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Surpassing spectator qubits with photonic modes and
continuous measurement for Heisenberg-limited noise
mitigation
Andrew Lingenfelter 1,2✉ and Aashish A. Clerk 1

Noise is an ever-present challenge to the creation and preservation of fragile quantum states. Recent work suggests that spatial
noise correlations can be harnessed as a resource for noise mitigation via the use of spectator qubits to measure environmental
noise. In this work we generalize this concept from spectator qubits to a spectator mode: a photonic mode which continuously
measures spatially correlated classical dephasing noise and applies a continuous correction drive to frequency-tunable data qubits.
Our analysis shows that by using many photon states, spectator modes can surpass many of the quantum measurement constraints
that limit spectator qubit approaches. We also find that long-time data qubit dephasing can be arbitrarily suppressed, even for
white noise dephasing. Further, using a squeezing (parametric) drive, the error in the spectator mode approach can exhibit
Heisenberg-limited scaling in the number of photons used. We also show that spectator mode noise mitigation can be
implemented completely autonomously using engineered dissipation. In this case no explicit measurement or processing of a
classical measurement record is needed. Our work establishes spectator modes as a potentially powerful alternative to spectator
qubits for noise mitigation.
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INTRODUCTION
The protection of quantum states against decoherence due to
noise is a fundamental challenge to robust quantum information
processing. With recent progress in the scale-up of quantum
hardware, efficient noise mitigation for many qubit systems is
increasingly necessary1–3. One strategy to protect quantum states
against decoherence is quantum error correction (QEC), which is
well suited to mitigating local Markovian noise4–6. Temporal and
spatial noise correlations are however generically hostile to
QEC7–9, although there are exceptions for weak correlations10,11.
Dynamical decoupling (DD), another common noise mitigation
strategy, is effective against slow, non-Markovian noise12–18;
however, standard DD does not take advantage of any spatial
noise correlations. In systems with many qubits, long range spatial
noise correlations have been measured19–23. There is thus ample
motivation for understanding how spatial correlations could be
harnessed as a resource for improved noise mitigation.
To this end, there has been a flurry of activity developing

spectator qubits (SQ) protocols which explicitly use spatial
correlations to fight noise24–28. The SQ are a dedicated set of
qubits in a quantum processor or register which do not interact
with the data qubits – those whose states are to be protected –
but are in close enough physical proximity to be susceptible to the
same noise. By making appropriate measurements of the SQ, one
can obtain information about the noise in real time and use this
information to apply corrective controls to the data qubits. Recent
advances in the fabrication and control of many-qubit devices2,3

suggests that the use of qubits as spectators could be an attractive
approach when spatial noise correlations are present. Never-
theless, there are some important limitations to the use of SQ.
First, the SQ strategy requires strong spatial noise correlations to
work; in fact most existing theory work on SQ has assumed perfect

noise correlation. Second, there are limitations associated with
measurement noise: one cannot perfectly estimate the correlated
environmental noise from a finite set of measurements of the
SQ26. These unavoidable measurement errors corrupt subsequent
correction pulses applied to the target data qubits, ultimately
reducing their coherence. As argued in ref. 26 on information
theoretic grounds and taken as an necessary starting assumption
in ref. 27, to have the SQ scheme be effective despite a finite
measurement imprecision, one must make the SQ much more
sensitive to the correlated noise than the data qubits.
In this paper we introduce an alternate approach to the

spectator philosophy that alleviates many of these problems.
Instead of a qubit, we use a driven mode of a photonic cavity as
the spectator quantum system: it detects and mitigates the
classical dephasing noise affecting the qubit (see Fig. 1a). The use
of a multi-level photonic mode as the spectator quantum system
dramatically suppresses the measurement imprecision problem,
for the simple reason that one can now use many photons to
estimate the noise. As we show, the only way to achieve such low
measurement imprecision using SQ would be to measure a large
number of SQ, something that is infeasible in many systems. Our
analysis also reveals another advantage of using a spectator
photonic mode: by parametrically driving the spectator mode, the
resulting squeezing-induced reduction of the measurement
imprecision can exhibit Heisenberg-limited scaling in the number
of measurement photons used29.
In addition to analyzing a spectator cavity rather than a qubit,

there is another crucial difference in the setup we consider.
Whereas standard SQ schemes involve repeated discrete mea-
surements, here we consider an approach based on weak
continuous measurements, something that is generally easier
and more natural for photonic modes30. The photons in the mode
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are allowed to leak into a waveguide which is continuously
monitored (e.g. via a homodyne measurement), producing a
continuous measurement record that reflects the correlated noise
of interest. Assuming the data qubit is frequency tunable, this
measurement record is continuously fedforward to the data qubit,
modulating its frequency to correct the noise-induced dephasing.
This represents another application of continuous feedback
control via weak continuous measurements31–34. Perhaps even
more interesting is that the continuous measurement and
feedforward noise mitigation strategy we depict could also be
implemented in a completely autonomous fashion. In such an
approach, no explicit measurements or processing of a classical
measurement record are needed; instead, one engineers effective
dissipation that mimics the effects of the feedforward process35.
Our analysis has other salient features. We go beyond the idealized

situation assumed in most previous studies of perfect noise
correlation, and explicitly consider the impact of partial noise
correlations between the spectator mode and data qubit. We also
consider environmental noise with an arbitrary noise spectral density
(as opposed to focusing on one specific form). Our analysis reveals
that the spectator mode approach can still be useful even with
partial noise correlations, and for almost any kind of noise spectrum.
In particular, it can even help ameliorate the effects of white noise,
despite the finite bandwidth of the feedforward dynamics. Mitigation
of white noise is shown in Fig. 1b.
The remainder of this paper is organized as follows. In Section

“Physical setup” we discuss the detailed setup of the spectator
mode, the frequency-tunable qubit, and the measurement and
feedforward quantum master equation describing the compo-
site system. In Section “Noise mitigation” we discuss the noise

mitigation properties of the spectator mode under both perfect
and partial noise correlation. In Section “Measurement impreci-
sion noise dephasing: approaching Heisenberg-limited scaling”
we show that the measurement imprecision exhibits
Heisenberg-limited scaling in the number of photons used in
the measurement, and discuss practical considerations for
minimizing measurement imprecision. We discuss applications
to superconducting circuits platforms and conclude in Section
“Discussion ”.

RESULTS
Physical setup
The spectator mode setup is depicted schematically in Fig. 1a. The
frequency-tunable qubit is coupled to the classical noise ξq(t),
which modulates its frequency. The time-dependent qubit
Hamiltonian is

Ĥq;½ξ�ðtÞ ¼ 1
2

ΩqðΦÞ þ ξqðtÞ
� �

σ̂z; (1)

where σ̂z ¼ "j i "h j � #j i #h j for qubit energy eigenstates "j i; #j i
and Ωq(Φ) is the qubit splitting frequency controlled by some
external parameter Φ. Here the [ξ] subscript denotes quantities
that are functions of noise variables ξ(t). We work in a rotating
frame about the static qubit splitting frequency set by the
operating point Φ0. Thus Ωq(Φ0)≡ 0 in Eq. (1).
The spectator photonic mode is dispersively coupled to the

classical noise ξs(t), and is continuously driven by a required linear
drive and an optional parametric drive. These drives are resonant
with the spectator mode frequency ω0. In the rotating frame at ω0,
the time-dependent spectator mode Hamiltonian is given by

