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Entanglement-enhanced dual-comb spectroscopy
Haowei Shi 1, Zaijun Chen1, Scott E. Fraser2, Mengjie Yu1, Zheshen Zhang3 and Quntao Zhuang 1,4✉

Dual-comb interferometry harnesses the interference of two laser frequency combs to provide unprecedented capability in
spectroscopy applications. In the past decade, the state-of-the-art systems have reached a point where the signal-to-noise ratio per
unit acquisition time is fundamentally limited by shot noise from vacuum fluctuations. To address the issue, we propose an
entanglement-enhanced dual-comb spectroscopy protocol that leverages quantum resources to significantly improve the signal-
to-noise ratio performance. To analyze the performance of real systems, we develop a quantum model of dual-comb spectroscopy
that takes practical noises into consideration. Based on this model, we propose quantum combs with side-band entanglement
around each comb lines to suppress the shot noise in heterodyne detection. Our results show significant quantum advantages in
the uW to mW power range, making this technique particularly attractive for biological and chemical sensing applications.
Furthermore, the quantum comb can be engineered using nonlinear optics and promises near-term experimentation.
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INTRODUCTION
Dual-comb interferometry, a frequency-comb-based precision
measurement technique harnessing the interference of two laser
frequency combs of slightly different repetition rates in a static
device, has emerged to provide unprecedented capability in
various applications including spectroscopy1–3, hyperspectral
imaging4,5, and light detection and ranging (LiDAR)6–10. In
combination with on-chip frequency comb generators, dual-
comb technique has been demonstrated with various platforms,
including quantum cascade lasers11,12, micro-resonator-based
soliton combs13,14, electro-optic micro-rings15, and on-chip
semiconductor lasers16.
In terms of spectroscopy, dual-comb interferometry has advan-

tages of (1) rapid effective data acquisitions without mechanical
moving parts17–19; (2) broad spectral coverage over the large span
of a comb generator20–23; (3) spectral resolution reaching the comb
line spacing of sub-picometers21,24; (4) frequency scale calibrated
with the accuracy of an atomic clock25; (5) feasibility to on-chip
integration13,14, whose high repetition rates supports rapid
measurements. For linear spectroscopy, it acquires thousands of
molecular transitions simultaneously20–22, providing rich spectral
information for quantitative concentration analysis on a sam-
ple26–28. For nonlinear spectroscopy, the high peak power of the
comb sources has been utilized for coherent anti-stokes Raman
spectroscopy17 and four-wave-mixing multi-dimensional spectro-
scopy29 on bio-chemicals, with the potential to improve the
measurement speed by several orders of magnitude.
Similar to other broadband spectroscopic techniques, the

sensitivity in a dual-comb measurement is inversely proportional
to the optical bandwidth as the laser power in photo-detection is
constrained due to detector nonlinearity or sample damage2,30. In
this regard, the product of signal-to-noise ratio (SNR) per unit
acquisition time and the number of resolved spectral elements is
taken as the figure of merit for a dual-comb system2. As long-term
coherent averaging21,24,31,32 improves the sensitivity at the cost of
acquisition time20–23, these techniques hinder real-time sensing
and fail to improve the figure of merit. Indeed, one has to

suppress various noise sources to achieve a higher figure of merit,
including detector noises, laser relative intensity noise (RIN), shot
noise and others. While more device engineering efforts can
potentially suppress detector noise and RIN, the fundamental shot
noise remains. In this regard, state-of-the-art dual-comb sensing
systems have shown examples where shot noise is dominant33–35.
To go beyond the shot noise limit, quantum resources such as

squeezing and entanglement are necessary. For example, the Laser
Interferometer Gravitational-wave Observatory (LIGO)36–38 and the
Haloscope At Yale Sensitive To Axion CDM (HAYSTAC) dark matter
search39 inject squeezed light to suppress the shot noise. Photonic
radar40 and optomechanical force sensing41 adopted entanglement
with the distributed sensing paradigm42. In terms of spectroscopy,
amplitude-squeezing has been demonstrated in nonlinear spectro-
scopy43 and entangled two-mode squeezed vacuum has been
shown to benefit linear absorption spectroscopy44. However, none
of these advantages directly applies to dual-comb spectroscopy, as
its essential component of heterodyne detection presumably
precludes the use of squeezing and entanglement.
In this work, we develop a quantum description of dual-comb

spectroscopy and then propose an entanglement-enhanced
scheme that utilizes quantum combs of light to gain sensitivity
enhancement in dual-comb spectroscopy. We first provide a
complete quantum model for dual-comb spectroscopy, which
recovers the SNR results of ref. 30 in the case of classical source.
Furthermore, the quantum model allows us to design a quantum
comb composed of pair-wise entanglement around each strong
comb line to improve the SNR drastically. The quantum advantage
is robust against loss and phase misalignment. We also provide an
experimental design to engineer the quantum comb with off-the-
shelf components.

RESULTS
Overview of the protocol
Dual-comb spectroscopy employs the interference between the
signal comb (shown in red) and the local comb (shown in blue), as
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shown in Fig. 1a. The protocol’s strength stems from the selection
of signal and local combs with slightly different frequency spacings,
fr and fr+ Δfr, respectively, as illustrated in Fig. 1b. The signal comb
interrogates the sample and undergoes loss and phase shift that
can be modeled as a bosonic quantum channel, with frequency-
dependent transmissivity κ(f) and phase-shift α(f). Meanwhile, the
local comb serves as a local oscillator (LO) for the final heterodyne
measurement. After mixing the LO and return at a balanced
beamsplitter, information about the sample can be extracted from
the photocurrent difference N̂ðtÞ ¼ ĉyþðtÞĉþðtÞ � ĉy�ðtÞĉ�ðtÞ,

obtained from the photocurrent measurement on both output
ports ĉ ± ðtÞ. While we utilize quantum operator language to
describe the measurement to prepare our analyses for quantum
combs, our analyses also recover the results obtained from semi-
classical analyses for classical combs30.
In the classical protocol, both combs are classical—the quantum

state of each comb line is in a coherent state, obeying the shot-
noise-limited standard quantum limit (SQL). We propose to
engineer quantum combs to further improve the performance
of dual-comb spectroscopy. To begin with, we consider the case of
signal comb being quantum engineered. To suppress noise below
the SQL, squeezing is commonly adopted in quantum sensing
protocols. However, in the case of dual-comb acquisitions,
squeezing a single mode alone is inadequate, as heterodyne
measurement is necessary to read out quadratures across the
entire spectrum. To surpass the SQL, entanglement between
different frequency modes is required so that joint quadratures
are squeezed. Thus, we propose entangling the side-bands of the
signal comb around each local comb line, as indicated in Fig. 1b
by the dashed lines. Such an entangled comb with squeezing gain
G allows both measured quadratures in heterodyne to be
squeezed, resulting in fundamental noise a factor of 1/G below
the SQL. Furthermore, as we will detail in later part of the paper, in
general, the LO can be engineered to be similarly entangled,
which can further improve the performance, especially when the
power of the local comb is similar as or lower than that of the
signal comb. Note that quantum engineering almost preserves the
power of the comb, as the joint-squeezing power is negligible
compared to the mean field in dual-comb systems.
To analyze the performance of the proposed quantum dual-

comb spectroscopy protocol, we model the signal and all noise
involved in the protocol systematically. In this overview, the case
of bright LO is considered, where the power PLO is much larger
than the signal comb power PS, while the full analysis is presented
later. The information about the sample is derived from the
amplitude decay and phase-shift of the signal comb, eiα

