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Realization of quantum signal processing on a noisy quantum
computer
Yuta Kikuchi 1,2✉, Conor Mc Keever 3, Luuk Coopmans 3, Michael Lubasch 3 and Marcello Benedetti 3✉

Quantum signal processing (QSP) is a powerful toolbox for the design of quantum algorithms and can lead to asymptotically
optimal computational costs. Its realization on noisy quantum computers without fault tolerance, however, is challenging because it
requires a deep quantum circuit in general. We propose a strategy to run an entire QSP protocol on noisy quantum hardware by
carefully reducing overhead costs at each step. To illustrate the approach, we consider the application of Hamiltonian simulation for
which QSP implements a polynomial approximation of the time evolution operator. We test the protocol by running the algorithm
on the Quantinuum H1-1 trapped-ion quantum computer powered by Honeywell. In particular, we compute the time dependence
of bipartite entanglement entropies for Ising spin chains and find good agreements with exact numerical simulations. To make the
best use of the device, we determine optimal experimental parameters by using a simplified error model for the hardware and
numerically studying the trade-off between Hamiltonian simulation time, polynomial degree, and total accuracy. Our results are the
first step in the experimental realization of QSP-based quantum algorithms.
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INTRODUCTION
Several quantum algorithms are known to outperform their
classical counterparts by computational costs that asymptoti-
cally scale better, e.g., Shor’s prime factoring algorithm1,
Hamiltonian simulation2,3 and Grover search4,5. Their realization
on actual quantum computers, however, requires additional
qubits and gates to correct errors that naturally occur in real
physical devices. Currently available noisy quantum computers
are not capable yet of running such quantum algorithms for
large problem sizes.
In the context of noisy quantum circuits, there are two

regimes in which the classical computational requirements for
simulating a quantum computer remain tractable. First, shallow
circuits typically generate small amounts of entanglement
making them amenable to classical simulation. Second, deep
circuits quickly accumulate errors causing decoherence
towards a regime which can also be treated efficiently on
classical computers6,7. Between these two extremes, there is an
optimal working point at which maximum non-trivial quantum
correlation is attained and where accurate simulation may
become challenging for a classical computer8. In light of this, a
promising route towards achieving a genuine quantum
advantage without fault tolerance is to realize the aforemen-
tioned algorithms while operating the computer at its optimal
working point. In order to design such an algorithm, it is
therefore essential to account for the influence of noise on the
circuits which implement it.
In this work, we propose to heuristically optimize the depth of

quantum circuits and operate where we can make the most out of
our noisy quantum computer. With this heuristic approach, we
provide the first realization of quantum signal processing (QSP) on
a trapped-ion quantum computer. QSP was proposed in9 and is
now recognized as one of the most powerful frameworks for
developing quantum algorithms. It gives a unifying perspective on

seemingly distinct algorithms such as amplitude amplification
and the quantum linear systems algorithm and improves on their
computational resources10,11. Such flexibility stems from the
fact that QSP allows one to apply almost any polynomial
transformation to an input scalar or matrix. In the literature, QSP
often refers to a polynomial transformation applied to an input
scalar, and its generalizations apply a polynomial transformation
to eigenvalues (QET) or singular values (QSVT) of an input matrix.
Throughout this article, we do not make such a distinction and
refer to all these protocols as QSP.
Hamiltonian simulation is an example where QSP provides an

improved asymptotic scaling over other algorithms. Since Feyn-
man’s seminal proposal12, Hamiltonian simulation has been a
fundamental problem of quantum computing. An efficient
Hamiltonian simulation algorithm allows us to simulate the real-
time dynamics of a quantum system described by a Hamiltonian H
with computational resources scaling at most polynomially in
evolution time t, system size n, and inverse of required accuracy
1/ϵ. Extensive studies have been devoted to exploring efficient
algorithms for Hamiltonian simulation, which include product
formulas2,13–15, quantum walks16, the truncated Taylor-series
expansion17, randomized protocols18–22, and making use of
classical optimization techniques23–25. Nowadays, the QSP-based
algorithm is known to exhibit nearly optimal asymptotic
scaling10,26,27 (see also28 for a comparative survey).
In29, the authors demonstrate the QSP protocol using random

Hamiltonians on a superconducting device for the purpose of
benchmarking. The present work takes a step forward by realizing
QSP on the Quantinuum H1-1 trapped-ion quantum computer
and performing the Hamiltonian simulation of physically relevant
quantum systems. After the release of the present manuscript,
another group demonstrated QSP for the task of quantum
channel discrimination30.
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RESULTS
Review of Hamiltonian simulation by quantum signal
processing
The Hamiltonian simulation algorithm solves the real-time
dynamics of a quantum system by applying a real-time evolution
operator e−iHt to some initial state ψ0j i, where the Hamiltonian H
is given by a Hermitian operator in this work. We employ QSP in
order to find an approximate real-time evolution operator that can
be efficiently implemented on a quantum computer. QSP outputs
a degree-d polynomial f 2 C½x� using a sequence of unitary
operators9,10,26,27,

UQSP :¼
Yd
k¼1

SðϕkÞWðxÞ½ � ¼ f ðxÞ �
� �

� �
; (1)

SðϕÞ :¼ eiϕ 0

0 e�iϕ

� �
; (2)

WðxÞ :¼ x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
�x

 !
; (3)

where * stands for an unspecified entry. Here, we follow the
convention of Corollary 8 in10 (preprint version), where W(x) takes
the form of a reflection operator. For a polynomial f(x) that satisfies
certain conditions10,11 there always exists a set of QSP angles {ϕk}.
The conditions are: (i) f must have parity-ðdmod2Þ, (ii) ∣f(x)∣ ≤ 1 for
all x ∈ [− 1, 1], (iii) ∣f(x)∣ ≥ 1 for all x∈ (−∞, 1] ∪ (1,∞], and (iv)
f(ix)f *(ix) ≥ 1 for all x 2 R if d is even. The function f(x) is
implemented by computing such angles {ϕk}, and is encoded in
the expectation 0h jUQSP 0j i. It is evident from Eq. (1) that the circuit
depth is proportional to the degree d.
Finding an efficient Hamiltonian simulation algorithm with QSP

starts by approximating the function e−ixt with a fixed-degree
polynomial on an interval I⊆ [− 1, 1]. Given time t > 0 and
accuracy ϵpoly, we find a polynomial f such that

max
x2I

jf ðxÞ � e�ixtj � ϵpoly: (4)