Ĥspec;½ξ�ðtÞ ¼ βsξsðtÞâyâþ Ĥdrive; (2)

where βs= ∂ωcav/∂ξs is a dimensionless coupling factor (i.e. how
strongly does the spectator see the noise), and Ĥdrive is given by
Eq. (5), discussed in detail below.
Our noise model is classical stationary Gaussian noise with an

arbitrary spectral density S[ω]. We also consider a generic situation
where the qubit noise ξq(t) and spectator noise ξs(t) have identical
spectral densities (reflecting translational invariance, i.e., the noise
is the same at the spectator and data qubit positions):

ξqðtÞξqð0Þ ¼ ξsðtÞξsð0Þ ¼
Z

dω
2π

e�iωtS½ω�: (3)

The notation � indicates the ensemble average over the classical
noise variables ξ(t), and 〈•〉 indicates a quantum expectation value
without averaging over ξ(t). ξq(t) and ξs(t) will not in general be
perfectly correlated. Partial correlation between the two noise
sources is encoded in the cross-correlation

ξsðtÞξqð0Þ ¼ η

Z
dω
2π

e�iωtS½ω�; (4)

where η parameterizes the degree of correlation, 0 ≤ η ≤ 1
(negative correlation η < 0 requires inverting the signal fedforward
to the qubit). Here we are considering a simple model of partially
correlated noise: ξs(t) is a linear combination of ξq(t) and another
independent noise source with the same spectral density.
We focus on classical noise here because it captures the

essential physics of correlated dephasing noise. One may consider,
e.g., a model of quantum dephasing noise which has an
asymmetric noise spectral density; however, dephasing noise
depends only on the symmetrized spectral density (S[ω]+ S[−
ω])/2 and the quantum effects appear only as additional
correlated dissipation36. Further work is needed to treat the
effects of quantum noise. Similarly, there may be physical
situations wherein properties of the noise such as the correlation
η or noise spectral density S[ω] could vary in time; however, such

Fig. 1 Spectator photonic mode for mitigating correlated classical
noise. a A qubit is dephased by classical noise ξq(t), which is
correlated with the frequency noise ξs(t) of a driven photonic
spectator mode. The spectator’s output field is continuously
measured, and the resulting measurement record is fedforward to
the qubit to mitigate ξq(t). b Qubit decoherence 1− ∣ρ↑↓(t)/ρ↑↓(0)∣ vs.
time for perfectly correlated white noise, S[ω]= S0, with and without
spectator mode mitigation. Without the spectator (red dashed
curve), the qubit dephases at the rate Γ0= S0/2. With spectator
mitigation, the dephasing can be highly suppressed. Results are
shown for ncav ¼ 1000 intracavity photons, with and without a
parametric drive λ2. For these parameters, an optimized λ2
dramatically suppresses dephasing. We also plot the case
ncav ! 1, which completely suppresses the long-time dephasing
rate. (In the ncav ! 1 limit, the imprecision noise is zero so
squeezing does not improve performance; thus we take λ2= 0.) The
dephasing time Tϕ (when the coherence falls by 1/e) is shown for
each curve. The parameters are βs= 0.5, S0/κc= 0.001, and αs= 1;
the noise strength satisfies Eq. (10) and the squeezing
λ2 ≈ 0.74 satisfies Eq. (11).
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scenarios would require a non-stationary noise model, which is
beyond the scope of this work.
The linear and parametric drives applied to the spectator mode

are described in Eq. (2) by the following drive Hamiltonian (in the
rotating frame of the the mode):

Ĥdrive ¼ iκc
2

λ1 ây � â
� �

þ λ2
2

ây2 � â2
� �� �

: (5)

We choose to parameterize the drive amplitudes by the rate κc,
which will be the coupling rate between the mode and an
external waveguide (cf. Fig. 1(a)). The dimensionless real
parameters λ1, λ2 > 0 are the linear drive strength and parametric
drive strength, respectively, and λ2 < 1 to avoid parametric
instability. We assume that there is negligible internal loss in the
spectator mode, κi≪ κc, thus the mode is overcoupled to the
external waveguide such that the total damping rate is κtot= κc.
The first drive we apply is required to implement the

measurement: it is a linear drive λ1 in Eq. (5) that displaces the
mode from vacuum. With our phase choice, the drive defines
the amplitude quadrature [X̂ � ðây þ âÞ= ffiffiffi

2
p

] of the mode. The
displacement causes the frequency fluctuations ∝ ξs(t) to appear
as fluctuations in the corresponding phase quadrature
[P̂ � iðây � âÞ= ffiffiffi

2
p

] (cf. Fig. 2a). These phase quadrature fluctua-
tions are imprinted on the light that leaks into the waveguide.
The second drive we apply is an optional parametric drive λ2 in

Eq. (5) that, with our phase choice, squeezes the phase quadrature
of the mode, as well as the phase quadrature of the mode’s output
field. Further, the parametric drive increases the effective damping
rate of the intracavity phase quadrature to

κϕ � ð1þ λ2Þκc: (6)

Recent work has shown that this kind of in-situ squeezing
generation can enhance parameter-estimation measurements,
despite the modification of the cavity susceptibility37–40. As we
show, the same will be true in our setup (cf. Fig. 2b), and will allow
our spectator scheme to achieve a Heisenberg-limit scaling in the
number of measurement photons used.
It is convenient to make the displacement transformation â ¼

d̂ þ ffiffiffiffiffi
n1

p
in terms of the average photon number associated with

the average mode amplitude hâi:

n1 � hâij j2 ¼ λ21
ð1� λ2Þ2

: (7)

In the displaced frame, the spectator Hamiltonian Eq. (2) becomes

Ĥ
0
spec;½ξ�ðtÞ ¼ βsξsðtÞ

ffiffiffiffiffi
n1

p ðd̂ þ d̂
yÞ

� iκc
4 λ2ðd̂2 � d̂

y2Þ þ Ĥfreq;½ξ�ðtÞ;
(8)

Ĥfreq;½ξ�ðtÞ ¼ βsξsðtÞd̂
y
d̂: (9)

In this frame, the noise couples to the mode in two ways. The first
is via an effective linear drive / ffiffiffiffiffi

n1
p

ξsðtÞ that displaces the
cavity’s phase quadrature. It is this driving that we wish to exploit.
The second coupling is a quadratic spurious phase noise term
Ĥfreq;½ξ�ðtÞ that has no

ffiffiffiffiffi
n1

p
enhancement factor. We wish to work

in regimes where this coupling is negligible, as without it, the
phase quadrature will have a simple linear dependence on ξs(t),
greatly simplifying our spectator scheme.
A careful analysis lets us identify regimes where the effects of

Ĥfreq;½ξ�ðtÞ can be neglected (see Methods Section “Linear noise
drive approximation”). In the case where no squeezing is
employed (λ2= 0), we require:

β2s

Z
dω
2π

S½ω�
ω2

sin2ðω=2κcÞ � 1: (10)

Heuristically, this condition ensures that the phase diffusion
induced by the spurious phase noise term is negligible during the
relevant correlation time of the cavity mode. For example, in the
case of white noise S[ω]= S0, Eq. (10) reduces to the constraint
β2sS0 � κc.
It may seem counterintuitive that the spectator should be

weakly sensitive to the correlated noise – in the sense that βs
should be small in some sense, as one might expect that the
spectator mode should be maximally sensitive to the noise. It is
important to note that in Eq. (2), the “good” (linear) coupling to
the noise is controlled by βsn1 whereas the spurious nonlinear
coupling strength is controlled by only βs. Eq. (10) (or Eq. (11)
below) gives the regime for which the spurious coupling can be
neglected. Since these constraints do not involve n1, it remains a
control knob for the sensitivity to the good linearly coupled noise.
The spurious phase noise term also constrains the use of

squeezing in our scheme, i.e., a non-zero λ2. Heuristically, this
unwanted dynamics induces a rotation in phase space that mixes
the enhanced amplitude quadrature quantum noise into the
squeezed phase quadrature41–43. To have this extra noise not
overwhelm the desired noise squeezing, the following condition
must also be satisfied:

ð1� λ2Þ4\16β2s

Z
dω
2π

S½ω�
ω2 sin2ðω=2κcÞ: (11)

See Methods Section “Linear noise drive approximation” for a
detailed discussion. We stress that even when Eq. (10) is satisfied,
this condition determines the maximum value of λ2 (and hence
squeezing) that can be usefully employed to enhance noise
mitigation.
In what follows, we assume both that n1 � 1 and that the noise

is weak enough that both Eqs. (10) and (11) hold. We can thus
safely approximate the spectator mode Hamiltonian as

Ĥs;½ξ�ðtÞ ’ βsξsðtÞ
ffiffiffiffiffi
n1

p
ðd̂ þ d̂

yÞ � iκc
4
λ2ðd̂2 � d̂

y2Þ; (12)

i.e. the spectator is only linearly driven by the noise.
In an experiment, one may ensure that Eq. (10) (or Eq. (11) if

using squeezing) holds by the combination of engineering a
sufficiently weak dispersive coupling strength of the noise to the
spectator mode (reducing βs) and increasing the coupling of the
spectator mode to the external waveguide, κc. For example,
suppose the spectator mode were a superconducting cavity that
detects spurious magnetic fields using a SQUID loop. Through a
combination of setting the geometric area of the SQUID loop

Fig. 2 Phase space representation of spectator output field. The
spectator drives Ĥdrive (cf. Eq. (5)) create a displaced squeezed state
in the cavity that is continuously emitted into the output field âout

(cf. Eq. (14)). The linear drive∝ λ1 displaces the output field along the
amplitude quadrature (X̂) and the parametric drive∝ λ2 squeezes the
phase quadrature (P̂). a The dispersive coupling to ξs(t) in Eq. (2)
rotates the output field by a small angle θ(t) ~ ξs(t)/κc in phase space.
To first order in small θ, the rotation causes displacement in the
phase quadrature with negligible rotation of the squeezed state.
b After making the linear noise drive approximation (cf. Eqs. (8) and
(12)), the noise is imprinted as fluctuations in the phase quadrature
of the output field.
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during fabrication and biasing the SQUID loop with a DC flux, one
can control the sensitivity of the spectator mode to the noise,
βs= ∂ωcav/∂Φext in-situ.
The final elements of our setup are the spectator measurement

and feedforward operations. While we start by analyzing a
protocol that involves an explicit continuous measurement, we
will end with an effective description that could be implemented
in a fully autonomous manner (i.e. without needing any explicit
measurement or processing of a classical measurement record).
Via Eq. (12), the noise ξs(t) modulates the phase of the light

leaving the cavity (see Fig. 2b). This information is captured in the
output field phase quadrature:

P̂
out
½ξ� ðtÞ ¼

iffiffiffi
2

p âouty½ξ� ðtÞ � âout½ξ� ðtÞ
� �

; (13)

âout½ξ� ðtÞ ¼ âinðtÞ þ ffiffiffiffiffi
κc

p
â½ξ�ðtÞ: (14)

This output field phase quadrature can be continuously measured
using a standard homodyne measurement (see e.g., refs. 44,45),
producing the continuous homodyne current Ĵhom;½ξ�ðtÞ ¼ P̂

out
½ξ� ðtÞ.

To implement our noise mitigation, we will use this homodyne
current (which has units of

ffiffiffiffiffiffiffiffi
rate

p
) for feedforward control of the

qubit, namely to directly modulate the qubit frequency. This
amounts to using the measurement record � hĴhom;½ξ�i to
modulate the external parameter Φ that controls the qubit
frequency in Eq. (1). Ignoring delays, we obtain a modified qubit
Hamiltonian

Ĥ
0
q;½ξ�ðtÞ ¼

1
2
ðξqðtÞ þ ffiffiffiffiffi

γff
p

Ĵhom;½ξ�ðtÞÞσ̂z; (15)

where the rate γff parameterizes the strength of the feedforward.
If the spectator were a perfect, noiseless classical system with an

instantaneous response, we could tune the feedforward strength to
achieve

ffiffiffiffiffi
γff

p
Jhom;½ξ�ðtÞ ! �ξqðtÞ. The feedforward would thus cancel

the noise experienced by the qubit in Eq. (15) completely. For a
realistic quantum spectator mode, this perfect cancellation is
degraded by two basic effects. First, the spectator mode always
has a non-instantaneous response which limits its sensitivity to high-
frequency noise. Second, the homodyne current is operator-valued
and thus has quantum fluctuations which add unwanted quantum
noise to the measurement record. The added noise is effectively a
random error at each time step, thus it is the continuous analog of
imprecision errors in a set of discrete measurements. The fully
quantum description we develop below allows us treat both the
limitations due to quantum noise and the delayed spectator
response.
Using standard continuous measurement theory30, the uncon-

ditional dynamics of our feedforward setup (i.e. averaged over
measurement outcomes) can be described using a Lindblad
master equation that governs the combined spectator mode and
qubit dynamics. As the mode is included in our description, we
retain all effects associated with its non-instantaneous response.
The resulting master equation is still a function of the specific
classical noise realizations ξj(t) (which need not be white noise),
and takes the form:

d
dt

ρ̂½ξ�ðtÞ ¼ �i½Ĥq;½ξ�ðtÞ þ Ĥs;½ξ�ðtÞ þ Ĥint; ρ̂� þ D½L̂�ρ̂; (16)

where D½X̂�ρ̂ ¼ X̂ρ̂X̂
y � fX̂y

X̂; ρ̂g=2 is the standard Lindblad
dissipator, Ĥq;½ξ�ðtÞ is given by Eq. (1), and Ĥs;½ξ�ðtÞ is given by Eq.
(12). The measurement and feedforward induces a Hamiltonian
interaction and collective dissipation given by

Ĥint ¼ 1
2i

ffiffiffiffiffiffiffiffiffi
γffκc

p
d̂ � d̂

y� �
σ̂z; (17)

L̂ ¼ ffiffiffiffiffi
κc

p
d̂ þ ffiffiffiffiffi

γff
p

σ̂z: (18)

We pause to make an important comment on Eq. (16): while this
dissipative dynamics can be generated (as discussed) via continuous
measurement and feedforward, it could also be directly generated
without any measurement, using instead the tools of reservoir
engineering. This autonomous approach would replace the mea-
surement and feedforward parts of our setup by an engineered
dissipative bath that couples to both the qubit and spectator35, in
such a way to realize Eq. (16) (see Fig. 3). We provide more details in
Methods Section “Autonomous spectator” showing how such a
reservoir could be constructed using standard tools in cavity QED.
This autonomous realization is a potentially powerful approach to
spectator-based noise mitigation, as it does not require high fidelity
measurements nor any interface with the classical world beyond the
pump tones needed to implement the spectator mode and reservoir
engineering.
The qubit evolution governed by Eq. (16) conserves σ̂z, and thus it

has pure dephasing dynamics. Suppose the qubit is prepared in the
superposition state ψqð0Þ

		 
 ¼ ð "j i þ #j iÞ. The noise can only change

the superposition phase as ψqðtÞ
		 
 ¼ ð "j i þ exp½�i

R t
0 dsξqðsÞ� #j iÞ.

