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Quantum computation of reactions on surfaces using local
embedding
Tanvi P. Gujarati 1✉, Mario Motta1✉, Triet Nguyen Friedhoff2, Julia E. Rice 1, Nam Nguyen3✉, Panagiotis Kl. Barkoutsos 4,
Richard J. Thompson 5, Tyler Smith6, Marna Kagele7, Mark Brei8, Barbara A. Jones 1 and Kristen Williams 5

Modeling electronic systems is an important application for quantum computers. In the context of materials science, an important
open problem is the computational description of chemical reactions on surfaces. In this work, we outline a workflow to model the
adsorption and reaction of molecules on surfaces using quantum computing algorithms. We develop and compare two local
embedding methods for the systematic determination of active spaces. These methods are automated and based on the physics of
molecule-surface interactions and yield systematically improvable active spaces. Furthermore, to reduce the quantum resources
required for the simulation of the selected active spaces using quantum algorithms, we introduce a technique for exact and
automated circuit simplification. This technique is applicable to a broad class of quantum circuits and critical to enable
demonstration on near-term quantum devices. We apply the proposed combination of active-space selection and circuit
simplification to the dissociation of water on a magnesium surface using classical simulators and quantum hardware. Our study
identifies reactions of molecules on surfaces, in conjunction with the proposed algorithmic workflow, as a promising research
direction in the field of quantum computing applied to materials science.
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INTRODUCTION
The accurate computational description of correlated electrons in
materials is an outstanding research challenge. Quantitative
simulations of electronic wavefunctions are essential for accurate
and predictive calculations of properties, such as the rates at
which industrially relevant or biologically and environmentally
hazardous reactions occur. However, it requires a sufficiently
accurate solution of an underlying Schrödinger equation. The
combinatorial growth of the many-electron Hilbert space, along
with the high degree of entanglement produced by electron-
electron interaction and Fermi statistics means that the computa-
tional cost of exactly solving the Schrödinger equation scales
combinatorially with system size, a formidable obstacle that has
led to the development of approximate numerical techniques.
Methods based on density functional theory (DFT) have had an
enormous impact on materials science, but become sensitive to
the underlying approximations in the presence of static electron
correlation1–4. Therefore, a topic of considerable interest is the
development of systematic numerical approaches that are
chemically realistic and fundamentally many-body.
These approaches include algorithms for quantum computers,

which have the potential to accurately and efficiently simulate
correlated electronic systems from first principles5–8. Quantum
algorithms, based on quantum resource estimates and coupled
with classical simulations9–12, are projected to deliver results that
are competitive with classical methods in both accuracy and cost
for specific classes of correlated electronic problems. Common to
these problems is the presence of static correlation from electrons
and orbitals in a spatially local region, and dynamical correlation
from the remaining degrees of freedom.

Many important applications in the electronics, aerospace,
automobile, and defense sectors feature a spatially localized region
in which electron correlation effects are expected to be more
important than in the rest of the system. An example is the corrosion
on metallic surfaces, which is initiated by the adsorption of reactants
(atoms or molecules from the environment) on a spatially local
portion of the surface. In such a situation, it is chemically justified to
treat only a portion of the system with an accurate many-body
method, and the rest of the system with a less expensive mean-field
method. This feature makes reactions on surfaces an especially
compelling target for studies on near-term quantum devices, in
conjunction with techniques to select relevant degrees of freedom
and reduce the budget of quantum simulations.
Here, we propose an algorithmic workflow to simulate reactions

on surfaces on quantum computers. The proposed workflow
comprises an embedding method specifically designed for
reactions of molecules on surfaces, and a circuit simplification
technique to facilitate experiments on near-term quantum
devices.
First, we develop and compare two methods to rank and select

active-space orbitals based on (i) their contribution to the
difference between the DFT electronic density of the system
and the superimposed DFT electronic densities of the constituent
surface and adsorbate and (ii) their effect on the ground-state
active-space energy. Second, we solve the Schrödinger equation
in the active space using the variational quantum eigensolver13.
To achieve this goal, it was necessary to evaluate the expectation
value of the active-space Hamiltonian over a quantum circuit. We
simplify and economize this operation by employing the algebraic
properties of Clifford transformations. This allows for the
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construction of an equivalent circuit with fewer qubits and gates,
and lower depth compared to the original one.
We illustrate the proposed workflow on a step in the corrosion

reaction of magnesium by water14–19. We discuss the underlying
approximations and assess their impact on the accuracy of the
computed properties. Finally, we demonstrate the proposed
workflow using IBM’s quantum hardware.