One way to find f is to consider the polynomial approximation
to the exponential function given by the Jacobi-Anger expan-
sion26,

e�ixt ¼ cosðxtÞ � i sinðxtÞ;
cosðxtÞ ¼ J0ðtÞ þ 2

P1
k¼1

J2kðtÞT2kðxÞ;

sinðxtÞ ¼ 2
P1
k¼1

J2kþ1ðtÞT2kþ1ðxÞ;
(5)

where Ji(t) is a Bessel function of order i, and Ti(x) is a Chebyshev
polynomial of order i. Tolerating an error ϵpoly, the polynomial can
be truncated at degree

d ¼ Θ t þ logð1=ϵpolyÞ
logðeþ logð1=ϵpolyÞ=tÞ

� �
; (6)

which is almost linear in t and logarithmic in 1/ϵpoly. Here, we use
the big-Θ notation, i.e., for functions f and g we write f(x)=Θ(g(x))
if there exist constants c1, c2, and x0 such that c1g(x) ≤ f(x) ≤ c2g(x)
for any x > x0.
The goal is to apply this polynomial transformation to the

eigenvalues of the Hamiltonian H. This is achieved by block
encoding H, i.e., embedding H in a unitary operator WðHÞ acting
on a larger Hilbert space. A number of block-encoding methods
have been proposed in the literature10,27,31–33 and their applic-
ability depends on the form of the Hamiltonian. For instance, one
can employ the linear-combination-of-unitary (LCU) method when
H is given as a weighted sum of unitary operators34. Then, by
identifying a subspace analogous to a one-qubit space, the block-

encoding unitary WðHÞ and a generalized rotation operator SðϕÞ
behave like the single-qubit operations W(x) and S(ϕ) in Eq. (1).
Our aim is to run a small-scale QSP-based Hamiltonian

simulation on a quantum computer with no fault-tolerance
mechanism. This is challenging because noise limits the maximum
depth of our circuits. We present a practical protocol to run the
Hamiltonian simulation by QSP, while taking hardware noise into
account.

Preprocessing
Recall that QSP applies a polynomial transformation to the
eigenvalues of the Hamiltonian. The eigenvalues need to be
rescaled in a suitable interval so that the Hamiltonian can
be encoded as a sub-block of a unitary operator. By unitarity, the
largest possible interval in Eq. (4) is [− 1, 1]. However, the
protocol is made more efficient if we further narrow the interval
down to [0, 1] and ~e−ixt by an even function of x35. A general
preprocessing method to rescale the spectrum of H in [a, b] ⊆
[0, 1] is given by

~H ¼ ðH � λ�IÞðb� aÞ
λþ � λ�

þ aI; (7)

where λ+ and λ− are upper and lower bounds on the eigenvalues,
respectively (see Fig. 1A). To recover the desired time evolution,
we counterbalance with a time rescaling

~t ¼ tðλþ � λ�Þ
b� a

: (8)

This yields the desired real-time evolution operator up to an
irrelevant global phase: e�i~t~H ¼ e�iϕe�itH , where ϕ= t(aλ+− bλ−)/
(b− a). The exact minimum λmin and maximum λmax eigenvalues
are unknown and finding them is computationally intractable in
general36–38. That is why we resort to bounds. Equation (8) shows
that the effective evolution time ~t increases as the QSP interval
[a, b] gets smaller, and as the eigenvalue bounds get looser. For
example, suppose λ± are taken such that ðλþ � λmaxÞ=jλmaxj
¼ ðλmin � λ�Þ=jλminj ¼ r � 0, i.e., the bounds λ+/− are 100r% off
from λmax =min. From Eq. (8) we obtain

~t ¼ tðλmax � λminÞ
b� a

þ rtðjλmaxj þ jλminjÞ
b� a

: (9)

The first term is the smallest effective time achievable, while the
second term is extra overhead. Note that ~t determines the
polynomial degree d (e.g., Eq. (6) for the truncated Jacobi-Anger
expansion), and thus the circuit depth.
When the Hamiltonian is provided as a weighted sum

H= ∑kckHk of operators {Hk}, simple bounds are readily available:
λ±= ± ∑k∣ck∣ ∥Hk∥, where ∥ ⋅ ∥ is the spectral norm. Tighter bounds
can be obtained by relaxing the ground-state constraints39,40 and/
or exploiting some structure in the Hamiltonian. For translation-
invariant systems, the Anderson bound41, and a particular semi-
definite programme relaxation, can provide a lower bound with an
error that is independent of system size42. Furthermore, for a large
class of local Hamiltonians, one can formulate a hierarchy of semi-
definite programming constraints with increasing complexity that
can be solved numerically with tensor network and renormaliza-
tion group techniques43.

Compressed block-encoding
The second key step of the protocol (Fig. 1B) is to input the
Hamiltonian to the quantum computer so that it can be
processed. For ϵBE ≥ 0, a block-encoding W of ~H is defined by

~W � ~H
�� ��

F ¼ ϵBE;

~W :¼ ð 0ah j � IÞWð 0aj i � IÞ;
(10)
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where ∥ ⋅ ∥F is the Frobenius norm and the integer a is the number
of ancillary qubits. Note that ð 0ah j � IÞ � ð 0aj i � IÞ projects onto the
subspace where the ancillary qubits are in the all-zero state. The
accuracy of the block encoding is specified by the parameter ϵBE.
Depending on the form of ~H, there exist different block-

encoding methods10,27,31–34. While such generic methods are
scalable in principle, the required number of ancillary qubits and
the circuit depth may preclude an implementation on current
noisy quantum devices. Here, we propose two ways to overcome
this by compressing the block-encoding circuit.
First, we use a parameterized quantum circuit W ¼ WðθÞ as

ansatz and minimize Eq. (10) with respect to the parameters θ. The
possible presence of barren plateaus in the optimization land-
scape could prohibit quantum-classical hybrid methods from
being efficient at larger system sizes44–46. In this case, a fully
classical approach is preferable47. We thus suggest to use tensor
network ansätze that can be efficiently optimized on a classical
computer.
Second, we make use of multiplexor circuit compilation to

compress the LCU block-encoding circuit48,49. The multiplexor
compilation reduces the number of elementary gates required to
implement sequential multi-controlled unitary operations which
are heavily used in the LCU circuit. Since the compilation adopted
here does not introduce approximation error, it provides an exact
block-encoding, i.e., ϵBE= 0.
In the Methods section we discuss both approaches in more

detail.

