort to

realize quantum simulation as a practical application for quantum
chemistry. Recently, Tazhigulov et al.58 simulated strongly-
correlated molecules that are more relevant to real world
problems on Google’s Sycamore quantum processor. They

Table 2. Relative ground state energies of acetone and propen-2-ol in
kcal/mol calculated by CCSD and with the VQE results calculated on a
noisy simulator.

Acetone Propen-2-ol

Full system CCSD energies relative to acetone 0 24.070

Active-space CCSD energies relative to acetone 0 23.766

Exact active-space system energies relative to
acetone

0 23.773

Active-space system VQE energies relative to
acetone

0 22.801

Active-space system VQE Error 2.787 1.805

Relative energies for both the full MO and the active space (HOMO-1,
HOMO, LUMO, LUMO+1, LUMO+2, and LUMO+3) were shown. Various
combinations of orbital reduction are provided in Supplementary
Information. Exact energies of the active-space systems were calculated
by the diagonalization of the Hamiltonian. VQE energies were calculated
using a 4-layer hardware-efficient ansatz (Fig. 5b) with Gaussian initializa-
tion for the parameters on a noisy simulator (see Supplementary
Information). VQE errors were calculated from the energy difference
between VQE energies and the exact energies of the active-space systems.

Table 3. Relative ground state energy of the keto, enol, and amine
form of Edavarone in kcal/mol.

Keto Enol Amine

Full system CCSD energies relative to keto form 0.000 13.726 25.947

Active-space CCSD energies relative to keto
form

0.000 9.197 25.398

Relative energies for both the full MO and the active space (HOMO-1,
HOMO, LUMO, LUMO+1, LUMO+2, and LUMO+3) were shown. Various
combinations of orbital reduction are provided in Supplementary
Information.
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mapped the electronic structures of iron-sulfur molecular clusters
and α-RuCl3 into low-energy spin models using the results from
theoretical and spectroscopic studies. This simplification reduced
the qubit requirements and rendered the possibility of simulating
larger molecules. They then used the finite-temperature version of
quantum imaginary time evolution to capture physical observa-
bles. However, the circuit depth for the evolution were too large
for the quantum device. Thus, they recompiled the circuit on a
classical noiseless emulator, and numerous error mitigation
techniques were employed. One of their experiments that used
9 qubits and 82 two-qubit gates achieved acceptable accuracy,
while the data for the experiment that used 11 qubits and 310
two-qubit gates were not quantitatively meaningful. This research
benchmarked the performance and limitation of quantum
simulation on quantum hardware. It is, therefore, important to
reduce hardware requirements of physical simulation to this
limitation (e.g. using similar qubit and two-qubit gate counts).
Instead of utilizing empirical information, we have used ab initio

quantum chemistry methods to reduce quantum hardware
requirements. Besides, the problem of interest is to find the
relative ground state energy differences rather than absolute
energies or other observables, so there are more rooms for orbital
reduction. First, we optimize the geometry using B3LYP. Next, we

use the natural orbitals from MP2 to select active orbitals. The
selection criteria includes the occupation numbers and hardware
limitation. To exploit as much quantum resources, we map the
reduced Hamiltonian onto fewer qubits using QEE. Finally, we
simulate the molecules/tautomers with 12 active spin-orbitals
using VQE with 8 qubits and 80 two-qubit gates, which is fairly
close to the quantum hardware limitation from58 (9 qubits and 82
two-qubit gates). In this work, not much efforts were done on
exploring the best ansatz circuit for the VQE simulation, but we
have found that an alternative ansatz circuit with 28 two-qubit
gates can sufficiently provide accurate VQE calculations for the
acetone system. This two-qubit gate count is much fewer than the
quantum hardware limitation from58 which shows the applicability
of our methodology.
The VQE results for predicted stability agrees with those from

full system CCSD results. For the prediction of acetone, its keto
form is more stable than its enol form. For the case of Edaravone,
its keto form is the most stable and its amine form is the most
unstable. Note that these results did not incorporate solvent
effects, which is an important factor in consideration of
tautomerism in biological systems. Continuum solvation models,
such as Polarizable Continuum Model (PCM)86, the Solvation
Model based on Density (SMD)87 or the Conductor-like Screening