We are thus interested in studying the decay of the qubit coherence
due to this random phase accumulation. The qubit coherence is
given by the noise-averaged off-diagonal matrix element of the qubit
density matrix

ρ"#ðtÞ ¼ h" jρ̂qðtÞj #i; (19)

where "j i; #j i are the eigenstates of σ̂z and ρ̂qðtÞ is the qubit
density matrix. The loss of qubit coherence is characterized by a
decay in the magnitude of ρ↑↓(t) with time.
We will parameterize the qubit coherence by the decoherence

function χ(t), defined via

ρ"#ðtÞ ¼ ρ"#ð0Þe�χðtÞ: (20)

In the simple case of Markovian dephasing (i.e. due to white
noise), we have χ(t)= Γϕt, where Γϕ is the linear dephasing rate.
Without the spectator system, the bare qubit decoherence function
χ0(t) is given by

χðtÞ ! χ0ðtÞ ¼
1
2

Z
dω
2π

S½ω�
ω2

jY fidðω; tÞj2 (21)

where we have used the Gaussian nature of the environmental
noise (spectrum S[ω]), and the free induction decay (FID) filter
function Yfid(ω, t) is

Y fidðω; tÞ ¼ e�iωt � 1: (22)

To find the decoherence function when the spectator mode is
introduced, we compute the stochastic qubit coherence ρ↑↓,[ξ](t),

Fig. 3 Autonomous spectator mode noise mitigation. The
autonomous implementation of the spectator mode requires a
direct Hamiltonian interaction Ĥint (cf. Eq. (17)) between the spectator
and the qubit as well as an engineered reservoir that mediates the
collective dissipation D½L̂�ρ̂ (cf. Eq. (18)). These elements replace the
measurement and feedforward apparatus shown in Fig. 1a, and
could be engineered in cavity QED setups using auxiliary cavity
modes, parametric couplings and external drives. See Methods
Section “Autonomous spectator” for more details.

A. Lingenfelter and A.A. Clerk

4

npj Quantum Information (2023)    81 Published in partnership with The University of New South Wales



then average over noise realizations. The qubit reduced density
matrix is given by ρ̂q;½ξ�ðtÞ ¼ trsfρ̂½ξ�ðtÞg, where the partial trace is
over the spectator mode, and ρ̂½ξ�ðtÞ evolves under Eq. (16). We
find that

ρ"#;½ξ�ðtÞ ¼ ρ"#ð0Þe�iϕ½ξ�ðtÞe�ΛimpðtÞ (23)

where ϕ[ξ](t) is the total stochastic phase accumulation, and
Λimp(t) ≥ 0 is the “measurement imprecision noise dephasing” i.e.,
the qubit decoherence due to quantum noise associated with the
measurement-plus-feedforward dynamics. As we will show, this
decoherence is a direct consequence of the imprecision noise
associated with the spectator “measuring” the environmental noise.
First, consider the accumulated phase ϕ[ξ](t). We find:

ϕ½ξ�ðtÞ ¼
Z t

0
dt0 ξqðt0Þ � αs

κϕ
2

Z t0

�1
dse�κϕðt0�sÞ=2ξsðsÞ

" #
; (24)

where the ξqðt0Þ term is the direct noise on the qubit and the ξs(s)
term is the filtered, fedforward noise driving the spectator. This
expression and Λimp(t) (given below) are derived in Methods
Section “Derivation of accumulated phase and measurement
imprecision noise dephasing”. The parameter αs is the dimension-
less spectator transduction factor

αs � 8βs
κϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1κcγff

p
: (25)

It controls how the environmental noise sensed by the spectator
ultimately drives the qubit. The transduction strength is set by the
spectator detection factor βs (cf. Eq. (2)), spectator mode
displacement

ffiffiffiffiffi
n1

p
(cf. Eq. (7)), the feedforward rate

ffiffiffiffiffiffiffiffiffi
κcγff

p
(cf.

Eqs. (5) and (15)), and the inverse of the phase quadrature
damping rate 1/κϕ (cf. Eq. (6)) – strong damping requires a
stronger transduction strength. We view αs as the relevant control
parameter and henceforth write γff in terms of αs.
One can easily confirm that this expression for the accumulated

phase ϕ[ξ](t) has a completely classical form, i.e. what we would
expect if the spectator were a classical (noiseless) system with a
delayed, exponential response. The quantum nature of the
spectator mode only appears in the measurement imprecision
noise dephasing Λimp(t), which stems from (squeezed) vacuum
noise in the spectator phase quadrature. We find

ΛimpðtÞ ¼ α2s
32β2sn1

1
1þ λ2

ð1� λ2Þ2κϕt þ 8λ2 1� e�κϕt=2
� �h i

: (26)

Without squeezing λ2= 0, the added quantum dephasing noise is
white so Λimp(t) is linear in time; this is no longer true when λ2 ≠ 0.
One already sees the advantage of squeezing by the dramatic
reduction in the long-time added-noise dephasing:

ΛimpðtÞ ¼
2γfft t � 1=κϕ

1�λ2
1þλ2

� �2
ð2γfftÞ þ const t � 1=κϕ

8<
: : (27)

At short times, we have exponential dephasing set by the
feedforward rate, whereas at long times, squeezing can strongly
suppress this exponential dephasing.
Returning to the decoherence function χ(t), we finally take the

ensemble average of Eq. (23) over realizations of the environ-
mental noise:

ρ"#ðtÞ ¼ ρ"#ð0Þeiϕ½ξ� ðtÞe�ΛimpðtÞ: (28)

As the accumulated phase is linear in the Gaussian noise ξ(t), the
average can be done exactly. The final form of the decoherence
function can thus be written in terms of the spectrum S[ω] of our
environmental noise:

χðtÞ ¼ ΛimpðtÞ
þ 1

2

R
dω
2π

S½ω�
ω2 jYðω; t; αsÞj2 þ j~Yðω; t; αsÞj2
h i

:
(29)

We have introduced the filter functions Y(ω, t, αs) and ~Yðω; t; αsÞ,
which correspond to the contributions of the correlated and
uncorrelated parts of the noise. The correlated-noise filter function
is

Yðω; t; αsÞ ¼ 1� ηαs
κϕ=2

iωþ κϕ=2

� �
Y fidðω; tÞ; (30)

where Yfid(ω, t) is given by Eq. (22), and η sets the level of noise
correlation (c.f. Eq. (4)). The two terms here correspond to the two
ways the environmental noise reaches the qubit: directly (first
term) and through the feedforward process (second term). The
spectator scheme relies on getting these terms to cancel as best
as possible.
In contrast, the uncorrelated-noise filter function is

~Yðω; t; αsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� η2

p
αs

κϕ=2
iωþ κϕ=2

Y fidðω; tÞ: (31)

This contribution to the qubit dephasing increases monotonically
with αs as expected (i.e. this is just like an independent new source
of noise driving the qubit).