ffiffiffiffiffiffiffi
κPS

p
,

which is subject to contamination from various sources of noise.
For low-loss (κ ~ 1) and low-noise scenarios, typical for room-
temperature dilute chemical gas sensing and bio-sensing with
thin sample slices at signal wavelength≲ 5 μm, the fundamental
noise stemming from fluctuation properties of the light field ~ 1/
2G for the quantum comb. In terms of estimating the
transmissivity

ffiffiffi
κ

p
, it contributes an inverse-law noise term O(1/

PS). In practice, the detector noises characterized by noise
equivalent power (NEP) and the relative intensity noise (RIN) in
laser sources also mix in, which dominate the estimation error at
the low and high comb power region respectively, as analyzed for
the classical protocol in ref. 30. In addition to the inverse-law term
due to the fundamental noise, the RIN adds a constant noise term
O(1) independent of PS, denoted as RIN-type noise, and the NEP
adds an inverse-square-law noise term Oð1=P2SÞ to the estimation,
denoted as NEP-type noise. We ignore detector dynamical range
noise, as it can be resolved by engineering the detector array30

and it has similar effects as RIN-type noise.
With all noises into consideration, we consider the realistic

performance of the quantum dual-comb spectroscopy system. For
generality, our calculation covers a wide comb power range from
10−7 to 10−1 W, the same as that in ref. 30. Indeed, in a typical
dual-comb application (power ratio γ= 1), the total comb power
should be constrained below 50 μW in the near-infrared range21

and below 30 μW in the mid-infrared region25,34 to avoid detector
nonlinearity. This is, most of the time, due to the requirement of a
high dynamic range to sample the strong center burst in the dual-
comb interferogram. A promising route of engineering a high
dynamic range detector has been able to extend to operation
power up to 2mW without clear spectral artifacts observed, as
demonstrated in ref. 45.

Fig. 1 Schematic and performance advantage of entanglement-
enhanced dual comb spectroscopy. a Conceptual schematic. The
teeth share intermodal entanglement within the signal comb (red
beam). LO local osillator, BS beamsplitter, PD photon detector.
b Schematic of the quantum comb. Each pair of signal modes
beating with the same LO comb tooth (purple line) for the same
intermediate frequency is entangled, indicated by a black dashed
line connecting a pair of purple circles. c Practical SNR involving
NEP-type and RIN-type noises, plotted versus signal power (analog
to Fig. 2 of ref. 30), normalized to unit acquisition time T= 1 s. We
assume an ideal detector with unity efficiency, and zero loss and
noise κ ≈ 1, η= 1. In c, both signal and LO are entangled with equal
gain G, which increases from 0 dB (coherent-state) to 30dB in steps
of 10 dB, plotted in color from blue to magenta. The NEP/RIN-
dictated SNR is presented by green-dot-dashed/black-dot-dashed
line, along with the shot noise (SN) limit in blue-dashed.
N= 105, λ= 1 μm, RIN=−170 dBc Hz−147 (a more accessible
RIN=−150 dBc Hz−1 enforces an earlier saturation shown by the
gray dot-dashed line), NEP= 5 × 10−13 W Hz−1/2

(NEP= 4.5 × 10−15 WHz−1/2 is actually achievable, e.g. by Thorlabs
FGA01FC-InGaAs Photodiode), PLO/PS= 5. Inset: Quantum advan-
tage in SNR (in decibel unit) versus various values of RIN for total
signal power PS= 10mW (blue) and PS= 10 μW (red) at G=20dB.
The LO-signal power ratio γ≡ PLO/PS= 5 is fixed—although this
figure shows the case of both signal and LO entangled, as we show
later, only the signal needs to be entangled under large γ.
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We plot the signal-to-noise ratio (SNR) per second versus the
total signal power under practical experimental settings in Fig. 1c.
In this μW-mW region, the performance of state-of-the-art classical
systems (blue solid) is limited by the shot noise (SN) limit (blue
dashed). While at low/high signal power limit, the SNR converges
to the NEP/RIN-dictated limit (green dot-dashed/black dot-
dashed). With the quantum comb, we see that a practical
entangled source of 10 dB gain (G= 10, purple solid) yields a
quantum advantage up to 4.9 dB over the coherent-state source
(blue solid). As the gain increases (from blue to magenta), the
quantum advantage improves further until it saturates subject to
the limits dictated by NEP-type noise alone (greed dot-dashed)
and the RIN-type noise alone (black dot-dashed). In the scenario of
Fig. 1c, we observe that the ultimate limit of quantum advantage
can go up to 13.4 dB at PS ≈ 0.1 mW, which is of great interest to
bio-sensing applications. Additionally, we provide predictions at
the power levels when such saturation happens (dots on the blue-
magenta curves), as we detail in the “Methods” section. Our
analyses show that for a state-of-art dual-comb system to enjoy
quantum advantage, RIN-type noise is often the major constraint:
in the inset of Fig. 1, we show that for 10 mW signal power, to
enjoy a significant quantum advantage it requires RIN-type noise
to be smaller than ~−170 dBc Hz−1, challenging but still possi-
ble46; For lower power of 10 μW, the requirement is less stringent,
RIN=−150 dBc Hz−1 is readily achievable30,47.

General amplitude and phase detection
In a general spectroscopy sensing process, one is interested in the
input–output relation of light for a range of frequencies f. The
pattern of the output light reveals information about the
composition of the sample under study. The mathematical model
for the input–output relation involves a thermal-loss phase-shift
channel, which has frequency-dependent transmissivity κ(f) and
phase-shift α(f). Given an input light mode described by the
annihilation operator âS satisfying the canonical commutation
relation ½âyS; âS� ¼ 1, the output field annihilation operator is given
by the linear relation

âR ¼
ffiffiffi
κ

p
eiαâS þ

ffiffiffiffiffiffiffiffiffiffiffi
1� κ

p
âE: (1)

The channel attenuates the mean of input signal mode âS byffiffiffi
κ

p
, shift the phase by α, and mixes in the environment mode âE

with mean thermal photon number given by the Bose–Einstein
distribution Eðf Þ ¼ 1=½exp hf=kBTBð Þ � 1�. Here h is the reduced
Planck constant, kB is the Boltzmann constant and TB is the sample
environment temperature. Although the thermal noise Eðf Þ�1 is
negligible at the frequency of interest, we will keep it in our
analyses to tackle the general case.
Although our results work for the simultaneous estimation of

phase-shift and transmissivity, as enabled by dual-comb techni-
que, we consider two special scenarios to simplify the SNR
analyses. In the first scenario, we are concerned with only the
transmissivity κ(f), while the phase-shift is negligible due to phase
cancellation via sending both combs to the sample. In the second
scenario, the absorption is almost zero (κ(f)≃ 1), while the phase-
shift α(f) (despite also being small) provides the major information.
For example, imaging the subtle changes in phase contrast on the
order of 0.1 milli-radians allows the study of neural activities at the
single neuron level48,49. Overall, the absorption or phase-shift can
be very weak due to the low concentration of the sample, as is the
case in atmospheric sensing and human breath analysis28 at parts
per billion and in radiocarbon detection at few parts per
quadrillion50.
In our analyses, we will ignore phase noise, since various dual-

comb noise suppression techniques have been developed, based
on comb-source engineering51–53, digital phase correction22,31,45,
and active stabilization21, with some of them achieving coherent
times up to hours21,22,45.