RESULTS
Chemical reaction
The corrosion of magnesium in water or aqueous environment
proceeds by an electrochemical reaction that produces magne-
sium hydroxide and hydrogen gas. While the overall corrosion
reaction is well-known,

Mgþ 2H2O Ð MgðOHÞ2 þ H2; (1)

the detailed mechanisms of hydrogen evolution reactions on a
magnesium surface are a topic of ongoing investigation14–17,20.
Williams et al.15 proposed a detailed reaction scheme connect-

ing the steps of initial water dissociation on Mg surface with the
final step of H2 evolution via a Tafel mechanism15,21 in the
presence of adsorbed OHads and Hads species using modeling
based on DFT. The suggested reaction mechanism was shown to
be a concerted reaction involving multiple water molecules. The
first reaction studied in the process was the splitting of a single
H2O molecule creating adsorbed Hads and OHads moiety,

Mgþ H2O ! MgðOHadsÞðHadsÞ: (2)

While many steps are involved in the study of the hydrogen
evolution process, as discussed in the Supplementary Information
(SI), in this work we focused on modeling the chemical reaction in
Eq. (2) using the workflow described in Fig. 1. In particular, we
computed the electronic energy difference between the reactant
and product,

ΔE ¼ Eproduct � Ereactant (3)

Equation (3) is an important quantity since it is used in the
determination of thermodynamic quantities such as the enthalpy
or the Gibbs free energy of reaction. In addition to thermo-
dynamics, it is important to characterize the kinetics of surface
reaction processes. Determining the kinetics of Eq. (2) involves
calculating the activation energy (i.e., the difference between the
transition state and reactant energy). Williams et al.15 found that
the activation energy for H2O dissociation on Mg is 1.31 eV for a
single H2O molecule and 1.06 eV for a concerted reaction
involving multiple H2O molecules. Although we did not calculate
activation energies in this study, we plan to explore transition
states in future research.

Classical preprocessing
The workflow in Fig. 1b starts with classical preprocessing. We
obtained optimized geometries of the reactants and products
using DFT with periodic boundary conditions (PBC). Schematics of
these structures are shown in Fig. 1a. In the optimized structure
for the reactant, the water molecule is adsorbed on the surface
with the oxygen atom situated 2.4 Angstrom above an atop site. In
the optimized structure for the product, the water molecule is split
such that OHads and Hads are co-adsorbed at nearest-neighbor fcc
sites.
We carried out the simplest PBC calculations at the center of the

Brillouin point (Γ point), where the Hamiltonian is time-reversal-
symmetric. However, Γ point calculations are known to converge
slowly and non-monotonically to the thermodynamic limit of
infinite system size at zero temperature. To achieve better
convergence, in this work, we used twist-averaged boundary
conditions (TABC)22 as an economical alternative to full Brillouin
zone sampling23–25. Within TABC, the expectation value of an
operator B is averaged over a mesh of Nk points ki in the Brillouin
zone, hBi ¼ 1

Nk

PNk
i¼1 BðkiÞ.

At the optimized geometries, we computed the energy
difference in Eq. (3) at the DFT level of theory (see Methods).
The DFT calculations yielded ΔE=− 1.91 eV at the Γ point. By

Fig. 1 Description of the chemical reaction and the workflow. a Reaction for splitting of water on a magnesium surface, including
schematics of the optimized structures for the reactant and product. b Summary of the different steps involved in the workflow. Each step of
the workflow is described in detail in the text.
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comparison, Williams et al.15 reported ΔE=− 1.78 eV. This
difference originates from the different optimized geometries,
basis sets, and DFT functionals used in the two studies. As a
verification, we quantified the basis set superposition error
affecting our DFT calculations using the counterpoise correction26,
which yielded ΔEcp=− 1.77 eV, in better agreement with the
value obtained by Williams et al. in a large plane-wave basis.
To quantify the finite-size error on DFT energies, we performed

TABC calculations with 2 × 2 × 1 and 4 × 4 × 1 Monkhorst-Pack27

meshes of k points, which increased ΔE by 0.093 and 0.262 eV
compared against the Γ point.