Operator-function design
The depth of a QSP circuit is proportional to the degree d of the
polynomial. When using noisy devices, we must fix d so that the
final circuit has a reasonable fidelity. Later on, we provide a
heuristic to choose d as a function of ~t and hardware noise. For
now, let us assume that d is fixed and proceed to the function
design (Fig. 1C). Instead of using the Jacobi-Anger expansion, we
numerically optimize the QSP angles {ϕk}. The preprocessing step

has rescaled the eigenvalues of H in [a, b]⊆ [0, 1], so we restrict the
optimization to that interval. Furthermore, we can utilize
polynomials of even parity, i.e., QSP polynomials of even degree
d. The resulting accuracy is

ϵpoly ¼ min
fϕkg

max
x2½a;b�

0h jUQSPðfϕkgÞ 0j i � e�ix~t
��� ���: (11)

Figure 2a shows the accuracy for different values of degree and
evolution time. For each value of d, we find the QSP angle
sequence using a dedicated python package called pyqsp50. As
expected, the error decreases as the degree gets larger for a given
evolution time. It is also observed that the error increases as the
evolution time gets longer for a fixed degree.
The error stemming from both block-encoding Eq. (10) and

operator-function design Eq. (11) propagates to the accuracy of
the whole algorithm. This is found by expanding the error as10,31,

e�i~t~H � f ð ~WÞ
��� ���
� e�i~t~H � e�i~t ~W
��� ���þ e�i~t ~W � f ð ~WÞ

��� ���
� j~tj ~H � ~W�� ��

F þ e�i~t ~W � f ð ~WÞ
��� ���

¼j~tj ϵBE þ ϵpoly ¼: ϵQSP;

(12)

where we have defined f ð ~WÞ :¼Pλ ~W
f ðλ ~WÞ λ ~W

�� �
λ ~W
� �� with the

eigenstates f λ ~W
�� �g of ~W such that ~W λ ~W

�� � ¼ λ ~W λ ~W
�� �

. In the third

line, we use inequality ke�i~t~H � e�i~t ~Wk � j~tj k~H � ~WkF (see
Lemma 50 in ref. 31, preprint version) and the fact that the
spectral norm is upper bounded by the Frobenius norm.
Let us now incorporate the effect of hardware noise via a simple

noise model. This allows us to develop a heuristic for estimating
the optimal polynomial degree, given the evolution time and the
noise rate of our quantum device. Letting ψ0j i be a n-qubit initial
state and 0aj i be the a-qubit ancillary state, the quantum

run QSP circuit and mitigate errors with error rate

classically optimize/compile block-encoding circuit

A. PREPROCESSINGINPUT

OUTPUT D. PROCESSING C. OPERATOR-FUNCTION DESIGN

B. COMPRESSED BLOCK-ENCODING

10

bound eigenvalues1. Hamiltonian
2. time
3. error rate

1. observables
2. entanglement
3. etc.

heuristic: find optimal
degree for error rate   

find QSP angles

rescale parameters

Fig. 1 The proposed protocol for the realization of QSP on a noisy quantum computer. We choose Hamiltonian simulation as the
application. We start with a necessary preprocessing step (A) that maps the input parameters to an effective Hamiltonian ~H and an effective
simulation time ~t. In step (B), ~H is embedded in a unitary operator. By classically optimizing/compiling a circuit W this step produces a
compressed version of a block-encoding circuit. Next, in the operator-function design (C), we approximate the real-time evolution function,
e−ixt, by a polynomial f(x) of degree d. While increasing the degree leads to a more accurate polynomial approximation, the computation
suffers from larger noise effects. This is due to the growing depth of the QSP circuit, consisting of OðdÞ primitive gates. By accounting for the
error rate pTQ of two-qubit gates, we heuristically estimate the optimal degree yielding the smallest combined error. The processing step (D)
finally realizes QSP using the compressed block-encoding circuit W and the designed polynomial f(x). Upon postselection on the ancilla’s
measurement outcomes, we obtain an approximation to the desired real-time evolution e−iHt. An error mitigation scheme based on the error
rate pTQ further reduces the effect of noise on the output.
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computation is described by

σ ¼ UQSPð 0aj i 0ah j � ψ0j i ψ0h jÞUy
QSP; (13)

where UQSP represents the unitary implementing the QSP
protocol, which will be defined later in Eq. (17). We model the
noise effect of the hardware with the depolarizing channel Dp
acting on the entire system. It alters the state to

Dp½σ� ¼ ð1� pÞσ þ p
I

2nþa ; (14)

where we set p ¼ 1� ð1� pTQÞNTQ with the two-qubit gate
infidelity pTQ and the number of two-qubit gates NTQ in the
UQSP circuit. The fidelity between this state and the ideal target
state ψ~tj i :¼ e�i~H~t ψ0j i quantifies the error,

ð 0ah j � ψ~th jÞDp½σ�ð 0aj i � ψ~tj iÞ
¼ ð1� pÞ ψ~th jf ð ~WÞ ψ0j i�� ��2 þ p

2nþa ;
(15)

Thus, the corresponding infidelity is bounded as

1� ð 0ah j � ψ~th jÞDp½σ�ð 0aj i � ψ~tj iÞ
¼ 1� ð1� pÞ 1� ψ~th j e�i~H~t � f ð ~WÞ

	 

ψ0j i

��� ���2 � p
2nþa

�1� ð1� pÞð1� ϵQSPÞ2 � p
2nþa ¼: ϵtotal:

(16)