Noise mitigation
We start by considering the limit of perfect noise correlation
between spectator and data qubit (η= 1); this lets us understand
the basic features of our scheme. We then show how the noise
mitigation is affected by partial noise correlation η < 1. We stress
our treatment includes the delay associated with the spectator
mode response; in the Supplementary Methods and Supplemen-
tary Fig. 1, we discuss the additional impact of delay associated
with applying the feedforward control on the data qubit.
Our spectator-based noise mitigation ultimately relies on

optimizing the cancellation of the two terms in Eq. (30) to
minimize the dephasing factor in Eq. (29). There is only a single
effective parameter to optimize: the transduction factor αs, c.f. Eq.
(25). One might guess that the optimal value of αs will depend on
the form of the noise spectrum S[ω] and on the evolution time t.
This is not the case. As αs is constrained to be real, a simple
calculation shows that there is a single ideal value of αs which
minimizes ∣Y(ω, t, αs)∣2 at all frequencies for all times:

αideals ¼ 1: (32)

For the perfect correlation case we consider, this in turn minimizes
the second term in the dephasing factor χ(t) in Eq. (29), regardless
of the time t or form of noise spectrum. Note this optimal value
matches what we would naively expect if there were no delay in
the spectator mode response.
The filter function at ideal transduction strength (αs= 1) takes

the simple form:

Yðω; t; αs ¼ 1Þ ¼ iω=2
iωþ κϕ=2

Y fidðω; tÞ: (33)

As expected, the filter function is strongly suppressed over the no-
feedforward case at low frequencies ω≲ κϕ, with a perfect
suppression at zero frequency. This latter property implies that
the environmental noise will not give any long-time exponential
dephasing of the qubit.
A key feature of the spectator mode approach is its ability to

mitigate the effects of white noise. This is directly related to a
property of its filter function: its total spectral weight, given byZ

dω
2π

jYðω; t; αsÞj2 ¼ 1� αsð Þ2t þ 2
κϕ

αsð2� αsÞð1� e�κϕt=2Þ;

(34)

is not fixed. In particular, this weight can be made arbitrarily small
for the optimal tuning αs= 1 by letting the spectator detection
bandwidth κϕ be arbitrarily large. This is in stark contrast to typical
dynamical decoupling spectral functions that conserve spectral
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weight:Z
dω
2π

1
ω2 jYddðω; tÞj2 ¼

Z
dω
2π

1
ω2 jY fidðω; tÞj2:

The conservation of spectral weight in dynamical decoupling
means that one cannot mitigate white noise: the suppression of
contributions at one frequency to the dephasing factor necessarily
imply increased contributions at other frequencies46,47. The
spectator based approach (which cancels noise induced dephas-
ing via a completely different mechanism) does not have a similar
constraint.
We now analyze the ultimate performance of the spectator

mode approach in mitigating qubit dephasing. We first consider
the asymptotic long-time limit t→∞. As Yfid(ω, t) approaches a δ
function in this limit, for non-singular spectral densities, the long-
time decoherence for any αs (but assuming η= 1) is:

χðt ! 1Þ ¼ 1
2
ðαs � 1Þ2S½0�t þ ΛimpðtÞ þ χ initð1Þ (35)

where χinit(∞) is a t-independent constant (arising from the finite
spectator bandwidth) that we analyze more below. For an ideal
choice of transduction factor αs= 1, the linear-in-t phase diffusion
from the environmental noise is completely canceled. In its place,
we have the imprecision noise dephasing Λimp (c.f. Eq. (26)).
Crucially, while Λimp also grows linearly with t in the long-time
limit, the corresponding rate can be made arbitrarily small by
using many photons for the measurement. Defining the long time
dephasing rate Γϕ ¼ limt!1 χðtÞ=t, and considering the simple
case where there is no parametric drive on the spectator cavity
(i.e. λ2= 0) and αs= 1, we have both with and without
feedforward:

Γϕ ¼ 1
2
S½0�

� �
! Γϕ ¼ 1

32β2sn1
κc

 !
(36)

We see that the spectator mode approach (in this ideal limit)
suppresses the long time dephasing rate by a factor scaling as
κc=ðn1S½0�Þ. We stress that this result is valid for any noise
spectrum that is non-singular at ω= 0, including white noise.
The suppression of the long-time qubit dephasing rate is shown in

Fig. 1b and in Fig. 4. In both plots, the qubit is subject to perfectly
correlated white noise, S[ω]= S0. We see in Fig. 1b that the use of
squeezing, λ2≠ 0, dramatically suppresses the long-time dephasing
rate relative to the modest suppression achieved using no squeezing
(cf. the solid and dashed blue curves of Fig. 1b). In Fig. 4 we
demonstrate that significant suppression of the long-time dephasing
rate is achievable without the use of squeezing. The requirement of
sufficiently weak noise strength, Eq. (10), is much less restrictive
when no squeezing is applied. For Fig. 1(b), we must have S0/
κϕ≲ 0.001 whereas for Fig. 4, we require only S0/κϕ≲ 0.01.
In many cases, one is interested in understanding the qubit

coherence at all times, not just in the long time limit. For finite
evolution times, the qubit coherence will be sensitive to the
environmental noise (and filter function) over a finite bandwidth.
Even for an optimal transduction strength αs= 1, the relevant filter
function is only suppressed (compared to αs= 0) for frequencies
ω≲ κϕ, c.f. Eq. (33). Heuristically, this means that even though
there is no environmental-noise induced long-time dephasing in
this case, there will be some dephasing over a time interval
0 ≤ t≲ 1/κϕ. This initial dephasing gives rise to the constant term
χinit in Eq. (35).
For αs= 1, the extra contribution to the dephasing factor from

finite-frequency environmental noise is given by:

χ initðtÞ ¼
1
2

Z
dω
2π

S½ω�
ω2 þ κ2ϕ=4

jY fidðω; tÞj2: (37)

As an example, for white noise S[ω]= S0, this extra dephasing
initially grows linearly in time as χinit(t)= S0t/2 for t≪ 1/κϕ, but
then it saturates to a constant χinit→ S0/κϕ when t ~ 1/κϕ.
The short-time dephasing that arises for αs= 1 and a finite

spectator bandwidth κϕ are are illustrated in Fig. 5, for the case of
a Lorentzian environmental noise spectrum, S[ω]= S0(γ2/4)/
(ω2+ γ2/4). As expected, broadband noise (γ≫ κϕ) cannot be
mitigated over short timescales, hence the spectator-mitigated
decoherence closely tracks the bare qubit decoherence until t ~ 1/κϕ
(see right plot of Fig. 5). Around t ~ 1/κϕ the decoherence quickly
saturates to a finite value. The initially quadratic dephasing becomes
linear when t > 1/γ. In contrast, narrowband noise (γ≪ κϕ) is much
more effectively mitigated by the spectator at all times, as
demonstrated by the prefactor suppression of the initial quadratic
dephasing (see right plot of Fig. 5). At times t ~ 1/κϕ the initially

Fig. 4 Spectator cavity performance without squeezing. Qubit
decoherence 1− ∣ρ↑↓(t)/ρ↑↓(0)∣ vs. time for perfectly correlated white
noise, S[ω]= S0, with and without spectator mode mitigation. The
characteristic dephasing time Tϕ, defined as the time at which the
qubit coherence falls by a factor 1/e (i.e., when the decoherence
function χ(Tϕ)= 1, cf. Eq. (29)), is shown for each curve. Without the
spectator mode (red dashed curve), the qubit linearly dephases,
losing 1/e of its coherence at time Tϕ,0= 2/S0. Results are shown with
only a one-photon drive applied to the spectator mode. The number
of intracavity photons ncav ¼ n1 (cf. Eq. (7)) is indicated above each
curve. The spectator mode can dramatically increase the coherence
time of the qubit even without the two-photon drive applied. The
parameters are βs= 1, S0/κϕ= 0.01, λ2= 0 and αs= 1; the noise
strength satisfies Eq. (10).