Active-space construction
For certain chemical problems, reasonably accurate results can be
achieved by correlating a limited number of electrons and orbitals
through an active-space calculation28,29. In general, an active
space of valence electrons and orbitals is most desirable, and
further reductions are acceptable when justified by chemical
grounds. In particular, all orbitals responsible for static correlation
have to be included in the active space30.
Previous work showed that, for some systems comprising small

molecular adsorbates on surfaces, electronic correlation is
primarily associated with a limited number of orbitals and
electrons31–34. These observations suggest the possibility of
constructing compact active spaces for reactions on surfaces.
Such a construction should be automated35,36 and physics-based.
Furthermore, active spaces should be systematically improvable,
to allow convergence of computed properties.
In this work, we designed and compared two active-space

construction strategies satisfying the above requirements. The
starting point of both methods was the separate localization of
occupied and virtual DFT orbitals (see Methods), and their
projection onto an active region37 comprising the molecules
participating in the reaction and a small portion of the surface.

Method 1—based on density difference (DD)
This method ranks occupied DFT orbitals according to their
contribution to the difference

ρDDðxÞ ¼ ρMgþH2O
ðxÞ � ρH2OðxÞ � ρMgðxÞ (4)

between the DFT electronic density of the full system and the sum
of the DFT electronic densities of adsorbate and slab. More
specifically, we multiplied

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρDDðxÞ

p
times the absolute value of

each localized occupied DFT orbital ∣ψi(x)∣, integrated this product
over space, and retained the five (as many as the valence
occupied orbitals of H2O) orbitals with the highest integrated
overlaps (see also Fig. 2a, b and Methods). On the one hand, this
method provides a simple and inexpensive way of ranking
occupied DFT orbitals. On the other hand, the ranking of virtual
DFT orbitals is more subtle, because they do not significantly
contribute to Eq. (4). For each retained occupied and virtual DFT
orbital, respectively ψi and ψa, we computed the CCSD (coupled-
cluster singles and doubles) energy in a (2e,2o) active space
spanned by ψi and ψa (see Fig. 2c). It is worth noting that, for two-
electron systems, CCSD is exact. We then sorted pairs (i, a)
according to the value of the (2e,2o) CCSD energy, and retained
the highest-ranking virtual orbitals. This method is efficient in
terms of the required classical resources and yields active-space
ground-state energies that decrease monotonically with increas-
ing active-space size (see Fig. 2d).

Method 2—based on density difference and natural orbitals
(DD+NO)
As seen in Fig. 2d, the energy converges slowly with active-space
size. Convergence improves considerably using natural orbi-
tals38,39. In the DD+NO method, we carried out a CCSD calculation
in the active space spanned by the five highest-ranking occupied
DFT orbitals (determined as in the DD method) and all virtual
orbitals. We then constructed natural orbitals as eigenvectors of
the CCSD one-particle density matrix, sorted them in decreasing

Fig. 2 Active-space selection methods based on the electron density difference. The top two blocks (a, b) are common to both methods.
The two blocks on the left (c, d) illustrate the steps of the first method, denoted Density Difference (DD). The two blocks on the right (e, f)
describe the steps of the second method, denoted Density Difference + Natural Orbitals (DD+NO).
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order of occupation number. For the problems studied here,
occupation numbers were either close to 2 or to 0, so we could
unambiguously divide orbitals as high- and low-occupancy (in
systems with strong correlation, there is a set of natural orbitals
with fractional occupation numbers, and it is necessary to include
them in the active space). We sorted natural orbitals in decreasing
order of occupation number and defined the highest-occupied
and lowest-unoccupied natural orbitals (HONO and LUNO
respectively) as the orbitals with indices Ne/2 and Ne/2+ 1, where
Ne is the number of electrons. We then constructed active spaces
spanning orbitals between HONO− a and LUNO+ b with a ¼
minðk;Ne=2� 1Þ and b ¼ minðk;No � Ne=2� 1Þ where k ≥ 0 is an
integer and No the total number of orbitals (see Fig. 2e).

Comparison between DD and DD+NO
In Fig. 3, we compared DD and DD+NO methods by computing
the CCSD total energies of reactant and product (left) and the
corresponding energy difference (right) as a function of active-
space size (see Methods). We considered active spaces of up to
269 orbitals (5 of which are occupied) out of the 588 orbitals in the
underlying Gaussian basis set and evaluated energies and energy
differences at the Γ point. DD+NO total energies and energy
differences converged faster than their DD counterparts. In
particular, only 15-20 natural orbitals are needed to converge
ΔE. Therefore, in the remainder of this work, we used active spaces
constructed with DD+NO. We remark that, while the DD+NO
method offers faster ground-state energy convergence, it is
considerably more expensive than the DD method, as it requires
correlated calculations, which become challenging for bases of
hundreds of orbitals. The DD and DD+NO methods are not
mutually exclusive but can be used as complementary
approaches, for example, the DD method can be used to rank

occupied orbitals and identify a subset of relevant virtual DFT
orbitals, that can then be treated with DD+NO.