Figure 2b shows the upper bound in Eq. (16) as a function of
degree and evolution time, where the algorithmic error ϵQSP
[Eq. (12)] is obtained for the Hamiltonian given in Eq. (23). The
two-qubit gate error rate is set to pTQ= 2.577 × 10−3 (see Methods
for details) and the circuits of degree d ∈ {2, 4, 6, 8, 10, 12, 14}
contain NTQ∈ {52, 98, 144, 190, 236, 282, 328} two-qubit gates,
respectively. In contrast to the operator-function design error in
Fig. 2a, the total error in Fig. 2b has a sweet spot for each value of
Jt. Intuitively, the increase of the degree reduces the algorithmic
error ϵQSP while making the noise effect more prominent due to
the larger circuit depth. This motivates the following heuristic: for
a given evolution time, pick the degree that minimizes the upper
bound on the total error Eq. (16) (see refs. 51,52, where a similar
approach has been applied to Grover’s algorithm). Importantly,
this step of the protocol does not require the use of a quantum
computer. The optimal degree for Eq. (16) is found numerically
using classical computation. Additionally, the sweet spot may
coincide with the hardware’s optimal working point where we
expect a classical simulation of the corresponding noisy quantum
circuit to be most challenging6,8, further justifying our heuristic
choice.
Figure 2c shows that the optimal degree dopt is approximately

linear in the evolution time t. The estimated degrees are
corroborated by the complementary numerical study that we
carried out and presented in the Methods section. It is important

to emphasize that our approximately linear scaling in time is
different from the one expected by noiseless QSP. Our heuristic is
designed to run the noisy quantum computer to its full potential,
but may still produce large errors. This happens when the
simulation parameters {H, t, pTQ} are not compatible in the first
place. For instance, at a fixed error rate pTQ and large simulation
time t, it is reasonable to expect a large infidelity. In contrast,
Hamiltonian simulation by noiseless QSP achieves linear scaling in
time while providing full control over the total error. For example,
one can use a perfect block-encoding, ϵBE= 0, along with the
desired approximation error ϵpoly in Eq. (6).

Processing
In this last step of the protocol, we apply the polynomial f found in
Eq. (11) to the block-encoded Hamiltonian ~W (Fig. 1D). For an
even integer d, the QSP unitary takes the form10,11,

UQSP :¼
Qd=2
k¼1

Sðϕ2k�1ÞWySðϕ2kÞW
� �

¼L
λ ~W

f ðλ ~WÞ �
� �

� �
� λ ~W
�� �

λ ~W
� �� ¼ f ð ~WÞ �

� �

 !
;

(17)

SðϕÞ :¼
M
λ ~W

eiϕ 0

0 e�iϕ

� �
� λ ~W
�� �

λ ~W
� ��; (18)

where the direct sum is taken over the eigenstates f λ ~W
�� �g of ~W

and the upper-left block of the matrices represents the 0aj i 0ah j
component of the corresponding operators. Thus, starting from
the initial ancillary state 0aj i, and post-selecting on the ancillary
state 0aj i at the end, we obtain

ð 0ah j � IÞUQSPð 0aj i � IÞ ¼ f ð ~WÞ; (19)

which approximates the desired real-time evolution operator
e−iHt.
Let us now discuss how to post-process the measurement

results and mitigate the noise effects on observables. We let the
noisy quantum state simulated on the hardware before any
measurement be η, which is generally different from the state
affected only by the depolarizing channel given by Eq. (14). For
simplicity, we consider the expectation value, Tr½Pη�, of
P :¼ 0aj i 0ah j � P, where P is a Pauli operator acting on the system
register. The variance is Varη;P ¼ Tr½Iη� � Tr½Pη�2. We mitigate the
noise effects by modelling it with the depolarizing channel53–55. In
particular, we use the same noise model that we previously
employed when estimating the optimal polynomial degree. The
expectation value of P with respect to the state in Eq. (14) is

Tr½PDp½σ�� ¼ ð1� pÞ ψ0h jf ð ~WÞyPf ð ~WÞ ψ0j i: (20)

Fig. 2 Heuristic search of optimal parameters for the five-qubit hardware experiment. a Accuracy of QSP angle optimization, Eq. (11), using
pyqsp50. b Upper bound to the infidelity, Eq. (16), as a function of degree d and evolution time Jt. c For each evolution time, the optimal
degree dopt is the degree that minimizes the total error ϵtotal in b.
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where p ¼ 1� ð1� pTQÞNTQ . We infer the noiseless expectation
value from the noisy expectation value as

hPimitig
η :¼ Tr½Pη�

1� p
: (21)

This is understood as mitigating the depolarizing noise, at the
cost of a larger variance,

Varmitig
η;P

¼ Varη;P
ð1� pÞ2 ¼

Varη;P
ð1� pTQÞ2NTQ

: (22)

This implies that the number of samples needed to achieve a
fixed sampling error increases exponentially in NTQ. Therefore,
reducing the depth of the circuit is extremely important even
though the noise effect on the expectation value hPimitig

η is
mitigated.

Hardware experiment
In order to demonstrate the protocol, we perform the QSP-based
Hamiltonian simulation experiments on the Quantinuum H1-1
trapped-ion quantum computer. We simulate the real-time
dynamics of the quantum system described by the one-
dimensional Ising spin Hamiltonian

H ¼ �J
Xn�2

i¼0

ZiZiþ1 �
Xn�1

i¼0

hiXi �m
Xn�1

i¼0

Zi ; (23)

We quantify entanglement growth by bi-partitioning the system
into subsystems A and A and then computing the time
dependence of the von Neumann entropy

SvN ¼ �Tr½ρA log ρA�; (24)

and the degree-2 Rényi entropy

Sð2ÞR ¼ � log Tr½ρ2A� (25)

on the nA-qubit subsystem A, where ρA ¼ TrA½ρ�.
We perform state tomography by measuring the Pauli

expectation values via

cP ¼
hPimitig

η

hIimitig
η

; (26)

for an operator P 2 PauliA :¼ fI; X; Y; Zg�nAnfI�nAg on A
(see Methods), which leads to an estimator of the density matrix,

ρA ¼ I þPP2PauliA cPP
2nA

: (27)

Since the denominator of Eq. (26) would be one in the absence
of algorithmic error and noise effects, the quantity in Eq. (26)
approximates the expectation value of the Pauli operator P as is
further discussed in the Methods section. We note that the
computation of von Neumann entropy is not scalable in general.
However, the current procedure can be straightforwardly applied
to the computation of degree-2 Rényi entropy using the swap
trick56–61 or randomized measurement protocols62–67.
The H1-1 system operates by controlling the S1/2 hyperfine clock

states of trapped 171Yb+ ions, which play the role of qubits68,69;
there are a total of 20 qubits in the system at the time the
experiments are conducted (see ref. 70 for details on the H1-1
system). In addition to single-qubit rotations, a two-qubit native
gate expð�iθZ � Z=2Þ with θ 2 R can be applied to an arbitrary
pair of qubits giving the system all-to-all connectivity. This is
enabled by the ability of the H1-1 system to move any pair of ions
to one of five isolated interaction zones where quantum
operations (initialization, gate application, measurement) are
executed in a manner that suppresses the rate of crosstalk and
allows for high-fidelity two-qubit gates.