Fig. 6 The relationship between acetone VQE results and the number of hardware-efficient ansatz layers. a, b are the results when
Gaussian-initialized parameters are used while c and d are the results when initial states are the HF states. All the x-axes represent the number
of hardware-efficient circuit layers. For a and c, the y-axes represent VQE energy errors of the keto or enol form of acetone, and the dashed
lines represent chemical accuracy (Chem. Accu.). For b and d, the y-axes represent the energies relative to the keto form (so VQE energies,
CCSD energies, and exact energies of the keto form are set to zero). Note that the exact energies (Exact in the legend) are the results from
exact diagonalization of the active-space Hamiltonian for each tautomer, and CCSD full in the legend represents the CCSD energy of the full
system relative to the keto form.
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Model (COSMO)88, can be used to take into account the solvent
effects. For example the PCM-VQE algorithm provides a self-
consistent way to include the solvent effect which does not
require extra quantum resources.
The CCSD results are considered to be the solution for the

comparison with VQE results since FCI is too expensive for such
large systems. Nevertheless, there could be even larger systems
where CCSD starts becoming intractable. This is where our hybrid
quantum-classical workflow could come into play because MP2
(which provides natural orbital occupancy) is computationally
cheaper than CCSD and quantum simulation has the potential of
becoming a more advantageous approach.
Note that even though the VQE data are from noiseless

simulator, there are still some VQE errors. The reasons could be
that either the ansatz circuit could not capture the numerically
true ground states or the parameter optimization stopped at local
minimum or got stuck on barren plateau. Nevertheless, the errors
are within chemical accuracy and does not affect the stability
prediction.
The inclusion of active space selection process in this work

alleviates the burden on quantum resources. Not too much has
been emphasized on the selection of active space in this work. The
selection of CAS is itself a sophisticated work and remains a

challenge in the field89. Future work will focus on generalization of
active space selection for the tautomerization process. Potential
focuses could be placed on the π-orbitals since the process
involves the migration of double bonds or on the atom types that
are heavily involved in the tautomerization process such as N or O.
Similar complete active space concept has been used for
generation of tautomers by mirco-pKa predictions90. Of course a
quantum device with more qubits that are less error-prone can
bring value into quantum chemistry, but we are not close to
achieving large-scale fault-tolerant in any architecture. As
quantum computers will certainly be improved, the active orbital
selection criteria can be adjusted such that more orbitals can be
included. Such versatility stems from the fact that the limitation of
quantum hardware is included in the selection criteria.
Given the importance of tautomerism in pharmaceutical

research, our work aims to extend the applications of quantum
computing in drug discovery and predictions of chemical events.
To realize useful applications for quantum computers in near term,
hybrid methods and reasonable classical preprocessing are
necessary. On the other hand, the classical methods should be
adaptable to the advancement of future quantum computers.
Certain modifications on the quantum subroutines can also be
done to improve the whole picture. We have employed QEE to

Fig. 7 The relationship between Edaravone VQE results and the number of hardware-efficient ansatz layers. a, b are the results when
Gaussian-initialized parameters are used while c and d are the results when initial states are the HF states. All the x-axes represent the number
of hardware-efficient circuit layers. For a and c, the y-axes represent VQE energy errors of the keto, enol, or amine form of Edaravone, and the
dashed lines represent chemical accuracy (Chem. Accu.). For b and d, the y-axes represent the energies relative to the keto form (so VQE
energies, CCSD energies, and exact energies of the keto form are set to zero). Note that the exact energies (Exact in the legend) are the results
from exact diagonalization of the active-space Hamiltonian for each tautomer, and CCSD full in the legend represents the CCSD energies of
the full systems relative to the keto form.
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increase the maximal number of spin-orbitals that can be
simulated on limited quantum resources. Besides, to avoid the
local minimum/barren plateau problem seen in this work, one
could employ some parameter optimization strategies such as the
initialization strategy proposed in refs. 85 and 91. One could also
change the VQE subroutine to methods such as imaginary time
evolution92 for better convergence or quantum algorithms with
better scaling when future hardware admits.

METHODS
Qubit efficient encoding
As we want to work on a larger electronic system, an encoding
scheme using OðNÞ qubits (like JW encoding) would not be
practical on current and near-future devices. Therefore, it would
be suitable to resort to encoding methods using fewer qubits.
Here, we choose Qubit Efficient Encoding (QEE) from ref. 64 where
the qubit scales logarithmically with respect to N. This is done by
only mapping particle conserving or other eletronic configurations
with certain symmetries to the qubit basis states which exploits
the exponential growth of qubit Hilbert space.
Since the encoding scheme works in a subspace of the space

spanned by the occupation basis, we will not be able to map a
single creation or annihilation operator as the operators change
the number of electrons in the system. Nevertheless, the second-
quantized Hamiltonian can be written as a linear combination of
excitation operators, which conserve the number of particles,
Epq � aypaq yielding

H ¼
X

pq

hpqEpq þ 1
2

X

pqrs

hpqrsðδqrEps � EprEqsÞ (4)

by using the anti-commutation relations of fermionic operators.
Any excitation operator Epq can be written as
Epq ¼