Quantum algorithms in the active space
After identifying the active-space orbitals for each k point, we
froze the remaining orbitals and projected the Born-Oppenheimer
Hamiltonian onto the active space with a standard procedure37,40.
We represented the active-space Hamiltonian in second quantiza-
tion, and mapped it to a qubit operator using conventional
fermion-to-qubit mappings, namely Jordan-Wigner (JW) and parity
with two-qubit reduction (P2QR)41–43.
We performed active-space simulations using the VQE method,

wherein the ground-state wavefunction and energy, E0, are
approximated by variationally optimizing a parameterized wave-
function ansatz ψðθÞj i,
EVQE ¼ min

θ
ψðθÞh jH ψðθÞj i: (5)

The function EVQE is evaluated on a quantum computer, and the
parameters θ are optimized on a classical computer. The quality of
a VQE calculation, and particularly the difference EVQE− E0,
depends on the VQE ansatz and the convergence of the
optimization procedure. Literature40,44–48 indicates that VQE
applied to small systems can yield energies close to those of
exact diagonalization in the active space, known as complete
active space configuration interaction (CASCI).
Here, we studied the performance of the VQE algorithm using a

Trotterized implementation of Unitary CCSD (qUCCSD)45, Entan-
glement Forging (EF)49, and Qubit Coupled Cluster (QCC)50. See
Methods for more information.
We begin our analysis in Fig. 4, where we compare ΔE from

qUCCSD against CCSD and CASCI. We illustrate the impact of
going beyond the Γ point (left) via TABC over Monkhorst–Pack
grids of 2 × 2 × 1 (middle) and 4 × 4 × 1 (right) k points. qUCCSD,

Fig. 3 Comparison of active-space selection methods. CCSD total energies (a) and energy differences ΔE (b) calculated in active spaces
constructed with DD and DD+NO methods.

Fig. 4 Active-space energy differences. Energy differences ΔE with CASCI, CCSD, and qUCCSD evaluated over active spaces of 2–10 CCSD
natural orbitals constructed with the DD+NO method. ΔE is computed at the Γ point (a) and with TABC over 2 × 2 × 1 (b) and 4 × 4 × 1 (c)
Monkhorst–Pack grids. DFT energy differences are shown for reference in gray.
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CCSD, and CASCI are indistinguishable for all active-space sizes
and k point meshes. DFT energy differences are also reported for
comparison.
The qUCCSD ansatz is accurate but expensive, featuring circuits

of depth scaling as O(N4), where N is the number of active-space
orbitals51. This fact motivated the development of ansatzes that
reduce computational cost while retaining accuracy. Here, we
employed one such ansatz, QCC50,52,53, which applies exponentials
of suitably-chosen Pauli operators P1…Pm (see Methods) to the
Hartree–Fock state,

ψQCCðθÞ
�� � ¼ e�iθmPm ¼ e�iθ1P1 ψHFj i: (6)

Circuit reduction
Evaluating the QCC energy requires computing expectation values
of Pauli operators O over a state of the form Eq. (6),

ψðθÞh jO ψðθÞj i ¼ ψHFh jeiθ1P1 :::eiθmPm jOje�iθmPm :::e�iθ1P1 ψHFj i; (7)

which is challenging on near-term quantum devices due to the
high number of qubits, gates, high circuit depth, and limited qubit
connectivity. Here, we devised a circuit simplification technique
that significantly reduced the quantum resources required for
computing Eq. (7).
(i) As a preliminary step, we permuted qubits in the register so

that Pauli operators Pk act non-trivially, e.g., on the rightmost
qubits, prioritizing Pk over Pk+1. (ii) We then represented the state
e�iθ1P1 ψHFj i as C1U1ðθ1Þ 0j i, where C1 is a Clifford transformation.
We constructed C1 using a combination of standard circuit
identities, such as commuting a Hadamard gate through a CNOT

gate54–56, as discussed in the SI. (iii) We used C1 to perform a
similarity transformation on the Pauli operators P2,…, Pm, and O
without altering the expectation value in Eq. (7),

ψðθÞh jO ψðθÞj i ¼ ψHFh jeiθ1P1 ¼ eiθmPm jOje�iθmPm ¼ e�iθ1P1 ψHFj i (8)