Quantum model of dual-comb spectroscopy
Now we formulate the quantum theory for dual-comb spectro-
scopy of N frequency components. In the rotating frame of the
carrier frequency ν0 (ν0≫ fr), the signal comb is represented by the
field operator

ÂðtÞ ¼ 1ffiffiffi
T

p âðtÞ þ
XN
n¼1

Ane
i2πnðf rþΔf rÞt

" #
; (2)

while the local oscillator (LO) comb is represented by

B̂ðtÞ ¼ 1ffiffiffi
T

p b̂ðtÞ þ
XN
n¼1

Bne
i2πnf rt

" #
: (3)

Here T is the acquisition time, and should be long enough to
resolve the frequency of interest. The sum in each comb consists
of the strong mean fields of a frequency comb source at discrete
frequencies. The light power is mainly contributed by these mean
fields. Specifically, the power is PS ¼ hν0

PN
n¼1 jAnj2=T for the

signal, and PLO ¼ hν0
PN

n¼1 jBnj2=T for the LO, while the additional
power due to squeezing is negligible in this paper. The quantum-
operator term in each comb describes the noise

ẑðtÞ ¼ PN
n¼1

PN
δ¼�N

ẑn;δei2π½nf rþδΔf r�t (4)

where ẑ 2 fâ; b̂g, and we have quantized the frequency modes of
the field into the field annihilation operators, satisfying the

commutation relation ½ân;δ; âyn;δ� ¼ ½b̂n;δ; b̂yn;δ� ¼ 1 and all the other
commutators are zero. As indicated in Fig. 2, the double subscripts
n∈ [1, N] and δ∈ [−N, N] determines the frequency of the mode
nfr+ δΔfr, with n denoting which comb line the mode is around
and δ further specifying which mode around the comb line
specified by n. As Δfr≪ fr, the sideband modes around different
comb lines will not overlap. Here we have included all frequency
modes relevant to the heterodyne measurement. In a classical
strategy, the noise property of all modes is vacuum-limited, but in
this work, we propose to engineer the noise property via
squeezing and entanglement.
Field propagation through the sample can be formulated by a

bosonic quantum channel, as shown in Eq. (1). We are interested
in the transmissivity κ(f) and phase α(f) induced by the sample.
Note that the non-ideal LO storage also induces a channel of
transmissivity η(f) and phase-shift β(f). We assume that the
transmissivity and phase-shift spectra are smooth enough such
that their values at sidebands of each comb line are identical. For
example, κ(nfr+ δΔfr)= κn for all sideband frequencies−N ≤ δ ≤ N.
We define αn and ηn, βn similarly. Our formalism can be easily
generalized to rapidly varying spectra, while the formula will turn
much lengthier. After traveling through the sample, channel
output fields Â

0ðtÞ for the sample return and B̂
0ðtÞ for the LO can

be decomposed in the same form as Eqs. (2) and (3). According to
Eq. (1), the input–output relation yields An ! ffiffiffiffiffi

κn
p

Aneiαn and Bn !ffiffiffiffiffi
ηn

p
Bneiβn for mean fields, and

â0n;δ ¼ ffiffiffiffiffi
κn

p
eiαn ân;δ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� κn

p
ên;δ;

b̂
0
n;δ ¼ ffiffiffiffiffi

ηn
p

eiβn b̂n;δ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ηn

p
f̂ n;δ;

(5)

for noise modes, where ên;δ ’s and f̂ n;δ’s are environmental noise
modes of thermal photon number En � Eðnf rÞ.
At the receiver, the two combs are combined by a balanced

beamsplitter, yielding two output combs, ĉ ± ðtÞ ¼
½Â0ðtÞ± B̂

0ðtÞ�= ffiffiffi
2

p
. Then the photon counts of the two output

combs are measured, and subtracted from each other
N̂ðtÞ ¼ ĉyþðtÞĉþðtÞ � ĉy�ðtÞĉ�ðtÞ ¼ Â

0yðtÞB̂0ðtÞ þ B̂
0yðtÞÂ0ðtÞ. Taking

into account that Δfr≪ fr, we can filter out the direct current (DC)
term and the fast-oscillating terms at ∣f∣ ≫ Δfr. The resulting
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alternative current (AC) NAC(t) is a random variable with mean

NACðtÞ ¼ 1
T

PN
n¼1

ffiffiffiffiffiffiffiffiffiffi
κnηn

p
eiðαn�βnÞAnBnei2πnΔf rt þ c:c:

� �
; (6)

where c. c. represents the complex conjugate. One can perform a
finite-time-T Fourier transform to obtain the discrete spectrum
mean

NACðmΔf rÞ ¼ ffiffiffiffiffiffiffiffiffiffiffi
κmηm

p
AmBme

iðαm�βmÞ; 1 � m � N; (7)

from which we can extract information about the transmissivities
and phase shifts across the entire N-line spectrum.
To evaluate the fluctuation of the readout, now we consider the

contribution to NAC(mΔfr) from noise modes â; b̂. As the
amplitudes An, Bn≫ 1, the noise in NAC(mΔfr) is

Σ̂ACðmΔf rÞ ’
PN
n¼1

ffiffiffiffiffiffiffiffiffiffi
ηnκn

p
BnX̂n;m þ ffiffiffiffiffiffiffiffiffiffi

ηnκn
p

AnQ̂n;m
�

þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηnð1� κnÞ

p
BnX̂

ðeÞ
n;m þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� ηnÞκn

p
AnQ̂

ðf Þ
n;m

i
:

(8)

For the full derivation of Eqs. (7) and (8), see the “Methods”
section. Here we have adopted the nomenclature widely used in
quantum optics54,55 that defines the joint quadrature operators

X̂n;m � ân;meiðαn�βnÞ þ âyn;�me
�iðαn�βnÞ;

Q̂n;m � b̂n;nþme�iðαn�βnÞ þ b̂
y
n;n�me

iðαn�βnÞ;
(9)

for the signal (ân;m; ân;�m beat with the strong mean field Bn at
frequency nfr) and for the LO (b̂n;nþm; b̂n;n�m beat with An at
frequency n(fr+ Δfr)) respectively. Simiarly, we define the quad-
ratures X̂

ðeÞ
; Q̂

ðf Þ
for the environment modes ê and f̂ in Eq. (5).

Note that these quadratures, along with Σ̂AC, are usually not
Hermitian (real-valued) observables, thus their variances are
var X̂ � hX̂yX̂i for any non-Hermitian complex operator X̂ .
Dual-comb spectroscopy aims to estimate the transmissivity κn,

phase-shift αn or both simultaneously, for all 1 ≤ n ≤ N frequencies
of the sample from the photo-current of Eq. (7). We define the

amplitude SNR at each comb line as

SNR ¼ jNACðmΔf rÞj=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var NACðmΔf rÞ½ �

p
: (10)

The noise, which is defined in Eq. (8), collects the beating
modes near all N comb lines. As shown in Methods, it is a good
indicator for the minimum mean square error of either the
transmissivity or the phase-shift estimation task. Furthermore, a
neat figure of merit is the overall quality factor N SNR, which
eliminates the dependence on total line number N.
To evaluate the SNR, we make use of the independence

between modes around different comb lines and evaluate the
variance from Eq. (8),

var Σ̂ACðmΔf rÞ
� � ¼ XN

n¼1

N n þ ηnκn B2nvarX̂n;m þ A2
nvarQ̂n;m

� �� �
;

(11)

where the thermal noise N n ¼ ηnB
2
nð1� κnÞð2En þ 1Þ þ κnA2

nð1�
ηnÞð2En þ 1Þ is determined by the sample, the LO storage and the
environment temperature; the complex quadrature noises varX̂n;m
and varQ̂n;m are determined by the quantum state of the signal
comb source and local comb source.