Fig. 5 Finite detection bandwidth effects for broadband and
narrowband noise. The qubit decoherence function (less Λimp(t))
versus time for Lorentzian noise (bandwidth γ, zero-frequency
strength S[0]= 0.01κϕ). In both plots the black dashed curves are the
bare qubit decoherence function (in the right plot, relative vertical
position corresponds to same-position labeled curve), and the
vertical dot-dashed line indicates t= 1/κϕ. Left plot: broadband
noise. For short times t < 1/κϕ the spectator cannot mitigate the
noise so the qubit dephases as it would without the spectator, while
for longer times there is strongly suppressed dephasing. Right plot:
Narrowband noise. For short times t < 1/κϕ the spectator greatly
suppresses the initial quadratic-in-t dephasing. For times 1/
κϕ < t < 1/γ the spectator reduces dephasing to linear in time with
suppressed rate ðγ=κϕÞ2S0=2 � S0=2. Dephasing finally saturates
after t > 1/γ.
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quadratic dephasing becomes linear with a suppressed rate
ðγ=κϕÞ2Γ0. After a time t ~ 1/γ, χinit(t) saturates to a finite value.
Our discussion so far has focused on the case of perfect noise

correlation between the spectator mode and data qubit, η= 1.
When there is only partial noise correlation between the spectator
and qubit (η < 1), we must retain both filter functions Eqs. (30) and
(31) in the expression Eq. (29) for χ(t). The uncorrelated noise
prevents the spectator mode from perfectly canceling the long-
time dephasing rate, and creates a penalty for increasing the
transduction factor αs from 0.
For a general correlation η, the qubit decoherence function in

the long-time limit is

χðtÞ ¼ 1
2
ðα2s � 2ηαs þ 1ÞS½0�t þ ΛimpðtÞ þ const: (38)

For imperfect correlation, it is no longer possible to cancel the
dominant S[0]t term in this expression. The best we can do it
minimize its prefactor, by tuning the transduction factor to the
optimal value

αideals ¼ η; (39)

resulting in

χðtÞ ! 1
2
ð1� η2ÞS½0�t þ ΛimpðtÞ þ const: (40)

Hence, the environmental-noise contribution to the long time
dephasing rate can be suppressed by a factor (1− η2), showing
that the spectator approach can still be useful even with partial
noise correlations.
Of course, in asking whether spectator based feedforward is

beneficial in suppressing long-time dephasing, one also needs to
consider the measurement imprecision noise dephasing Λimp. The
excess dephasing from imprecision noise can always (in principle)
be mitigated by using a sufficiently large number of photons n1,
c.f. Eq. (36).
The efficacy of the spectator mode at mitigating partially

correlated noise is not only a long-time limit result. One can show
that the ideal transduction factor at any time t is αideals ¼ η, and
that for this choice of transduction strength the qubit decoher-
ence function is

χðtÞ ¼ ΛimpðtÞ þ χ initðtÞ
þ 1

2 ð1� η2Þ R dω
2π

S½ω�
ω2

κ2ϕ=4

ω2þκ2ϕ=4
jY fidðω; tÞj2

(41)

where the final term encodes all dephasing due to the partial
noise correlation. Taking white noise S[ω]= S0 as an example, the
qubit decoherence function is found to be

χðtÞ ¼ ΛimpðtÞ þ η2χ initðtÞ þ
1
2
ð1� η2ÞS0t; (42)

from which we recover the perfect noise correlation result for
η= 1.

Measurement imprecision noise dephasing: approaching
Heisenberg-limited scaling
As discussed, the key quantum aspect of the spectator mode
scheme is the measurement imprecision noise contribution to the
qubit’s dephasing, Λimp(t) (c.f. Eq. (26)). This term is ultimately due
to the (possibly squeezed) vacuum noise of the spectator mode.
Minimizing this dephasing is a key aspect to the spectator mode
strategy. We imagine a situation where the transduction factor αs
(c.f. Eq. (25)) can be fixed to the optimal value of 1, while the drive
amplitudes λ1 and λ2 can still vary; this can be accomplished by
appropriately tuning the feedforward strength γff. The
measurement-imprecision noise dephasing can be made arbi-
trarily small by using an arbitrarily large number of photons, i.e.,
let λ1→∞ and λ2→ 1. We wish to understand this more
quantitatively, and in a manner more relevant to experiment.

Given that we are able to use some fixed total number of photons
for the measurement, how small can we make Λimp(t)? Further,
how does this optimized added dephasing scale with photon
number?
The above questions are directly connected to quantum

limits on parameter estimation29. As discussed, Λimp(t) can be
viewed as the variance of the measurement imprecision noise
associated with the spectator’s estimate of the environmental
noise ξs(t). Finding the optimal scaling of Λimp(t) with photon
number is thus analogous to minimizing a parameter estima-
tion error with photon number, a standard task in quantum
metrology. We make this connection explicit in what follows.
We show that in the long-time limit, given a total photon
number ninc incident on the signal port of the homodyne
detector beamsplitter, the measurement imprecision noise
dephasing scales as ΛimpðtÞ � 1=ninc in the case where λ2= 0
(no squeezing). This is standard quantum limit (SQL) scaling
with photon number, expected in the absence of squeezing or
entanglement. We also show that if one uses an optimal
parametric drive λ2, one can improve this scaling to
ΛimpðtÞ � 1=n2inc. This corresponds to Heisenberg limited scaling
with photon number. In addition to these fundamental long-
time scalings, we also discuss below the minimization of Λimp(t)
at finite evolution times t0 <∞, subject to experimentally
relevant constraints for λ1 and λ2.
In the long-time limit, the qubit is only sensitive to the zero

frequency environmental noise ξq(t). Hence, noise mitigation in
this limit requires the spectator mode to effectively estimate the
zero-frequency noise it experiences with minimal error, i.e.
estimate the parameter ξs½0� � limT!1ð1=TÞ R T0 dtξsðtÞ of ξs(t).
(The choice of a 1/T normalization here ensures that the
parameter ξs[0] being estimated is infinitesimally small. This lets
us connect to standard quantum metrology limits, cf. Methods
Section “Parameter estimation in a photonic state”.) As we show
below, the measurement imprecision noise dephasing in this limit,
Λimp(t→∞), is directly proportional to the estimation error of
ξs[0].
We can make a direct analogy to the problem of optimally

estimating a small phase space rotation θ≪ 1 of a single-mode
squeezed displaced state. For our setup in the long time limit, the
relevant mode is the zero-frequency output field mode of the
spectator, and the rotation θ is created by zero frequency
environmental noise ξs[0] (see Fig. 2(a)). The results of this basic,
single-mode parameter estimation problem are reviewed in
Methods Section “Parameter estimation in a photonic state”. The
optimal measurement is a homodyne measurement of the phase
quadrature of the state, and Heisenberg scaling of the estimation
error with photon number is achieved by balancing the number of
squeezing photons and displacement photons.
We now make the analogy to the single-mode parameter

estimation problem precise. The optimal estimator for the zero-
frequency environmental noise ξs[0] will be proportional to the
average of the integrated output-field phase quadrature (which is
also proportional to our homodyne current). We thus introduce
the zero-frequency output-field temporal mode Â:

Â ¼ 1ffiffiffi
T

p
Z T

0
dt âoutðtÞ; (43)

where we will consider the large-T limit throughout. This is a
standard bosonic mode satisfying ½Â; Ây� ¼ 1. The expectation
value of its phase quadrature [P̂A ¼ iðÂy � ÂÞ= ffiffiffi

2
p

] is

hP̂Ai ¼ 2βs
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n1κcT

p
1þ λ2

ξs½0�
κc

: (44)

Hence, up to a prefactor, P̂A will be our estimator for ξs[0], and the

fluctuations in this quadrature ðΔPAÞ2 � hP̂2Ai � hP̂Ai2 will deter-
mine our estimation error. In the long-time limit, this variance just
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reflects the squeezing created by the parametric drive:

ðΔPAÞ2 ¼ ð1� λ2Þ2
ð1þ λ2Þ2

: (45)

The estimation error Δξs[0] of the zero frequency component ξs[0]
is thus given by

Δξs½0� ¼ ΔPA
∂hP̂Ai=∂ξs½0�
		 		 ¼ ð1� λ2Þκc

2βs
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n1κcT

p : (46)

We would like to understand how this estimation error scales
with the number of photons ninc used to make the estimate. This is
just the average photon number of the Â mode, which also
coincides with the number of photons incident on our homodyne
detector during the measurement interval T. We have:

ninc ¼ hÂy
Âi ¼ nd þ ns: (47)

where

nd ¼ λ21
ð1� λ2Þ2

κcT ; ns ¼ 4λ22
ð1� λ22Þ

2 : (48)

The two terms here correspond to photons nd ¼ jhÂij2 associated
with the displacement of the mode, and photons ns associated
with the squeezing of the mode. Note that nd ¼ n1κcT (cf. Eq. (7)).
This is just the average output photon flux induced by λ1; n1κc,
integrated over a time T. Note also that ns is independent of T
because squeezing produces a broadband (~κc) output photon
flux, but the temporal mode has a narrow bandwidth ~ 1/T≪ κc
over which it admits squeezing photons; one may show that
the∝ 1/T fraction of a∝ T total number of output squeezing
photons is thus constant in the long-time limit. We see
immediately that if we do not use any squeezing (i.e., λ2= 0),
then ninc ¼ nd, and the estimation error in Eq. (46) exhibits the
expected SQL scaling with photon number, Δξs½0� / 1=

ffiffiffiffiffiffiffi
ninc

p
.

To see how the squeezing induced by a non-zero parametric
drive λ2 can help us, we can re-write the above expression in terms
of the photon numbers nd and ns. In the limit where all photon
numbers ninc; nd; ns � 1, we have ð1� λ2Þ ¼ 1=

ffiffiffiffiffi
ns

p þOð1=nsÞ,
and the estimation error reduces to:

Δξs½0� ¼ κc

2βs
ffiffiffiffiffiffiffiffiffiffiffiffi
2ndns

p : (49)

The final step is to now fix the total incident photon number
ninc, and to minimize the estimation error over how we partition
these photons between squeezing photons ns and displacement
photons nd. In complete analogy to the analysis in Methods
Section “Parameter estimation in a photonic state”, we find that
the optimal partition is an equal split, nd ¼ ns ¼ ninc=2. The
resulting optimized estimation error is then

Δξs½0� ¼
ffiffiffi
2

p
κc

βsninc
: (50)

We obtain a scaling 1=ninc, which is Heisenberg-limited scaling in
the number of photons used for the estimation29.
The last step here is to show that the estimation error does

indeed coincide with the measurement imprecision noise qubit
dephasing Λimp(T) in the long time limit. We focus on the optimal
tuning of the transduction factor defined in Eq. (25) for noise
mitigation, αs= 1 (something that can be achieved for any photon
number by tuning the feedforward rate γff). The interpretation of
Λimp(T) as the estimation error only makes sense for optimal
αs= 1. Using Eq. (27), we find that in this limit, we have (for
arbitrary nd and ns):

ΛimpðTÞ ¼ 1
4
T2 Δξs½0�ð Þ2: (51)

We see that the spectator-added noise has the same dependence on
photon numbers as the estimation error. Hence, optimizing the
estimation error at fixed ninc is also optimizes Λimp(T), and the
Heisenberg-limit scaling Δξs½0�ð Þ2 / 1=n2inc is also inherited by
Λimp(T). (The apparent T2-dependence of Λimp here may seem
strange. However, this is simply an artifact of writing Λimp in terms of
nd which is implicitly∝ T. Holding nd / λ21κcT fixed while increasing
T requires reducing the linear drive strength λ1 in proportion.)
The potential for Heisenberg-limited scaling is interesting from

the perspective of fundamental performance limits. In the
Supplementary Methods and Supplementary Fig. 2, we discuss
the breakdown of this Heisenberg-limited scaling caused by non-
zero internal loss in the spectator mode. While these fundamental
scaling constraints involve output photon number, from a practical
perspective, a more common constraint comes from only being
able to work with a finite number of total intracavity photons. These
technical limitations can arise for a variety of reasons, e.g., nonlinear
effects, heating, input power limits, or a breakdown of the
dispersive approximation. In addition, minimizing Λimp(t) at some
finite time t0 is more important in most cases than minimizing the
asymptotic dephasing rate in the long-time limit.
We minimize Λimp(t0) (cf. Eq. (26)) at a fixed target evolution

time t0 <∞ over the partition of intracavity photon number
ncav ¼ n1 þ n2, while holding ncav � 1 fixed. (The assumption of
ncav � 1 is used to identify the long-time regime in what follows;
however, ncav\10 is sufficient.) The intracavity displacement
photon number n1 ¼ jhâij2 is given by Eq. (7), and the intracavity
squeezing photon number n2 is given by

n2 ¼ 1
2

λ22
1� λ22

: (52)

Recall that κϕ= (1+ λ2)κc is dependent on n2 through λ2, thus it is
allowed to vary when minimizing Λimp(t0). We find that there are
three distinct optimization regimes in t0: the short-time regime
t0≲ 1/κc, the long-time regime t0 � n2cav=κc, and the intermediate
regime 1=κctt0tn2cav=κc.
In the extreme short-time limit t0≪ 1/κc, squeezing has no

ability to reduce Λimp(t0) (cf. Eq. (27)). Even for t0≲ 1/κc, squeezing
has very little ability to reduce the added-noise dephasing
because the qubit is sensitive to noise with a bandwidth 1/
t0≳ κc but the squeezing bandwidth is only κc. Thus, since
Λimpðt0Þ / 1=n1, the optimal partition is n1 	 ncav and n2 	 0.
The long-time regime is identified by t0 (already assumed≫ 1/

κc) being sufficiently large such that the constant term of Λimp(t0)
is negligible compared to the linear-in-t0 term in Eq. (27). Thus
holding ncav � 1 fixed, we assume that n2 � 1 and write Λimp(t)
to leading order in 1=n2. (The assumption that the optimal
partition has n2 � 1 can be shown to be self-consistent using the
exact expression for λ2 in terms of n2.)

Λimpðt0Þ ¼ α2s
32β2s

1
n1

1

16n22
κct0 þ 4

� �
: (53)

From this we find that the constant is negligible when
t0 � n22=κc � n2cav=κc. This regime has the optimal partition

n2 ¼ 2
3
ncav; n1 ¼ 1

3
ncav; ðt0 � n2cav=κcÞ: (54)

This optimal partition of intracavity photons is equivalent to
the partition of photons incident on the homodyne detector
(nd ¼ ns ¼ ninc=2 as discussed in the previous subsection) that
optimizes the Heisenberg-limited scaling of the measurement
error. This equivalence is easily shown via Eq. (48) for a target
evolution time t0= T.
The cross-over behavior of optimal n2 between the limiting

regimes of t0≲ 1/κc and t0 � n3cav=κc is shown in Fig. 6. The
surprisingly small fraction of photons allocated to squeezing in the
intermediate regime might suggest that the use of squeezing is
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not very effective at reducing the qubit dephasing rate. However,
this is not necessarily the case. In Fig. 1b we show that for κct0 ~ 1,
a relatively small number of intracavity squeezing photons can still
dramatically reduce the long-time qubit dephasing rate. For the
optimal λ2 curve in Fig. 1(b), we minimize Λimp(t0) at time t0= 5/κc
(t0= 0.005/S0) to achieve a ≈ 10−2 reduction in the long-time
dephasing rate versus Γ0= S0/2. Using ncav ¼ 1000, at t0= 5/κc, the
optimal number of intracavity squeezing photons is only n?2 	 0:6.