¼ 0h jUy
1ðθ1Þeiθ2P

0
2 ¼ eiθmP

0
m jO0je�iθmP0m ¼ e�iθ2P02U1ðθ1Þ 0j i; (9)

where P0k ¼ Cy
1PkC1 and O0 ¼ Cy

1OC1 are Pauli operators that can
be determined efficiently57 on a classical computer. In Eq. (9) we
removed the Clifford transformation C1 from the quantum circuit
executed on hardware by applying similarity transformations to Pk
and O. Thanks to this removal, and the fact that the circuit U1(θ1)
has by construction shorter depth and fewer gates than V1(θ1), the
simplified circuit has shorter depth and fewer gates than the
original one. (iv) we repeated the previous two steps for each Pauli
operator in the circuit. At the end of step (iv), we determined
whether the reduced circuit acts trivially on one or more qubits,
and removed such qubits (if any) from the calculation. A detailed
workflow is shown in Fig. 5 and a complete example is shown in
the SI.
By applying this technique, the quantum resources to simulate

the QCC ansatz are significantly reduced, as exemplified in Table 1
for reactant and product at the Γ point.

Simulations on quantum hardware
In Fig. 6 we simulate VQE with QCC and EF ansatzes, using
qUCCSD as a reference due to its high accuracy, established in Fig.
4. We start by considering a (2e,2o) active space spanned by the
HONO and LUNO orbitals and n × n × 1 meshes of k points with
n= 1, 2, 4 (left panel). This active space requires 4 and 2 qubits in
JW and P2QR representations, respectively (left panel). Noiseless
classical simulations show that various ansatzes are in agreement
with each other and with qUCCSD. Hardware simulations using
QCC with 2 Pauli strings as ansatz (red triangles) are statistically
compatible with noiseless classical simulations.
We then consider a (10e,10o) active space spanned by the

HONO-4 to LUNO+4 orbitals and n × n × 1 meshes of k points with
n= 1, 2, 4 (right panel). This active space generally requires 20 and
18 qubits in JW and P2QR representations respectively (left panel).
On noiseless classical simulators, we employed QCC with 50 Pauli
strings. On quantum hardware, we implemented QCC with 2 and 5
Pauli strings. We used the circuit reduction technique outlined in
the previous section to achieve more economical simulations. In
the case of 2 and 5 Pauli strings, reduced circuits acted on 2 and 5
qubits respectively, and had depth 2. The original circuits required,
for the reactant/product systems, are (i) 15/14 qubits, 24/20 CNOT
gates, and 35/31 circuit depth for QCC with 2 Paulis and (ii) 17/16
qubits, 64/56 CNOT gates and 85/77 circuit depth for QCC with 5
Paulis. We note that hardware simulations are statistically
compatible with noiseless classical simulations using the same
quantum circuit. Furthermore, energy differences computed with
QCC depend non-trivially on the number of Pauli operators in the
ansatz: in particular, simulations using 50 Pauli operators differ

Input

an initial bit-string state
a list of  Pauli strings P1 m

a measurement operator O

Generation of  the quantum circuit                      a. 
for a given Pauli string Pk  and angle k

Clifford transformation of  the Operator
and of  the remaining Pauli strings

Clifford Decomposition

where Ck is a Clifford quantum circuit

Repeat Operation Set in the dashed box until all the Pauli strings are decomposed 

O → C†
k OCk

Pl → C†
k PlCk , l ≥ k

Vk(θk) |ψ⟩ = CkUk(θk) |ψ⟩

Vk(θk) = e−iθkPk

|ψHF⟩

Fig. 5 Circuit reduction. Flowchart of the circuit reduction
technique for circuits comprising initialization of qubits in a
computational basis state ψHF (or bitstring), a product of exponen-
tials of Pauli operators Pk (or Pauli strings), and the measurement of
a Pauli operator O.

Table 1. Number of CNOT gates and circuit depth before and after applying the circuit reduction procedure to QCC ansatzes with varying number of
Pauli strings (second column), for reactant/product in active spaces of different sizes (first column).