SNR with entangled quantum comb
From the definition of quadratures in Eq. (9), we see that the
noise varX̂n;m can be suppressed by entangling the modes ân;±m
in a two-mode squeezed vacuum state (see the “Methods”
section), as indicated in Fig. 2. By such means, the joint
quadrature X̂n;m is squeezed with suppressed variance (see the
“Methods” section)

varX̂n;m ¼ 1
2G

� G2 � 1
� �

cos 2αn � 2βnð Þ þ ðG2 þ 1Þ� �
; (12)

where squeezing gain G ≥ 1. When phases are perfectly matched
as αn � βn ¼ 0; varX̂n;m is minimized to 1/G. Similarly, we can
squeeze the joint quadrature Q̂n;m of the local comb by gain GLO.
When G= GLO= 1, the variance reduces to the classical dual-comb
spectroscopy. In this case, the variance of complex operator
varX̂n;m is twice of the SQL 1/2, because it is defined as a sum of
variances of its real and imaginary parts.

Fig. 2 The frequency arrangement of the comb modes. A red peak Bn in LO beats with the side band modes in the signal (connected by red
dashed lines), whose quadrature fluctuation contributes to the overall noise. Therefore, we entangle the side bands (connected by red dashed
lines) of the signal to improve the SNR. Similarly, a blue peak An in signal beats with the sideband mode pairs in LO connected by blue dashed
lines, which are to be entangled to improve the SNR. Around each peak, there are N such pairs. Here we explicitly label the pairs at the edges.
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To model the full SNR of the dual-comb spectroscopy system,
we involve device and source imperfections. For simplicity, we
assume the N comb lines are generated symmetric (An ¼ An0 and
Bn ¼ Bn0 ). In Methods, we derive the full formula of the SNR at
intermediate frequency mΔfr

SNR�2 ¼ N2

T aNEP 1
P2S
þ aquad

PS
þ aRIN

	 

; (13)

where T is the acquisition time, PS is the total signal power, the
NEP-type noise coefficient aNEP ≡NEP2/ηmκmγ, the RIN-type noise
coefficient aRIN≡ RIN/2, and the quadrature noise coefficient

aquad � hν0
N

XN
n¼1

varX̂n;m þ 1
γ
varQ̂n;m

� �
þ N n

κnηn

� �
: (14)

Here γ≡ PLO/PS is the LO-to-signal power ratio, hν0 is the energy
per photon. Note the quadrature noises can be suppressed by the
entanglement (joint quadrature squeezing) in Eq. (12). The
proposed SNR quantifies the performance of both the transmis-
sivity estimation and phase estimation scenarios.
The SNR of Eq. (13) versus total signal power PS has been

evaluated in Fig. 1c for the case of G= GLO > 1, which highlights
the quantum advantages of entanglement. We have taken the
case where the phase mismatch αn− βn≪ 1/G are all small. This is
the case when one estimates the transmissivity with good phase
locking, or estimates small phase-shift caused by weak samples—
phase-shift as small as 0.1 milli-radians allows the study of neural
activities at the single neuron level48,49. When there is phase noise,
then αn−βn cannot be set to zero. Suppose there is a mismatch
ϵ≪ 1, then the leading order of the variance in Eq. (12) varX̂n;m ¼
1=Gþ 2ϵ2G will mix in the anti-squeezing part. Therefore, phase-
locking is crucial for the proposed EA dual-comb spectroscopy,
similar to other squeezing-enabled protocols.
Our formula can be regarded as a quantum version of Eq. (2) of

ref. 30. We note that our quantum model yields an SNR-γ relation
different from the semiclassical model in ref. 30. Specifically, for a
fixed signal comb power PS, we find that the optimum is at γ→∞
in our quantum model, while the optimum is finite in the
semiclassical model. This is because when γ is large, the RIN-type
noise increases proportional to γ in the semiclassical model, while
the RIN-type noise remains constant in our quantum model. Our
result on the RIN-type noise agrees with ref. 56.

Strategies for applying quantum combs
In the above analyses, we have allowed both the signal comb and
local comb to be quantum-engineered. In general, having
quantum entangled combs in both arms might be not necessary
and experimentally challenging. Here we address different
scenarios of applying the quantum combs.
From Eq. (11), we see that the noises from signal and LO are

indeed amplified by the mean field of the other, i.e. the signal
noise is amplified by the LO mean and vice versa. Hence,
squeezing merely the signal is sufficient to yield a significant
advantage when PLO dominates, while squeezing merely the LO is
sufficient when PS dominates.
Now we evaluate the quantum advantages of various

entanglement (or joint squeezing) strategies over the classical
coherent-state source in terms of amplitude SNR. In Fig. 3, row
1 shows the ideal advantage without practical noises (note that
the ideal advantage depends on the relative power ratio γ= PLO/
PS between the signal and LO only, not the absolute magnitudes
of power). Rows 2 and 3, operating under signal power
PS= 10mW and PS= 10 μW, respectively, show the practical
advantage with NEP-type and RIN-type noise involved. Along
the horizontal axis, all contours are centered at the signal power
PLO= PS, thus at the left half the signal dominates while at the
right half, the LO dominates.

In row 1, we verify our results of fundamental limits for the ideal
advantages. In Fig. 3a, only the signal is squeezed, we see that the
advantage peaks at the LO-dictated region (right half); in Fig. 3b,
only the LO is squeezed, the advantage now peaks at the signal-
dictated region (left half); finally, in Fig. 3c, both the signal and LO
are squeezed, here we enjoy both the advantageous areas in the
two squeezing strategies above. It is noteworthy that when LO is
squeezed, the quantum advantage survives even when κ→ 0 as
shown at the bottom-left corners of subplots Fig. 3b and c, which
is useful when the sample is lossy and LO power is limited.
In rows 2 and 3, we consider the effect of practical noises. In

Fig. 3d–f, the signal power PS= 10mW is relatively large. In this
scenario, the advantage is mainly constrained by the RIN-type
noise which is more significant for large PLO. We find that the
advantages at the LO-dictated region (right half) of all subplots
Fig. 3d–f are significantly undermined, which is especially notice-
able in subplot Fig. 3d. On the other hand, in Fig. 3g–i, the signal
power PS= 10 μW is extremely small. In this scenario, the
advantageous region is mainly affected by the NEP-type noise
which is more significant for small PLO. As expected, the
advantages at the left half region of subplots Fig. 3g–i are
undermined, which is especially noticeable in subplot Fig. 3h
when compared with Fig. 3b. In subplot Fig. 3f or i where both the
signal and LO are squeezed, the patterns in the two squeezing
strategies shown in subplot Fig. 3d, e or g, h occur simultaneously.

Performance under total power constraints
To begin with, we consider the power dependence of the SNR on
PLO, PS. Here we explore the scenario where the LO is sent along
with the signal, thus ηm= κm= κ and the total power exposure
PS+ PLO is to be constrained. Such constraint also naturally appear
when detector nonlinearity and saturation is taken into account.
Figure 4a, b shows that the total power PS+ PLO contour and the
SNR contour are tangent at PLO= PS. This explains that in some
applications one tends to use comparable LO and signal (i.e. the
power ratio γ= 1) rather than very strong LO to save the total
power consumption.
Now consider the quantum advantage. Note that only the

fundamental noise is suppressed by the quantum engineering, we
expect to maximize these ratios σ2

quad=σ
2
NEP and σ2

quad=σ
2
RIN to see a

significant quantum advantage. In Methods, we show that NEP-type
noise σ2

NEP � 1=ðPLOPSÞ, fundamental noise σ2
quad �

ðPS þ PLOÞ=PSPLO, RIN-type noise σ2
RIN � 1. The ratio σ2

quad=σ
2
NEP is

proportional to the total power PS+ PLO, while σ2quad=σ
2
RIN is

maximized at PS→ 0 or PLO→ 0.
For the NEP-dictated scenario, i.e. the total power is small, the