PjFmj�1
k;k0¼0 cpqk0k fk0j if fkh jf , where Fm is the set of all particle

conserving (or with other symmetries) electronic configurations
fkj if and cpqk0k ¼ fk0h jfEpq fkj if . cpqk0k is zero if the transition from fkj if
to fk0j if via excitation operator Epq is impossible. The coefficient
cpqk0k can be ± 1 according to the antisymmetric property of

fermions where cpqk0k ¼
Qmaxðp;qÞ�1

i¼minðp;qÞþ1 ð�1Þf i . With a transformation

E that maps the selected electronic configurations one-to-one to
qubit basis states in an arbitrary order, the corresponding qubit
operator of Epq can be written as

~Epq ¼ E � Epq � E�1 ¼
XjFmj�1

k;k0¼0

cpqk0k qk0j iq qkh jq; (5)

where qkj iq ¼ E fkj if is the encoded qubit state of fkj if under the
map E. The transition between the two basis states qj iq ¼
qQ�1; :::; q0
�� �

q and q0j iq ¼ q0Q�1; :::; q
0
0

�� �
q can be factorized as

jq0iqhqjq ¼ NQ�1
k¼0 jq0kiqhqk jq. Therefore, the encoded excitation

operator can be expressed as

~Epq ¼
XjFm j�1

k;k0¼0

cpqk0k qk0j iq qkh jq ¼
XjFmj�1

k;k0¼0

OQ�1

w¼0

cpqk0kTk0k;w ; (6)

where Tk0k;w could be one of the following operators

Qþ ¼ 1j iq 0h jq ¼ 1
2
ðX � iYÞ; (7)

Q� ¼ 0j iq 1h jq ¼ 1
2
ðX þ iYÞ; (8)

Nð0Þ ¼ 0j iq 0h jq ¼ 1
2
ðI þ ZÞ; (9)

Nð1Þ ¼ 1j iq 1h jq ¼ 1
2
ðI � ZÞ (10)

according to the qubit basis state transitions.
As each operator Tk0k;w is a sum of two Pauli operators, this

allows us to express the qubit Hamiltonian

Hq ¼
X

pq

hpq~Epq þ 1
2

X

pqrs

hpqrsðδqr~Eps � ~Epr~EqsÞ (11)

as a sum of Pauli operator strings. With the Hamiltonian in Pauli
strings, the energy expectation value can be obtained using a
quantum computer. In this work, we select electronic configura-
tions that are particle-conserving and singlet so we reduce the
qubit requirement from 12 qubits to 8 qubits. In the original QEE
paper, the authors discovered that the number of qubit

Fig. 8 The relationship between acetone VQE results and the number of the alternative ansatz layers from the main text. Gaussian-
initialized parameters are used. All the x-axes represent the number of hardware-efficient circuit layers. For a, the y-axis represents VQE energy
errors of the keto or enol form of acetone, and the dashed line represents chemical accuracy (Chem. Accu.). For b, the y-axis represents the
energies relative to the keto form (so VQE energies, CCSD energies, and exact energies of the keto form are set to zero). Note that the exact
energies (Exact in the legend) are the results from exact diagonalization of the active-space Hamiltonian for each tautomer, and CCSD full in
the legend represents the CCSD energy of the full system relative to the keto form.

Y. Shee et al.

9

Published in partnership with The University of New South Wales npj Quantum Information (2023)   102 



Hamiltonian terms is bounded as follows: when m � N
2, the upper

bound is Oð N2mþ1

ðm�1Þ!m!Þ and when m>N
2, the upper bound is

Oð N2ðN�mÞþ1

ðN�m�1Þ! ðN�mÞ!Þ Here, N represents the number of spin-orbitals,
and m represents the number of electrons. It is worth noting that
this scaling is generally higher than OðN4Þ for JW encoding.
Nevertheless, the authors present several scenarios in which QEE
yields significant reductions in qubit counts while maintaining
similar or even fewer numbers of Hamiltonian terms. The QEE
paper provides use cases where 4 to 8 qubits are utilized after
obtaining the QEE Hamiltonian, which is also the case for
this work.

Variational parameter optimization
For noiseless VQE simulation, the statevector simulator from Qiskit
was used, and the classical optimization of the variational
parameters was done using the Sequential Least Squares
Programming (SLSQP) method with 50k iterations. For noisy VQE
simulation, the statevector simulator from Qiskit was used with
100k measurement shots per circuit. There is no classical
optimization of the variational parameters for noisy simulation as
we use the optimal circuit parameters from noiseless simulation.

DATA AVAILABILITY
The optimized structures of the tautomers are available as GitHub repository at
https://github.com/randyshee/tautomer-quantum-simulation.

CODE AVAILABILITY
The implementation of the quantum simulation experiments is available as GitHub
repository at https://github.com/randyshee/tautomer-quantum-simulation.
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