#Natural #Pauli #CNOTs #CNOTs Depth Depth #Qubits #Qubits

Orbitals Strings (before) (after) (before) (after) (before) (after)

2 3 2/2 1/1 18/18 6/6 2/2 2/2

4 25 130/122 39/57 256/248 60/72 6/6 6/6

6 25 180/210 62/86 306/336 70/81 10/10 9/9

8 25 340/346 74/47 466/472 73/61 14/14 11/8

10 25 482/396 72/72 608/522 55/69 18/18 13/13
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from qUCCSD by roughly 0.1-0.3 eV. At the Γ point, we
incorporated results from EF for reference. This method can tackle
(2e,2o) and (10e,10o) active spaces with 2 and 10 qubits
respectively. EF yields results in good agreement with qUCCSD
and QCC. However, it should be noted that its current
implementation is limited to Hamiltonians with time-reversal
symmetry.
Additional information about the performance of the QCC and

EF ansatzes is provided in the SI.

DISCUSSION
Here, we proposed a workflow to simulate reactions of molecules
on surfaces with quantum computing algorithms. The proposed
workflow comprises an active-space construction and a circuit
simplification to economize quantum simulations and facilitate
their demonstration on near-term quantum devices.

Active-space construction
Several methods using quantum algorithms as solvers for one or
more active regions have been recently proposed, targeting
model systems of strong electronic correlation58 and spin defects
in semiconductors and insulators59–61. An important contribution
of our study is the design of automated active-space selection
techniques specifically tailored for reactions on surfaces. In this
situation, electronic correlation arises primarily from a spatially
localized region, suggesting the possibility to construct compact
active spaces, but the clear identification of such region is non-
trivial, especially under the desideratum that the active spaces
comprise a few electrons and orbitals. We observed that occupied
localized DFT orbitals can be reliably ranked based on their
contribution to the difference between the DFT density of the
adsorbate+surface complex and the sum of the individual DFT
densities of adsorbate and surface, Eq. (4). The ranking and
selection of virtual DFT orbitals is more delicate and requires
estimating their contribution to the active-space ground-state
energy. In line with chemical knowledge62–65, we observed that
natural orbitals lead to faster convergence of active-space ground-
state energies than DFT orbitals, as they can capture anti-bonding
virtual orbitals as opposed to the Rydberg continuum66. In this
work, we used CCSD calculations to construct natural orbitals,
which are expensive for large systems. However, this issue can be
mitigated by pre-screening virtual orbitals based on the density
difference Eq. (4) and/or resorting to less expensive MBPT2 (many-
body second-order perturbation theory) calculations for dynami-
cally correlated systems.

Active-space simulations
In the solution of the Schrödinger equation for the active space,
we built upon recent work on the adaptation of quantum
algorithms to crystalline solids47,67–71 and the design of variational
ansatzes49,50 suited for near-term hardware. An important
contribution of our study is the introduction of a systematic and
automated circuit simplification method based on iterative Clifford
transformations. We tested the proposed circuit reduction
technique focusing on the QCC ansatz and observed systematic
and substantial reductions in the required number of CNOT gates
and circuit depth, which stands to benefit simulations, especially
on near-term quantum hardware. Although investigated for the
QCC ansatz, the circuit reduction technique proposed here is
general, as it applies to any situation described by Eq. (7).

Applications and perspective
Here, we demonstrated the proposed workflow using a step in the
corrosion reaction of magnesium by water as an application.
Previous studies have computed electronic and thermodynamic
parameters using DFT14–19. Our study is a step towards the
refinement of these calculations by (i) selecting a chemically
meaningful and systematically improvable active space through
an automatic, cost-effective procedure, and (ii) employing many-
body methods in combination with an exact, automated, and
general-purpose circuit reduction technique to simulate the
active space.
The workflow proposed here is a natural choice in studying the

adsorption and splitting of water onto a metal surface, which is an
example of a broader class of reactions. These reactions include
heterogeneous catalysis and atmospheric corrosion of substrates
(e.g., surfaces made of transition metals and/or containing defects)
by adsorbates (e.g., O2), and involve bond breaking/formation in
spatially localized regions, making them amenable to description
through embedding and quantum computing active-space
simulations.
Finally, the proposed workflow is valuable for both near- and

long-term quantum computers. In the near term, it enables studies
of complex chemical phenomena on noisy quantum devices by
selecting relevant degrees of freedom and reducing quantum
resource requirements. In the long term, it can support the study
of systems with strong and spatially local electronic correlation,
where traditional methods become less reliable9,11,12, using
sophisticated algorithms like quantum phase estimation. There-
fore, this workflow indicates a promising direction in the search
for advantageous applications of quantum simulation algorithms.