quantum advantage grows with the absolute SNR as total power
increases, while it does not depend on γ= PLO/PS. In this case one
can let γ→ 0 or ∞ to make signal or LO dominate so that
squeezing on the other is no longer needed, as discussed
previously. For the RIN-dictated scenario, i.e. the total power is
large, we note that the quantum advantage decreases with the
total power and it is minimized at PS= PLO given a fixed total
power, which is opposite to the absolute SNR case. This is not a
preferred scenario for quantum advantage. Figure 4c, d verifies
that the total power contour and the quantum advantage contour
almost overlap in the region of small total power; they are again
tangent at PS= PLO in the region of large total power, while the
gradient direction of the quantum advantage contour is reversed.
Comparing subplot Fig. 4c of lossless sample κ= 1 and subplot
Fig. 4d of lossy sample κ= 0.5, we see that the quantum
advantage degrades significantly when the sample is lossy now
that both signal and LO suffer such loss, while a 1 dB advantage
still survives.
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Performance limits in biological applications
An important application of the proposed entanglement-
enhanced dual-comb spectroscopy system is in sensing fragile
bio-tissues. In bio-sensing, the power of signal light shining on the
sample is typically between 10 and 100 μW to avoid kill, bleach, or
perturb the specimen under analysis57–59. For example, ref. 43

showed an extreme case of power at ~ 10mW which causes
severe sample damage. In another extreme case of retina sensing,
the safety standard permits much lower power60. The maximum
permissible radiant power is a function of the exposure duration,
wavelength, and visual angles. In a long exposure time limit, the
maximum power can be as low as≲1 μW (see Fig. 2 of ref. 60). In
other scenarios, the power can be higher, e.g. ~10−200 μW is
adopted in some studies61,62. To gain better SNR, therefore one
cannot simply increase the power, but rather consider suppressing
the quantum-limited noise such as in our proposal.
In bio-sensing, a major limitation of the applicable frequency

region comes from water absorption. The transmissivity spectrum
of water absorption can be derived from the Lambert absorption
coefficient spectrum α(f)63–65 via κðf Þ ¼ expf�αðf ÞLg, where L is
the sample depth. For the optical domain of wavelength λ < 1 μm,
the absorption is weak: α≲ 10−4 μm−1. We take a typical sample
depth of L= 15 μm and evaluate the transmissivity in Fig. 5a
assuming the sample absorption is majorly dominated by water,

with absorption coefficients taken from refs. 63–65. We see that the
absorption is substantial starting around λ ~ 2 μm. In wavelength
below 2 μm, the thermal noise described by the Bose–Einstein
distribution Eðf Þ � 1 is negligible at room temperature. In this
≤5 μm frequency of interest, E � 10�4 and is negligible at room
temperature of 300 K. Even at 10 μm, E � 0:008 is still small. With
the absorption and noise in hand, we can evaluate the quantum
advantage in the absence of any NEP-type or RIN-type noise from
Eq. (14). To simplify the evaluation, we assume uniform absorption
across all comb lines to get a sense of the quantum advantage. In
general, the quantum advantage will be an average across a
frequency region analyzed here. In Fig. 5b, we find the advantage
indeed appreciable below about 2 μm and increases with the gain
G, while above 2 μm water absorption starts to limit the possible
advantage. Note that the quantum advantage monotonically
increases with G, we expect the contour lines to rise to higher G
when transmissivity dips. As expected, we see that the contour
lines are almost the reverse of the transmissivity spectrum in
Fig. 5a.
In real application scenarios, there will be additional loss in

experimental implementations, which will be improved as the
engineering capability advances. Therefore, in this section, we
have focused on the fundamental loss from water to provide a
performance limit.

Signal squeezed LO squeezed Both squeezed

Ideal

(d)

(a)

(g)

(e)

(h)

(b)

(f)

(c)

(i)

Practical, total signal power W

Practical, total signal power 10mW

Fig. 3 Quantum advantage in amplitude SNR over the coherent-state source versus various LO-signal power ratios γ≡ PLO/PS and sample
transmissivity κ. We consider the squeezing gain of 10 dB and uniform transmissivity. The quantum advantage is in the decibel unit. Rows:
first row, a–c: without practical noise; second row, d–f: with both NEP-type and RIN-type noises, total signal power PS= 10mW; third row, g–i:
with both NEP-type and RIN-type noises, PS= 10 μW. Columns: first column, a, d, g: signal squeezed only; second column, b, e, h: local comb
(LO) squeezed only; third column, c, f, i: both signal and LO squeezed. We assume an ideal detector with unity efficiency and ideal LO link
ηm= 1. N= 105, T= 1 s, λ= 1 μm, NEP= 5 × 10−13 WHz−1/2, RIN=− 170 dBc Hz−1.
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DISCUSSION
Before closing, we discuss the experimental generation of the
quantum comb. We believe that the integrated lithium niobate
(LN) photonic platform is well suited for the proposed scheme
thanks to its large second order and Kerr nonlinearity as well as
the capability of achieving quasi-phase matching via electrical
poling66. An illustration of the LN photonic chip is shown in
Fig. 6. Two frequency combs with slightly different comb line
spacings can be generated via pumping a continuous wave
(CW) laser into a coupled-microresonator device at normal
group velocity dispersion (GVD). Such normal GVD-based
frequency combs are reported to have a high conversion
efficiency and high comb line spacing of ~100 GHz67, which is

desirable to generate the following quantum frequency comb
state. An alternative solution is an electro-optic-modulator-
based frequency comb and pulse generator68. Among the two
combs, one is adopted as the classical signal comb, which will
further be combined with entangled sidebands to further
generate the quantum signal comb (top side of Fig. 6). The
other comb is split into two beams (bottom side of Fig. 6).
While one of the beam is stored as the local oscillator comb,
the other beam is sent to a periodically poled LN (PPLN)
waveguide to generate a comb source at the second harmonic
frequencies, which is then used to pump another PPLN
waveguide for two-mode squeezing around each of the local
comb line via spontaneous parametric down-conversion
(SPDC), during which the original local frequency comb serves
as the seed. By appropriately controlling the phase between
the two frequency combs, one can operate in the parametric
de-amplification regime to generate amplitude amplitude-
squeezed state at each comb line. The phase matching
bandwidth of the SPDC needs to be less than half of the
comb line spacing69. The sideband entangled outputs are then
combined with the classical signal frequency comb (shown in
the top side of Fig. 6) at a highly transmissive beamsplitter,
forming the quantum frequency comb source in the proposed
dual-comb configuration. As compared to the bulk optical
system, the integrated photonic platform can achieve the
stringent phase-matching bandwidth at each comb line over a
broad optical bandwidth since both the GVD and group
velocity can be tailored via engineering of the nanophotonic
waveguide dimension. In addition, the high repetition rate of
the chip-based Kerr OFC sets a higher upper bound of the
phase-matching bandwidth. The RIN of Kerr combs can be
suppressed with phase-lock-loops and external-cavity acousto-
optic or electro-optic actuators70, which can be integrated with
the thin film LN platform.
Squeezing and two-mode squeezing have been routinely

demonstrated in experiments. For example, 3 dB of squeezing
has been demonstrated with bulk optics in radio-frequency
sensing squeezing40. In the on-chip system, 1.171, 1.672, and
2.1 dB73 of squeezing have recently been demonstrated, slightly
lower than bulk optics due to extra coupling from chip to fiber.
From these results, we expect a near-term demonstration of the
proposed quantum dual-comb system to provide 3 dB of quantum
advantage, with further efforts to improve device imperfections.
The major limitation in the measured squeezing in these systems
is the loss from the source to the detection, which can be
improved with engineering. For example, with ingenious system
design and engineering, ref. 74 is able to achieve 15 dB of
squeezing in a bulk optical platform.
Note that the proposed quantum comb in this work is different