In the first experiment, we consider the n= 3 Ising spin chain
with hi/J=− 1.05 for all i and m/J= 0.5 in Eq. (23). The system is
known to display rapid growth of entanglement71,72. We
preprocess the Hamiltonian H given in Eq. (23) to find ~H via
Eq. (7) with a= 0, b= 1, and λ±= ± (2J+ 3h+ 3m). We obtain a
compressed block-encoding circuit by variational optimization
using two ancillary qubits and L= 3 layers obtaining an error
ϵBE= 1.8 × 10−2 (see Methods for details). The subsystem A is
taken to be the zeroth site of the system register (see Fig. 3 for a
schematic of this five-qubit experiment).
We consider the real-time evolution with Jt ∈ {0, 0.1, 0.2, 0.3, 0.4,

0.5, 0.6, 0.7} and starting from the initial state on the system
register ψ0j i ¼ þj i�3 where þj i ¼ ð 0j i þ 1j iÞ= ffiffiffi

2
p

. For each
evolution time, the degree d is set to dopt ∈ {0, 4, 4, 6, 8, 10, 10, 14}
following the heuristic shown in Fig. 2c. The resulting number of
two-qubit gates in each circuit is NTQ∈ {0, 98, 98, 144, 190, 236,
236, 328}. Error-mitigated Pauli expectation values in Eq. (26) are
obtained from Eq. (21) with the two-qubit gate infidelity
pTQ= 2.577 × 10−3, the number of two-qubit gates NTQ, and
1000 measurements.
Figure 4a, b show the growth of entanglement entropies with

time for our system. The exact time evolution data (dashed line) is
obtained from the exact application of the operator e−iHt to the
initial state ψ0j i. The experimental data obtained from H1-1 is
reported with error mitigation (orange circles) as well as without
error mitigation (green squares). The noiseless QSP simulation
data (blue diamonds) is obtained by classically simulating the
algorithm without the noise effects. Error bars represent one
standard deviation due to sampling error.
The error-mitigated experimental data agree well with the exact

values and with the noiseless data up to Jt= 0.6, while there is a
discrepancy between the unmitigated data and the rest from as
early as Jt= 0.1. We also observe that the error-mitigated data
show larger sampling errors (error bars) than the unmitigated data
as expected from Eq. (22). The experimentally obtained entangle-
ment entropies generally yield larger values than the exact ones
due to algorithmic error and noise effects, which induce the

Fig. 3 Sketch of the setup for the five-qubit experiment. a The
system consists of the two-qubit ancillary register (orange ions) and
the three-qubit system register. The latter is further partitioned into
the one-qubit subsystem A (a red ion) and its complement A (blue
ions). b The H1-1 quantum computer operates by manipulating the
ions representing the qubits. Each quantum operation (initialization,
gate application, measurement) is performed using lasers after the
target ions are transported to one of the isolated interaction zones.
In the experiments we use five out of the 20 qubits available, and
apply up to 328 two-qubit gates.

Y. Kikuchi et al.

5

Published in partnership with The University of New South Wales npj Quantum Information (2023)    93 



interaction among the system register, ancillary register, and
environment surrounding the device. Thus, the von Neumann and
Rényi entropies computed on the subsystem A measure the
entanglement not only with the system A but also with the
ancillary register and environment. Nevertheless, our protocol
mitigates these erroneous impacts well. In particular, the
agreement between the mitigated experimental data and exact
values indicates that our protocol brings both QSP algorithmic
error and noise effects under good control for the range of
parameters that we assessed.
In the second experiment, we simulate the real-time evolution

of the n= 4 Ising spin chain with h1/J= 1 and hi/J=m/J= 0 for
i ≠ 1 in Eq. (23). We begin by constructing the exact LCU block-
encoding circuit (ϵBE= 0) which uses a= 3 ancillary qubits and
125 two-qubit gates. We compress this circuit using multiplexor
compilation and obtain an equivalent circuit with only 44 two-
qubit gates. This is a reduction of 64.8% of the original LCU
circuit size (see Methods for details). We evolve the initial state
ψ0j i ¼ þj i�4 on the system register and make 1000 measure-
ments to compute each Pauli expectation value [Eq. (26)] at each
time Jt ∈ {0.1, 0.4, 0.7}. We again follow the heuristic in Fig. 1C to
find dopt ∈ {2, 4, 8} for each evolution time Jt. However, we use a
different two-qubit gate infidelity, pTQ= 2.185 × 10−3, following
an update to the H1-1 device after our first experiment. The
resulting number of two-qubit gates in each circuit is
NTQ ∈ {102, 204, 408}.
We choose the zeroth and first sites of the system register to

represent subsystem A. The calculated entanglement entropies
are shown in Fig. 4c, d. The discrepancy between the noiseless
data (blue diamonds) and exact data (dashed line) is due to the
degrees dopt being smaller than those found in the first
experiment. Indeed, the heuristic has taken into account the
increased number of qubits and two-qubit gates for this second
experiment. The degrees found by our heuristic lead to a good
agreement between the noiseless data and error-mitigated
experimental data (orange circles), except for Jt= 0.7. Note that
this parameter setting (Jt= 0.7) yields our largest quantum

circuit with as many as 408 two-qubit gates. This experiment
exemplifies the importance of finding the optimal working point
to balance the algorithmic error, hardware noise, and parameter
setting.