Fig. 6 Results from quantum algorithms and hardware experiments. Energy differences ΔE from noiseless classical simulations and
hardware experiments, for active spaces of 2 (a) and 10 (b) natural orbitals from the DD+NO method. For 10-orbital active spaces, we
employed QCC with 50 Pauli operators (purple crosses) on classical simulators and QCC with 2 and 5 Pauli operators (ΔE 2P and ΔE 5P) on
quantum hardware.
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METHODS
Geometry optimization
We performed geometry optimizations using plane-wave bases
with Quantum ESPRESSO72 (QE) v6.3. We modeled the hcp
Mg(0001) surface using a slab of 4 Mg layers with 16 atoms per
layer, having a thickness of 7.8 Angstrom and 10.5 Angstrom of
vacuum separation between periodic images. Mg atoms in the 2
bottom layers were kept fixed in their positions, and those in the 2
top layers were allowed to relax.
We performed calculations with the Perdew-Wang 91 DFT

functional73, the scalar-relativistic Vanderbilt ultra-soft pseudo-
potential74, and a 30/360 Ry cutoff for wavefunction/density
plane-wave expansion. We tested Brillouin zone convergence, for
the optimized reactant and product geometries, using meshes of
up to 8 × 8 × 1k points (see the SI). Results from 4 × 4 × 1 and
8 × 8 × 1 meshes are within 1.6 kcal/mol of each other.

DFT calculations in a Gaussian basis
At the optimized geometries described above, we performed DFT
calculations using a single-particle basis of translational-
symmetry-adapted linear combinations of Gaussian atomic
orbitals (AOs),

φk;pðrÞ ¼
X
T

eik�Tχpðr� TÞ: (10)

Here, T ¼ P3
i¼1 T iai is a lattice translation vector, k ¼ P3

i¼1 kibi is
a momentum vector in the first Brillouin zone of the lattice, and χp
is an orbital from a Gaussian basis set. The summation over T leads
to a basis of translational-symmetry-adapted orbitals23,75.
We performed DFT calculations with the PySCF package76,77. We

used the GTH-DZV basis set78, the associated Goedecker-Teter-
Hutter (GTH) pseudo-potential78, and the Perdew–Burke–Ernzerhof
(PBE) functional79.
In the basis (10), the Born–Oppenheimer Hamiltonian takes the

form80

H ¼ E0 þ
X
k

pr

σ

hprðkÞaykpσakrσ þ
X�

kpkrkqks
prqs

στ

ðkpp; krrjkqq; kssÞ
2

aykppσa
y
kqqτ

akssτakr rσ ;

(11)

where the * symbol indicates crystal momentum conservation, i.e.
kp+ kq− kr− ks=G, where G is a reciprocal lattice vector. Here,
we approximated the electron-electron interaction with density
fitting using a Weigend auxiliary basis.

Active-space selection
We localized Kohn-Sham orbitals using Pipek-Mezey method81–83

based on a Mulliken population analysis with meta-Löwdin
orbitals82,83. We conducted separate localization for occupied
and virtual orbitals, at each k point individually.
We computed the electronic density difference, Eq. (4), at DFT

level. This quantity is shown in the SI for the reactant and product.
For each localized DFT orbital ψℓ(x), we computed the overlap
function

OℓðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρDDðxÞ

p
jψℓðxÞj (12)

and the integrated overlap

O0
ℓ½η� ¼

Z
dxOℓðxÞHðOℓðxÞ � ηÞ: (13)

In Eq. (13), the parameter η is a threshold used to truncate the tails
of OℓðxÞ and H(x) is Heaviside’s step function. For small η, due to
such tails, physically irrelevant orbitals delocalized across the
metallic surface have artificially high integrated overlaps. For large
η, all orbitals (including physically relevant ones) have zero

integrated overlap. However, there is a broad region of values of η,
that we identified by a simple scan, that leads to a stable ordering
of orbitals. We then used integrated overlap O0

ℓ½η� to rank the
occupied localized DFT orbitals.