from ref. 72: there the comb lines are themselves pair-wise
entangled to serve as a resource for quantum computation; while
our proposed quantum comb has a side-band of each comb line
pair-wise entangled to benefit dual-comb spectroscopy sensing
precision.
In this work, we proposed an entanglement-enhanced dual-

comb spectroscopy protocol, where both the signal comb and
local comb can be quantum-engineered. When the local comb is
stronger than the signal comb, the protocol promises signal-to-
noise ratio advantages in detecting low-loss samples such as thin
slices of bio-tissues and molecular gas. When the local comb is
weak compared with a signal comb, quantum engineering of the
local comb provides signal-to-noise ratio advantages regardless of
the sample loss, making the quantum advantage robust against
experimental imperfections.
Dual-comb interferometry is evolving into one of the most

powerful tools for broadband laser spectroscopy, ranging, and
imaging, and our work extends its advantages beyond the
standard quantum limit. Such a potential will enable comb-
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Fig. 4 SNR and quantum advantage versus signal and LO power.
The dependence of a, b the amplitude SNR using the squeezed
source and c, d its quantum advantage over the coherent-state
source, both in decibel unit, on various power constraints PLO, PS.
Uniform transmissivity is assumed. Both signal and LO are squeezed
at the squeezing gain of 10 dB. a, c κ= 1; b, d κ= 0.5. The black
dashed lines are contours of total power PLO+ PS. We assume the
ideal detector with unity efficiency, while the LO is sent along with
the signal so that ηm= κ. N= 105, T= 1 s, λ= 1 μm,
NEP= 5 × 10−13 WHz−1/2, RIN=− 170 dBc Hz−1.

Fig. 5 Application in water-dominated tissue slice. a The absorp-
tion spectrum of pure water κ(λ) at room temperature 295 K63–65,
evaluated for path length L= 15 μm. b The fundamental limit of
quantum advantage in amplitude SNR (in decibel unit) enforced by
water absorption. The spectrum data subplot (a) is unknown to the
observer. An additive thermal Gaussian noise at room temperature is
mixed in. PLO/PS= 5.
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based spectroscopy and metrology with ultrahigh precision and
sensitivity. The boost in SNR will directly lead to orders of
magnitude improvement in measurement speeds for real-time
sensing and imaging.

METHODS
Two-mode squeezed vacuum
In this paper, we are interested in the two-mode squeezed
vacuum (TMSV) state, the continuous-variable version of the
Einstein–Podolsky–Rosen (EPR) state75. Consider two modes â1
and â2, with real and imaginary quadrature operators
q̂j � ðâj þ âyj Þ=

ffiffiffi
2

p
; p̂j � ðâj � âyj Þ=

ffiffiffi
2

p
i; j ¼ 1; 2. The entanglement

between the two modes is described by the joint squeezing on
modes âþ ¼ ðâ1 þ â2Þ=

ffiffiffi
2

p
and â� ¼ ðâ1 � â2Þ=

ffiffiffi
2

p
, such that the

variances of joint quadratures q̂þ; p̂� are suppressed to e−2r/2≡ 1/
2G. On the other hand, the variances of q̂�; p̂þ are amplified to e2r/
2≡ G/2. In this case, when r→∞ it has the ideal EPR correlation of
p̂1 ¼ p̂2; q̂1 ¼ �q̂2.
Take the phase-matched case (αn= βn) of Eq. (9) and index

ân;m ! â1 and ân;�m ! â2, the operator X̂n;m � â1 þ ây2 ¼ q̂þ þ
ip̂�: Therefore, the TMSV state enables var X̂n;m to be suppressed
to e−2r≡ 1/G. This is the keystone of the SNR improvement
proposed in this paper. For the general case, under the same
definitions

X̂n;m ¼ cosðαn � βnÞq̂þ � sinðαn � βnÞp̂þ
þ i cosðαn � βnÞp̂� þ i sinðαn � βnÞq̂�;

(15)

from Eq. (9). Then, one can obtain the variance in Eq. (12).

Derivation of the quantum noise in dual-comb spectroscopy
Here we derive the mean and noise formulas Eqs. (7) and (8) of the
random readout of the AC field N̂ACðtÞ ¼ NACðtÞ þ Σ̂ACðtÞ.
After the channel described by Eq. (5), the dual-comb channel

inputs Eqs. (2) and (3) become

Â
0ðtÞ ¼ 1ffiffi

T
p

PN
n¼1

PN
k¼�N

â0n;ke
i2πðnf rþkΔf rÞt þ PN

n¼1

ffiffiffiffiffi
κn

p
Aneiαnei2πnðf rþΔf rÞt

� �
� 1ffiffi

T
p

PN
n¼1

PN
k¼�N

Â
0
n;ke

i2πðnf rþkΔf rÞt;

B̂
0ðtÞ ¼ 1ffiffi

T
p

PN
n¼1

PN
k¼�N

b̂
0
n;ke

i2πðnf rþkΔf rÞt þ PN
n¼1

ffiffiffiffiffi
ηn

p
Bneiβnei2πnf rt

� �
� 1ffiffi

T
p

PN
n¼1

PN
k¼�N

B̂
0
n;ke

i2πðnf rþkΔf rÞt;

(16)

where we have defined the frequency components at f= nfr+
kΔfr for the returned signal and LO as

Â
0
n;k ¼ â0n;k þ δn;k

ffiffiffiffiffi
κn

p
Aneiαn ;

B̂
0
n;k ¼ b̂

0
n;k þ δ0;k

ffiffiffiffiffi
ηn

p
Bneiβn :

(17)

Here δn,k= 1 for n= k, zero otherwise and the channel output
noises â0n;k; b̂

0
n;k are defined by Eq. (5). Note that the noises are

zero-mean: hâ0n;ki ¼ hb̂0n;ki ¼ 0.
As we explained in the main text, the receiver collects the two

combs together and interferes with the signal comb and the LO
comb via a balanced beamsplitter to obtain the fields ĉ ± ðtÞ. One
then performs photodetection to obtain the difference current

N̂ðtÞ ¼ Â
0yðtÞB̂0ðtÞ þ B̂

0yðtÞÂ0ðtÞ; (18)

which consists of both the mean field and the noise. In the
difference current N̂ðtÞ, we obtain beat notes at frequencies equal
to the frequency differences between each frequency component
pair in signal and LO including cross-tooth high-frequency terms
of frequency f ~O(fr). Filtering out the DC term and high-
frequency terms of O(fr), we keep only f ~ Δfr≪ fr frequency
components

N̂ACðtÞ ¼
XN
n¼1

X
k≠k0

B̂
0y
n;kÂ

0
n;k0e

i2πðk0�kÞΔf rt þ h:c: (19)

By taking the Fourier transform (omitting the delta-function-like
envelops that describe the comb linewidth and finite integration
time), we obtain the spectrum at mΔfr for m ≥ 1,

N̂ACðmΔf rÞ ¼
XN
n¼1

XN
k¼�N

B̂
0y
n;kÂ

0
n;kþm þ B̂

0
n;kÂ

0y
n;k�m: (20)

Any negative frequency component of m ≤−1 is fully
determined by its positive frequency component as N̂ACðtÞ is real
and N̂ACðmΔf rÞ ¼ N̂

y
ACð�mΔf rÞ, so it is sufficient to measure the

m ≥ 1 positive frequency components only.