DISCUSSION
We propose a detailed protocol to perform QSP-based Hamilto-
nian simulation tailored to noisy quantum hardware. Each process
is carefully studied to clarify the sources of error in the estimate of
target observables, as summarized in Tab. 1. In particular, the
polynomial approximation is designed such that the combined
error caused by the QSP protocol and noise effect is minimized.
The block-encoding circuit is compressed to further reduce the
circuit depth for experimental purposes. An error mitigation
scheme is used to increase accuracy in the estimate of target
expectation values.
We execute the protocol on the Quantinuum H1-1 quantum

computer. As an illustration, the time evolution of von Neumann
and degree-2 Rényi entanglement entropies are computed. The
results from the hardware experiments agree not only with those
from noiseless simulations but with exactly obtained values, which
implies the algorithmic error and noise effects are well controlled
in the range of parameters that we chose.
An important question is whether the approach can scale to

larger demonstrations. Both our heuristic and error mitigation
schemes are derived under a simple noise model for the hardware
at hand. A sophisticated error model may be required to obtain
more accurate outputs for larger instances. Beyond that, one can
use quantum error detection codes (see, e.g., ref. 73 for the code
tailored for the Quantinuum H1 system) to generate more reliable
results at the cost of discarding a portion of the circuit runs, or
apply algorithm-level error correction74 for noisy QSP. Finally, it is
noted that there exist block-encoding schemes with asymptoti-
cally efficient scaling10,27,31–33. Their required quantum resources
are, however, still beyond the capability of currently available
quantum devices. The techniques employed in this article to

Fig. 4 Experimental results. a The von Neumann entanglement entropy and b the degree-2 Rényi entanglement entropy of the five-qubit
experiment on the H1-1 quantum computer. c The von Neumann entanglement entropy and d the degree-2 Rényi entanglement entropy of
the seven-qubit experiment. Error bars represent one standard deviation due to sampling error.
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compress block-encoding circuits are potentially useful to perform
larger-scale QSP realizations.
While further theoretical improvements are still required to

scale up the protocol, the present study has taken the first step in
the experimental realization of QSP-based algorithms and
applications.

METHODS
Compressed block-encoding by variational optimization
Here we elaborate on the block-encoding techniques used in this
work. The goal is to optimize a parameterized quantum circuit,
WðθÞ, to minimize the block-encoding error,

ϵBE ¼ k ~WðθÞ � ~HkF;
~WðθÞ ¼ ð 0ah j � I�nÞWðθÞð 0aj i � I�nÞ; (28)

with θ referring to the collection of all the parameters in the
circuit. This is equivalent to minimizing the cost function,

FðθÞ ¼ Trð ~Wy ~WÞ � 2ReTrð~H ~WÞ; (29)

where we used that ~H is a Hermitian operator. Provided that the
Hamiltonian is expanded as ~H ¼PℓcℓPℓ with n-qubit Pauli
operators {Pℓ}, the error ϵBE is obtained from F(θ) by

ðϵBEÞ2 ¼ FðθÞ � Trð~H2Þ ¼ FðθÞ � 2n
X
ℓ

c2ℓ: (30)

We consider a particular structure for the parameterized
quantum circuit which satisfies the reflection condition
WðθÞ2 ¼ I�n. This condition is not crucial to the construction of

QSP. However, we empirically found that the constraint makes
optimization of block encoding easier. One ansatz satisfying the
reflection condition is shown in Fig. 5 and given by

WðθÞ ¼ VðθÞCZ VðθÞy; (31)

where V(θ) is a unitary operator specified by the right circuit of
Fig. 5, and CZ stands for the sequential application of controlled-Z
gates that is shown in the middle of the upper circuit.
The parameterized quantum circuit WðθÞ shown in Fig. 5 is

composed of the following gates:

RXðθÞ ¼ expð�iθX=2Þ;
RZðθÞ ¼ expð�iθZ=2Þ;
RZZðθÞ ¼ expð�iθZ � Z=2Þ;

(32)

where each gate has an independent variational parameter θ.
Importantly, these gates are part of the native gate set of the
Quantinuum H1-1 quantum computer.
In the present work, the optimization of the block-encoding

circuit is performed by minimizing the cost function given in
Eq. (29) using a classical state-vector simulation and the quasi-
Newton BFGS method75. The optimization is stopped when the
gradient norm of the cost function falls below the threshold
value 1 × 10−5. The accuracies of the optimized block encoding
circuits for the 3-site and 4-site Ising spin Hamiltonian are
shown in Fig. 6. In the experiment of the 3-site Ising spin chain,
we use the circuit with a= 2 and L= 3, which requires
(a+ n− 1)(2L+ 1)= 28RZZ gates. The optimized circuit has
block-encoding error ϵBE = 1.8 × 10−2.
We briefly discuss a classical method based on tensor network

techniques. By expressing the cost function [Eq. (29)] as a tensor

Fig. 5 Quantum circuit diagrams for compressed block-encoding by variational optimization. (Left) An example of (a+ n)-qubit
parameterized quantum circuitWðθÞ satisfying the qubitization condition. (Right) An example of sub-circuit V(θ). The circuit inside the dashed
box is repeated L times with new variational parameters added for each layer. The single- and two-qubit gates used in the circuit are
RðθÞ ¼ expð�iθð3ÞX=2Þ expð�iθð2ÞZ=2Þ expð�iθð1ÞX=2Þ and RZZðθÞ ¼ expð�iθZ � Z=2Þ. In our five-qubit experiment, we use the bottom n(= 3)
qubits as the system register and the top a(= 2) qubits as the ancillary register.

Table 1. Summary of the main sources of error in our QSP protocol and how they can be improved upon.

Step Description of the error Possible improvements

Preprocessing The spectrum of the Hamiltonian is rescaled using crude upper
and lower bounds. This leads to a longer effective evolution
time ~t in Eq. (9).

Tighter bounds on the spectrum, e.g., using the methods
in refs. 39–43.

Compressed block-
encoding

Imperfect block-encoding if variational optimization of circuit
parameters is used. This leads to an error ϵBE in Eq. (12).