Unitary coupled-cluster
This ansatz is obtained by applying the exponential of the anti-
Hermitian operator T− T† to the Hartree–Fock state. T is a linear
combination of single and double excitations from occupied
(indexed as j, k) to virtual spin-orbitals (indexed as b, c). More
specifically,

ψUCCSDðθÞj i ¼ eT�Ty ψHFj i (14)

T ¼ T1 þ T2 (15)

T1 ¼
X
aj

ðθRaj þ iθIajÞayaaj (16)

T2 ¼
X
ajbk

ðθRajbk þ iθIajbkÞayaaybakaj; (17)

where aya/aj creates/destroys an electron at spin-orbital a/j, and
the coefficients θ ¼ fθRaj; θIaj ; θRajbk ; θIajbkg are variational para-
meters. At the Γ point, where the Hamiltonian Eq. (11) is time-
reversal-symmetric, electronic eigenfunctions are real-valued
and coefficients θI can be forced to zero. Away from the Γ point,
this is no longer true. To implement the ansatz Eq. (14) on a
gate-based quantum computer, we mapped the fermionic
operator T− T† onto a linear combination of Pauli operators.
Then, we approximated expðT � T yÞ with a Trotter–Suzuki
approximation or other product formulas, yielding the Trotter-
ized form of UCCSD, known as qUCCSD45. We implemented the
qUCCSD using Qiskit84, with appropriate modifications to
include the coefficients θI.

Qubit coupled-cluster
The QCC ansatz50,52 is defined by sequentially applying
exponentials of Pauli strings from an ordered set P1…Pm to
the Hartree-Fock state as in Eq. (6). The Pauli operators Pk are
typically50,52 ranked based on the value of the energy gradient
g(P)= ∣〈ψHF∣[H, P]∣ψHF〉∣. The number m is determined based on
the convergence of the QCC energy or the budget of the
simulator/hardware at hand. In this study, for simplicity, we
elected to choose the operators Pk based on the coefficients of
the CASCI wavefunction ψCASCIj i ¼ P

cvc ψcj i. More specifically,
we sorted the configurations ψc in decreasing order of ∣vc∣ and
retained the top m/2 configurations. For each such configura-
tion, we constructed two Pauli operators Pc, Qc such that
Pc ψHFj i ¼ ψcj i and Qc ψHFj i ¼ i ψcj i, and introduced them in the
pool of QCC Pauli operators. We implemented the QCC ansatz
using Qiskit and optimized it with the L_BFGS_B85 algorithm on
noiseless classical simulators.

Entanglement forging
This algorithm49 writes a wavefunction Ψ of a bipartite quantum
system A+ B through a Schmidt decomposition,

ΨAþBj i ¼
XR
i¼1

λiU xij i � V yij i: (18)

In Eq. (18), U and V are unitary matrices, λi are Schmidt coefficients,
and xi, yi are computational basis states (or bitstrings). The number
R is called the Schmidt rank of ΨA+B, and depends on the
entanglement across A and B. Operators like the Hamiltonian are
written as linear combinations H ¼ Ph

a;b¼1 wa;bPa � Pb of Pauli
operators acting on A and B individually, and its expectation value
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over ΨA+B is written as

E ¼
X
a; b

i; j

wa;bλiλj xj
� ��UyPaU xij i yj

D ���VyPbV yij i:
(19)

The cost of evaluating E scales as O(R2h). The terms in Eq. (19) can
be evaluated on a quantum computer, using half of the qubits
required to store ΨA+B when A and B have equal sizes. In this work,
we used EF as a variational ansatz for VQE calculations. We chose
bitstrings xi= yi and unitaries U= V as detailed in the SI, and
optimized parameters with the Simultaneous Perturbation Sto-
chastic Approximation (SPSA)86 method.

Hardware experiments
We performed hardware experiments using multiple IBM Quan-
tum devices accessed via cloud, specifically, ibmq_lima, ibmq_-
guadalupe, ibmq_toronto, ibmq_casablanca, ibm_perth,
ibm_brisbane, ibm_sherbrooke, and ibm_lagos.
For the HONO-LUNO active space (Fig. 6, left panel) we

performed a full VQE calculation for each k point using the
COBYLA optimizer87. We used readout error mitigation as well as
gate-based zero-noise extrapolation44 to mitigate hardware noise.
Furthermore, for each VQE calculation, we carried out 5
independent trials yielding 5 sets of optimized parameter
configurations. For each such configuration, we ran a two-point
gate-based zero-noise extrapolation and averaged the extrapo-
lated results.
For 10-orbital active spaces (Fig. 6, right panel) we used

optimized parameters from classical noiseless simulations to
compute the VQE energy for QCC with 2 and 5 Pauli strings. 5
independent hardware experiments were performed for the
reactant and product in each case, and the corresponding
standard deviation in hardware data is provided as error bars for
both active spaces. Readout error mitigation was used along with
gate-based zero-noise extrapolation as needed. The circuits
produced by the reduction technique are shown in Supplemen-
tary Figs. 12, 13.
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