SHG PPLN WG

Local oscillator comb 

Sideband entangled 
quantum comb 

CW input

Integrated LN Dual-Comb-Based Quantum Source

frequencytime

Entangled sidebands 
generation 

PPLN WGCoupled resonators

Fig. 6 Integrated LN photonic circuits for entanglement-based dual comb source generation. Two classical comb sources with slightly
different comb line spacings are generated by pumping a CW laser into coupled microresonators at normal group velocity dispersion regimes.
The comb on the bottom side is split into two beam paths: one beam serves as the local comb oscillator while the other beam is sent to a
PPLN waveguide for second harmonic generation, after which the SHG beam is used to generate entangled sidebands around each local
comb line using a second dispersion engineered PPLN waveguide. The entangled sideband beam is then combined with the classical signal
comb, together serving as the quantum signal comb output. The darker green pulse corresponds to the frequency comb at the fundamental
frequency while the red pulse corresponds to the frequency comb as second harmonic frequency and the lighter green pulse illustrates the
sideband engineered state at the fundamental frequency. SHG, second harmonic generation; PPLN WG, periodically poled lithium niobate
waveguide; CW continuous wave.
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For the mean, after plugging in Eq. (17) we have

hN̂ACðmΔf rÞi

¼ PN
n¼1

PN
k¼�N

δ0;k
ffiffiffiffiffi
ηn

p
Bne�iβnδn;kþm

ffiffiffiffiffi
κn

p
Aneiαn

�
þ δ0;k

ffiffiffiffiffi
ηn

p
Bneiβnδn;k�m

ffiffiffiffiffi
κn

p
Ane�iαn

� (21)

¼ ffiffiffiffiffiffi
ηm

p
Bme

�iβm
ffiffiffiffiffiffi
κm

p
Ame

iαm ; (22)

where the second term of Eq. (21) vanishes since we collect only
m ≥ 1 terms. This recovers Eq. (7).
For the noise, we obtain the leading order contribution by

replacing one annihilation operator in the quadratic terms of Eq.
(20) with its mean (which contains a strong displacement) and the
other with its weak noise part, i.e.,

Σ̂ACðmΔf rÞ

’ PN
n¼1

PN
k¼�N

hB̂0yn;kiâ0n;kþm þ b̂
0y
n;khÂ

0
n;kþmi

þ hB̂0n;kiâ0yn;k�m þ b̂
0
n;khÂ

0y
n;k�mi

¼ PN
n¼1

PN
k¼�N

δ0;k
ffiffiffiffiffi
ηn

p
Bn e�iβn â0n;kþm þ eiβn â0yn;k�m

	 

þ ffiffiffiffiffi

κn
p

An δn;kþmeiαn b̂
0y
n;k þ δn;k�me�iαn b̂

0
n;k

	 

¼ PN

n¼1

ffiffiffiffiffi
ηn

p
Bn e�iβn â0n;m þ eiβn â0yn;�m

	 

þ ffiffiffiffiffi

κn
p

An eiαn b̂
0y
n;n�m þ e�iαn b̂

0
n;nþm

	 


(23)

After plugging the noise input–output relation Eq. (5) in, this
recovers Eq. (8).

Justification of the SNR definition
Here, we construct the estimator for κn, θn and show that the
estimation error is connected to our definition of SNR in Eq. (10).
Consider the real quadratures q̂ACðmΔf rÞ � ReNACðmΔf rÞ þ
Re Σ̂ACðmΔf rÞ; p̂ACðmΔf rÞ � ImNACðmΔf rÞ þ Im Σ̂ACðmΔf rÞ of the
complex heterodyne readout NAC [see Eqs. (7) and (8)]. Their
means are given by Eq. (7) as

h ^qACðmΔf rÞi ¼ ffiffiffiffiffiffiffiffiffiffiffi
ηmκm

p
BmAm cosðαm � βmÞ;

hp̂ACðmΔf rÞi ¼ ffiffiffiffiffiffiffiffiffiffiffi
ηmκm

p
BmAm sinðαm � βmÞ:

(24)

The quadrature fluctuations of Eq. (8) are sums of contributions
from N comb lines

var q̂ACðmΔf rÞ ¼ PN
n¼1

N n
2 þ ηnκn B2nvar Re X̂n;m þ A2nvar Re Q̂n;m

� �h i
;

var p̂ACðmΔf rÞ ¼ PN
n¼1

N n
2 þ ηnκn B2nvar Im X̂n;m þ A2nvar Im Q̂n;m

� �h i
:

(25)

The sum of the two noises gives Eq. (11). From Eq. (15) for the
TMSV state, we can see that Re X̂n;m; Im X̂n;m; Re Q̂n;m; Im Q̂n;m are
mutually independent when αn= βn.
We begin with the estimation of κn’s, assuming perfect phase

matching, αn= βn. In this case, two-mode squeezing has
var Re X̂n;m ¼ var Im X̂n;m ¼ 1

2 var X̂n;m; var Re Q̂n;m ¼ var Im Q̂n;m
¼ 1

2 var Q̂n;m, thus

var q̂ACðmΔf rÞ ¼ var p̂ACðmΔf rÞ ¼ 1
2
var NACðmΔf rÞ: (26)

Also, note that q̂AC and p̂AC commute, and indeed they are
mutually independent Gaussian variables [which can be verified
from Eq. (15)]. Thus, we can define the distribution of the readouts

q, p for q̂ACðmΔf rÞ; p̂ACðmΔf rÞ as Pq(q)Pp(p). Then the minimum
mean square error (MMSE) for unknown parameters κn is given by
the Cramér–Rao lower bound of Gaussian distribution:

½MMSE
ffiffiffiffiffiffi
~κm

p ��1 � R
dq ∂ log PqðqÞ

∂
ffiffiffiffi
κm

p
	 
2

PqðqÞ
� ��1

þ R
dp ∂ log PpðpÞ

∂
ffiffiffiffi
κm

p
	 
2

PpðpÞ
� ��1

¼
dNACðmΔf rÞ

d
ffiffiffiffi
κm

p



 


2
var q̂ACðmΔf rÞ þ 2 �

dvarq̂ACðmΔf rÞ
d
ffiffiffiffi
κm

p



 


2

2½var q̂ACðmΔf rÞ�2

’
dNACðmΔf rÞ

d
ffiffiffiffi
κm

p



 


2
var q̂ACðmΔf rÞ ¼

ηmB
2
mA

2
m

var q̂ACðmΔf rÞ :

(27)

In the last (approximate) equality, we have assumed that the
modulation on the readout variance is negligible, which is true
due to squeezing power much lower than the comb power. Thus,
in comparison with Eq. (10),

½MMSE
ffiffiffiffiffiffi
~κm

p
��1 ¼ 2=κm � SNR2: (28)

Now we estimate the phase mismatch θm≡ αm−βm. Note that
dNACðmΔf rÞ

dθm




 


2 ¼ 2 � κηA2B2. Similar to the transmissivity estimation

above, we assume a TMSV input state such that var q̂ACðmΔf rÞ ¼
var p̂ACðmΔf rÞ and the independence between q̂AC and p̂AC still
holds. Similarly, the Cramér–Rao lower bound gives

½MMSE θm��1 ¼ ηmκmB
2
mA

2
m

var q̂ACðmΔf rÞ (29)

Note that var q̂ACðmΔf rÞ ¼ 1
2 var NACðmΔf rÞ. Thus, in comparison

with Eq. (10),

½MMSE θm��1 ¼ 2 � SNR2: (30)

Full formula of estimation error
Here we derive Eq. (13), including the inverse-square-law, the
inverse-law, and constant noise terms with respect to source power
PS. We denote the total power of the signal or the LO as PS or PLO,
and define their ratio γ≡ PLO/PS. We can identify
TPS ¼ hν0