A more expressive circuit ansatz and a higher
performance classical optimizer/compiler, e.g., using the
methods in ref. 24.

Operator-function
design

The real-time evolution operator is approximated by a
polynomial of fixed degree. This leads to an error ϵpoly in Eq. (12).

A higher degree of the polynomial, e.g, using methods in
refs. 79–81.

Processing Each two-qubit gate fails with some probability pTQ. This leads to
a reduced fidelity in Eq. (15).

Quantum error detection, e.g., using the method in ref.
73.

Note, improving upon some errors affects the other errors in non-trivial ways.
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network contraction and using a classical optimizer to find the
parameters θ, a block-encoding circuit WðθÞ which minimizes ϵBE
can be found. The terms in the cost function Eq. (29), Trð ~Wy ~WÞ
and Trð~H ~WÞ, can be evaluated using tensor network contractions
as illustrated in Fig. 7.
The cost function in Eq. (29) can be variationally optimized

using a classical optimizer, for instance, we can employ a gradient-
based method as follows. At each iteration i, we require the

gradient vector GðiÞ of the objective function F(θ) at θ= θ(i):

GðiÞ
k ¼ ∂F

∂θk
¼ 2Re Tr ~Wy ∂ ~W

∂θk

� �
 �
� 2Re Tr ~H

∂ ~W
∂θk

� �
 �
: (33)

The partial derivatives in each gradient are straightforward to
compute via the first of the variational gates given in Eq. (32).

Fig. 7 Tensor network contractions for the evaluation of the cost function. a Contraction of Trð ~Wy ~WÞ for ~W of Fig. 5a. b Contraction of

Trð ~Wy~HÞ for ~W of Fig. 5a and ~H represented by a matrix product operator. Note that the terms in the gradient (34) and Hessian (35) can be
evaluated using similar tensor network contractions.

Fig. 6 Error ϵBE of the block encoding circuit as a function of the number of layers L and for each number of ancillary qubits a.We use the
Ising spin Hamiltonian with hi/J=− 1.05 for all i and m/J= 0.5. The system size n is three in a and four in b.
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We then iterate

θðiþ1Þ ¼ θðiÞ � γ GðiÞ; (34)

with some learning parameter γ > 0 to update the parameters. The
iteration is repeated until the norm of the vector of gradients falls
below a predefined convergence threshold.
One could improve the convergence rate by additionally

computing the Hessian matrix HðiÞ at the cost of more evaluations
of operator expectation values:

HðiÞ
j;k ¼

∂2F
∂θj∂θk

¼ 2Re Tr ~Wy ∂2 ~W
∂θj∂θk

� �
 �
þ 2Tr

∂ ~Wy

∂θj

∂ ~W
∂θk

 !
� 2Re Tr ~H

∂2 ~W
∂θj∂θk

� �
 �
:

(35)

Then, the parameter update in Eq. (34) is replaced with,

θðiþ1Þ ¼ θðiÞ � HðiÞ
	 
�1

GðiÞ: (36)

For the computation of the inverse of the Hessian matrix, we use
the fact that this matrix is Hermitian and since our goal is to
minimize the objective function in Eq. (29), we are only interested
in its positive eigenvalues.
Therefore we compute the pseudo-inverse via the eigende-

composition of the Hessian matrix and set all eigenvalues μk
smaller than some small cutoff ϵ to zero, e.g., ϵ= 1 × 10−5. More
specifically, the pseudo-inverse is computed by replacing μk by
1/μk in the diagonal matrix of the eigendecomposition using only
the positive eigenvalues μk ≥ ϵ (all other eigenvalues are set
to zero).

Compressed block-encoding by multiplexor compilation
As an alternative approach to compressing a block-encoding
circuit, we employ the linear-combination-of-unitaries (LCU)
method34 with the help of an efficient compilation of multi-
controlled unitary gates (multiplexors). LCU provides a way to
block encode ~H when it is expressed as a weighted sum of unitary
operators, fPℓgKℓ¼1, ~H ¼Pℓ cℓPℓ . The LCU consists of two unitary
operators:

1. an operator A acting on the ancillary register with a ¼ dlog2Ke
such that A 0aj i ¼ 1ffiffi

c
p
P

ℓ

ffiffiffiffiffi
cℓ

p
ℓj i with c= ∑ℓcℓ; and

2. a controlled operator B ¼Pℓ signðcℓÞ ℓj i ℓh j � Pℓ with the
sign function, sign(c)=+ 1(− 1) for c ≥ 0(c < 0).

With these,

W ¼ AyBA (37)

gives an exact block encoding of ~H, i.e., ϵBE= 0.
The bottleneck of this construction is the implementation of B,

which contains a sequential application of multi-controlled-Pℓ
gates. We make use of the compilation technique of multiplexor,
which is developed in49 based on76,77, to reduce the gate

complexity without introducing extra ancillary qubits. In the
block-encoding of ~H, we use A= Had⊗3 with the Hadamard gate,
Had, and apply the multiplexor compilation to B shown in the
right panel of Fig. 8. This results in 44 RZZ gates for the block-
encoding circuit W . Indeed, the number of RZZ gates is
significantly reduced relative to the circuit obtained without the
compilation, which uses 125 RZZ gates.

Heuristic estimation of the optimal degree
One key aspect of this work is the estimation of the optimal
degree for the QSP polynomial given a certain noise rate. Our
heuristic uses the upper bound ϵtotal on the infidelity between the
noisy and target states under a simplified noise model. Here we
discuss the noise model and provide further numerical results.
For our numerical study, we replace all the two-qubit gates,

RZZðθÞ ¼ expð�iθZ � Z=2Þ for θ 2 R, by two-qubit depolarizing
channels:

RZZðθÞσRZZðθÞy 7!ð1� p2ÞRZZðθÞσRZZðθÞy þ
p2
15

X
P2fI;X;Y;Zg�2nfI�2g

PσP;

(38)

where σ is some quantum state and we use the error parameter
p2= 2.416 × 10−3. This value is the two-qubit fault probability
reported in the System Model H1 Emulator Product Data Sheet70.
In particular, in the System Model H1-1 Emulator, the probability
p2 is chosen such that the faulty RZZ(π/2) modelled by the
following two-qubit depolarizing channel D(2) combined with the
other noise channels emulates the noise of Quantinuum H1-1
quantum computer:

Dð2Þ½σ� ¼ ð1� p2ÞRZZðπ=2ÞσRZZðπ=2Þy þ p2
15

P
P2fI;X;Y;Zg�2nfI�2g

PσP

¼ 1� 16p2
15

� �
σ þ 16p2

15 Trð2Þ½σ� � I�2

4 ;

(39)

where Trð2Þ indicates the trace over the two-dimensional subspace
which the channel D(2) acts on. We remark that, in the H1-1
Emulator, the faulty RZZ(θ) is modelled by the channel D(2) with θ-
dependent fault probability p2(θ) (see ref. 70 for more details). In
the present work, we simplify the noise model by using
p2= 2.416 × 10−3 for all the two-qubit gates, RZZ(θ), independent
of the angle θ as given by Eq. (38). To clarify the relation between
this parameter and the error parameter pTQ used throughout our
protocol (see Fig. 1), we note that the same channel D(2) is
expressed as

Dð2Þ½σ� ¼ 1� pTQ
� �

σ þ pTQTr
ð2Þ½σ� � I�2

4
: (40)

Therefore, the new error parameter is identified with pTQ= (16/15)
p2= (16/15)2.416 × 10−3= 2.577 × 10−3. This is the error para-
meter used in our infidelity bound.

Fig. 8 Quantum circuit diagrams for compressed block-encoding by multiplexor compilation. (Left) Structure of the LCU-based block
encodingW given by Eq. (37). The top three and bottom four qubits represent the ancillary and system registers, respectively. (Right) The sub-
circuit B used for block-encoding the n= 4 Ising spin Hamiltonian with h1/J= 1 and hi/J=m/J= 0 for i ≠ 1, before the multiplexor compilation
is applied.
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To strengthen our argument, we verify the infidelity bound
using exact density matrix emulations of noisy quantum circuits.
We let the density matrix numerically obtained by the QSP
protocol with the noise channel (38) be ηsim. Figure 9a shows the
infidelity bound, while Fig. 9b shows the exact infidelity. It is seen
that the locations of minima in Fig. 9a, b are close to each other
for each evolution time Jt. This observation supports that the
degree d minimizing ϵtotal is likely to lead to the smallest possible
error on noisy hardware. We emphasize that our heuristic does not
require the use of a quantum computer beforehand. The optimal
degree is found numerically using classical computation.

Processing with depolarizing error mitigation
In our hardware experiment we employed state tomography to
compute the entanglement entropies. To this end, we estimated
the expectation value of a Pauli operator P on the system register by

hPimitig
η

hIimitig
η

: (41)

This is understood as taking the expectation of P with the
normalized post-selected state. Given an initial quantum state ψ0j i
on the system register, we wish to approximate the time-evolved
state e�iHt ψ0j i ψ0h jeiHt by applying the QSP unitary

σ ¼ UQSPð 0aj i 0ah j � ψ0j i ψ0h jÞUy
QSP; (42)

followed by the post-selection. We simulate the protocol on the
quantum hardware. Let η be the experimentally obtained state on
the system and ancillary registers before any measurements, and
let ~η be the state that is post-selected on the ancillary state 0aj i
and normalized,

~η ¼ ð 0ah j � I�nÞηð 0aj i � I�nÞ
Tr½ð 0aj i 0ah j � I�nÞη� : (43)

Then, the expectation value of a Pauli operator P with respect to ~η is

hPi~η ¼
Tr½ð 0aj i 0ah j � PÞη�
Tr½ð 0aj i 0ah j � IÞη� ¼

hPiη
hIiη

; (44)

This can be estimated with nshots circuit executions with the
variance

Var~η;P ¼ hPi2~η
Varη;P

hPi2η
þ Varη;I

hIi2η

 !
; (45)

where the variances inside the parenthesis are given by

Varη;P ¼ ðhIiη � hPi2ηÞ=ðnshots � 1Þ and

Varη;I ¼ ðhIiη � hIi2ηÞ=ðnshots � 1Þ.

To mitigate noise effects, we model them by a depolarizing
channel Dp

55 applied to the entire system. Upon application of Dp,
the state σ becomes

Dp½σ� ¼ ð1� pÞσ þ p
I�nþa

2nþa ; (46)

where p ¼ 1� ð1� pTQÞNTQ with NTQ two-qubit gates of gate
infidelity pTQ. With the state Dp[σ], the expectation values of P and
I take forms,

hPiD½σ� ¼ ð1� pÞhPiσ; (47)

hIiD½σ� ¼ ð1� pÞhIiσ þ
p
2a

: (48)

Thus, inverting these equations leads to the expectation values
without the depolarizing noise, hPiσ ¼ hPiD½σ�=ð1� pÞ and
hIiσ ¼ ðhIiD½σ� � p=2aÞ=ð1� pÞ. Assuming that the dominant
source of error in the experimentally obtained state η is
depolarizing noise, we infer the noiseless expectation value as,

hPimitig
~η ¼ hPimitig

η

hIimitig
η

¼ hPiη
hIiη � p=2a

: (49)

This is Eq. (41) and is understood as mitigating the depolarizing
noise, at the cost of a larger variance,

Varmitig
~η;P ¼ hPi2~η

Varη;P

hPi2η
þ Varη;I

ðhIiη � p=2aÞ2
 !

: (50)

Note that the quantity in the denominator of the second term
evaluates to

hIiη �
p
2a

	 ð1� pÞ þ p
2a

� p
2a

¼ ð1� pTQÞNTQ ; (51)

where the approximate equality is due to the QSP algorithmic
error and other types of noise effects. This implies that the
variance, and hence the required number of samples, increases
exponentially in NTQ to achieve some fixed sampling error.

DATA AVAILABILITY
The data that support the findings of this study are available at Zenodo78.

CODE AVAILABILITY
The code used to create the figures in this paper is available from the authors upon
reasonable request.

Fig. 9 Numerical verification of the indelity bound used in this work. a The upper bound of the infidelity between the target and simulated
states. b The infidelity between the target state and simulated state with the noise model in Eq. (38). The locations of minima in a and b are
close to each other for each time Jt.
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