PN
m¼1 jAmj2; TPLO ¼ hν0

PN
m¼1 jBmj2, where hν0 is the

energy per photon. To simplify the formulas we assume symmetric
comb lines Am= A, Bm= B for any 1 ≤m ≤ N. To connect to the SNR
of Eq. (10), we normalize each noise by the power of mean field Eq.
(7), NACðmΔf rÞ2 ¼ ηmκmA

2B2 ¼ ηmκm � ðPST=Nhν0Þ � ðPLOT=Nhν0Þ.
The inverse-square-law noise comes from the detector noise. It

is modeled as a fluctuation of constant noise equivalent power
(NEP) on the photon current readout, including dark current,
Johnson noise, amplifier noise figure, etc. Note that NEP-type
noise is circular symmetric in the phase space, it affects both real
and imaginary parts of NAC. Since we defined var NAC as the sum of
the two quadrature noises, the physical NEP-type noise is 2NEP2Δf
in power. In photon number, the noise is 2ðNEP � T=Nhν0Þ2Δf .
Here the bandwidth is defined as Δf= 1/2T for single-sided NEP
spectral density. According to Eq. (10), the detector noise results in
the normalized NEP-type noise at intermediate frequency mΔfr

σ2
NEP ¼ 2

ðNEP � T=Nhν0Þ2Δf
ηmκmðPLOT=Nhν0ÞðPST=Nhν0Þ

¼ N2

T
NEP2

ηmκmγP
2
S

: (31)

Here NEP has the unit of W Hz−1/2. Now we see that the NEP-type
noise-power relation is σ2

NEP / 1
PS�PLO, which is an inverse-square-

law term � Oð 1
P2S
Þ when γ is fixed.

The inverse-law noise comes from the intrinsic quantum noise
Eq. (8). For the case where phase noise is negligible, the
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quadrature fluctuation leads to the normalized quadrature noise

σ2
quad ¼ var Σ̂AC

ηmκmB
2ðPST=Nhν0Þ

¼ N2

T
cγ
4hν0
PS

; (32)

where

cγ � var Σ̂AC
4ηmκmB

2 � N (33)

with var Σ̂AC defined in Eq. (11). For vacuum input G= 1, GLO= 1,
unit transmissivities ηn= κn= 1 and zero noise ~En ¼ 0 for any
1 ≤ n ≤ N, we have cγ ¼ 1

4 ð1þ 1
γÞ. In this case, var Σ̂AC / PS þ PLO,

we see that the fundamental noise–power relation is
σ2quad / PSþPLO

PS�PLO , which is an inverse-law term ~O(1/PS) when γ
is fixed.
The constant noise results from the relative intensity noise (RIN).

Consider the power of each comb tooth, hν0A2/T for signal and
hν0B2/T for LO. RIN is modeled as a single-sided white noise
var ðhν0A2=TÞ ¼ ð RINΔf ÞP2S; var ðhν0B2=TÞ ¼ ð RINΔf ÞP2LO on the
power of field amplitudes A, B, generated from additive amplified
spontaneous emission (ASE) from the laser or from any
subsequent optical amplification. Similar to NEP-type noise, the
bandwidth is defined as Δf= 1/2T for single-sided RIN spectral
density. RIN-type noise is also circular symmetric in the phase
space, which affects both real and imaginary parts of NAC and
yields a factor of 2 in the complex-observable variance var NAC.
Consequentially, the physical noise is

2ηmκm½ var ðAÞ � B2 þ A2 � var ðBÞ�
¼ 2ηmκm

var ðA2Þ
4PS

� PLO þ PS � var ðB
2Þ

4PLO

h i
¼ 2ηmκm

T
hν0

	 
2
� RINΔf � P2S 1

4 � γ þ γ2

4γ

	 

¼ ηmκm

T
hν0

	 
2
� RINΔf � γP2S

(34)

Here RIN is in unit 1 Hz−1, and in the first equality we have used
var ðA2Þ ¼ ð ∂

∂A A
2Þ2 var ðAÞ ¼ 4A2 var ðAÞ; var ðB2Þ ¼ 4B2 var ðBÞ,

assuming A2≫ var A and B2≫ var B. It is valid to consider
fluctuations on amplitudes A, B instead because the RIN physically
comes from the amplified spontaneous emission, which is
modeled as a Gaussian noise on the field quadratures in quantum
optics. The amplitude fluctuations result in the normalized RIN-
type noise

σ2
RIN ¼ ηmκm RINΔf � γðPST=hν0Þ2

ηmκmðPLOT=Nhν0ÞðPST=Nhν0Þ
¼ N2

T
2cγ2 RIN : (35)

Here the coefficient cγ2 � 1=4. We immediately see that the RIN-
type noise-power relation is σ2

RIN � Oð1Þ, which does not depend
on the signal or LO power.
Overall, we can write the full formula of the SNR Eq. (10) at

intermediate frequency mΔfr as SNR�2 ¼ σ2
NEP þ σ2

quad þ σ2RIN,
which gives Eq. (13) in the main text.
To recover the classical results in ref. 30, we further assume that

the frequency spectra of all parameters are almost uniform, such
that κm ≈ κ, ηm ≈ η for any 1 ≤m ≤ N. When η, κ→ 1 and classical
source are used (G= GLO= 1), our result recovers the formula of
σH [Eq. (2)] in ref. 30 mostly [H(f) is the transfer function of the
electrical field, equivalent to

ffiffiffiffiffiffiffiffiffi
κðf Þp

]. Note that in the quantum
model, the shot noise term ashot is instead formulated as the
quadrature fluctuation aquad, while the quadrature fluctuation
incidentally gives a similar result cγ ¼ 1

4 ð1þ 1
γÞ, up to an extra 1/2

factor. Also, cγ2 ¼ 1
4 � 2γ2γ is different from (1+ γ2)/2γ in Eq. (2) of

ref. 30, which is the result of our derivation of the physical RIN-type
noise Eq. (34) in the balanced detection. The independence of cγ2
and thereby of σ2

RIN in our Eq. (13) agrees with the recent results of
Eqs. (58) and (59) in ref. 56 assuming white noise spectrum.
Meanwhile, our derivation recovers the result cunbalγ2 ¼ 1þγ2

2γ in ref. 30

for the unbalanced detection case where the physical noise

is ~var(A2)+ var(B2) instead. To summarize, our result when
applied to the classical dual-comb SNR can be obtained by letting
cγ ¼ 1

4 ð1þ 1
γÞ; b ¼ 1; cγ2 ¼ 1=4 in Eq. (2) of ref. 30.

We note that our quantum model yields an SNR-gamma
relation different from the semiclassical model in ref. 30. For
example, at a fixed PS there is a finite-optimum value of γ to
maximize the SNR in the semiclassical model while the optimum is
at γ→∞ in our quantum model. This is because when γ is large,
the RIN-type noise increases with γ in the semiclassical model,
while RIN-type noise remains a constant in our derivation which
agrees with ref. 56.
Finally, we address the saturation in the SNR with respect to the

squeezing gain G, due to NEP or RIN noise. For simplicity, we
consider κm ≈ κ, ηm ≈ η for any 1 ≤m ≤ N. The saturation of SNR
begins when the squeezing gain G is large enough such that NEP-
type or RIN-type noise overwhelms the fundamental noise. By
solving σ2

NEP > σ2
quad or σ2

RIN > σ2
quad, we derive the saturation

threshold as PNEPS;sat ¼ G � NEP2=fhν0ðγ½Gð1� κÞ þ κ� þ κÞg for the
NEP-type and PRINS;sat ¼ hν0ðγðGð1� κÞ þ κÞ þ κÞ=fGγκ � RIN g for
the RIN-type. The above thresholds are indicated in Fig. 1 as the
dots on the SNR curves, showing a good agreement with
numerical results.
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