DISCUSSION
Given the range of operating regimes we have considered and the
many control parameters one may vary, we briefly summarize how
the parameters must be constrained in order to successfully operate
the spectator mode. There are five control parameters: the noise
coupling parameter βs (cf. Eq. (2)), the spectator mode decay rate κc,
the intracavity displacement photon number n1 (cf. Eq. (7), via linear
drive strength λ1), the intracavity squeezing photon number n2 (cf.
Eq. (52), via parametric drive strength λ2), and the feedforward rate to
the qubit γff (cf. Eq. (18)). Successful operation of the spectator mode
requires that these parameters be set by the conditions summarized
in Table 1. If the first two conditions are satisfied, then the long-time
dephasing is given in general by Eq. (40), where the long-time
exponential decay of coherence can be made arbitrarily small in the
limit of perfect noise correlation η= 1. Condition 3 ensures that the
spectator mode is fast enough that the short-time decoherence (i.e.,
due to the noise outside the spectator mode’s bandwidth) is
tolerably small. Finally, condition 4 is a practical constraint: one must
balance the partition of photons inside the spectator mode such that
at some finite target time t0, the total qubit coherence is minimized.
We have shown that a spectator photonic mode can harness

spatial correlations in classical dephasing noise as a resource for
noise mitigation and is a powerful generalization of the spectator
qubits concept. The spectator mode can perfectly cancel qubit
dephasing due to ξ(t) in the long-time limit, and despite having a
finite noise detection bandwidth, can mitigate white noise. The
multi-leveled nature of the spectator mode allows the use of many
photons to be simultaneously measured, thereby reducing the
measurement imprecision noise to arbitrarily small levels. The use
of many photons in the measurement is a significant advantage

over spectator qubits which suffer the imprecision error of single
measurements. The spectator mode even offers better than
standard quantum limit scaling of the measurement imprecision
error with the number of photons: using parametric driving, we
show that it achieves Heisenberg-limited scaling. Finally, we show
that even under the constraint of a limited intracavity photon
number, the use of a parametric drive dramatically improves the
performance of the spectator mode, even if true Heisenberg-
limited scaling is not achieved.
The spectator mode scheme is readily amenable to experimental

implementations; superconducting circuits, for example, provide a
natural experimental platform in which to implement the scheme
and experimentally verify these results. Not only is this platform
among the leading candidates for large scale quantum information
processing, all of the necessary ingredients already exist and are
frequently used in superconducting circuit experiments, including
frequency tunable qubits with fast flux control48,49, photonic
(microwave) cavities that can be dispersively coupled to a source
of correlated noise, and homodyne detection of the cavity output
field. The full noise environment of a typical superconducting qubit is
not yet fully understood and many sources of noise may contribute
to qubit decoherence. For example, flux noise is a common
decoherence mechanism in flux-tunable qubits whose microscopic
origins are not completely understood yet, although the experiment
in ref. 50 empirically finds no strong spatial correlations. Nevertheless,
there are many sources of environmental noise that the spectator
mode could detect and mitigate.
In quantum registers with many qubits and their associated control

line, electromagnetic crosstalk from nearby qubits and control lines
appears as dephasing noise51,52; this noise is spatially correlated
essentially by definition. Thus, by equipping the spectator mode with,
e.g., a SQUID loop, it can dispersively detect magnetic interference
from neighboring qubits and their control lines. In the same vein,
residual ZZ couplings between physically proximate qubits can
induce decoherence in the target data qubit if a neighboring qubit
undergoes a T1 relaxation, thereby effectively applying a phase kick to
the data target data qubit53. In principle, by weakly dispersively
coupling the spectator mode to the nearby qubits, it can continuously
detect these relaxation events and apply corrective phase kicks. As a
final example, it is well known that when qubits are dispersively
coupled to a readout resonator, residual photon population (e.g.,
thermal population) in the readout resonator can dephase the
qubits54,55. The fluctuations in the readout resonator photon number
cause small changes in the qubits’ spitting frequencies, thereby
dephasing the qubits. A spectator mode dispersively coupled to the
readout resonator could detect these photon number fluctuations
and apply a corrective signal to the qubits.
In this work we have explored the basic spectator mode system.

We use a linear measurement of the phase quadrature which
necessitates neglecting higher order corrections due to spectator
mode dephasing. A more sophisticated measurement apparatus
could improve upon that, and perhaps relax the requirement for
sufficiently weak noise. Recent work in using various adaptive
algorithms24,30 or machine learning56,57 has been shown to
improve the performance spectator qubits. It remains an open

Fig. 6 Optimized intracavity squeezing. The optimal fraction of
ncav intracavity photons applied to squeezing, n2=ncav, vs. target
evolution time κct0 (i.e., the time t0 at which Λimp(t0) is minimized)
for various ncav. For very long times κϕt0 � n3cav, the squeezing
photon number fraction approaches the asymptotic optimal value
2
3 ncav (cf. Eq. (54)). The parameters are αs= 1 and βs= 1.

Table 1. Summary of spectator mode operating parameters.

Condition Purpose Parameters

Either Eq. (10) or Eq. (11) (without or with
squeezing)

Effective linear noise coupling dominates spurious nonlinear coupling βs, κc

αs ¼ αideals ¼ η (cf. Eqs. (4) and (25)) Transduction factor set to ideal value set by noise correlation βs; κc; γff ; n1 (via λ1), n2 (via λ2)

χinit(∞)≪ 1 (cf. Eq. (37)) Short time dephasing due to finite cavity response time is tolerably small κc

Λimp(t0) minimized for fixed ncav ¼ n1 þ n2 (cf.
Eq. (26))

Intracavity photons are partitioned to minimize qubit dephasing at target
time t0

n1; n2
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question whether the use of such techniques could improve the
performance of spectator modes and to what extent there are
optimal strategies for specific spectral densities or noise models
(e.g., 1/f, telegraph, etc). Similarly, the study of more general noise
models (i.e., going beyond classical stationary noise) is an open
direction for future work, not only within the context of the
spectator photonic mode presented here, but more broadly within
the entire paradigm of spectator quantum systems.
Furthermore, the generalization of the spectator qubit concept

could lead to other spectator quantum systems such as qubit or
spin ensembles. The recent experiment reported in ref. 28 has
many spectator qubits available; using those in a coordinated way
may offer some of the advantages of the spectator mode
regarding measurement imprecision. Furthermore, one could
imagine that the advantages of parametric driving to the
spectator mode could be realized in spin ensembles using spin
squeezing. These are all additional avenues of the spectator
quantum system concept to explore.

METHODS
Derivation of accumulated phase and measurement
imprecision noise dephasing
In this Section we derive the accumulated phase ϕ[ξ](t) and
measurement imprecision noise dephasing Λimp(t) starting from
the master equation for ρ̂½ξ�ðtÞ, Eq. (16). For the analysis in the next
Subsection on the linear noise drive approximation, we retain the
spurious phase noise term in Eq. (8):

Ĥ
0
spec;½ξ�ðtÞ ¼ ϵβsξsðtÞd̂

y
d̂ þ βsξsðtÞ

ffiffiffiffiffi
n1

p ðd̂ þ d̂
yÞ

� iκcλ2
4 ðd̂2 � d̂

y2Þ:
(55)

To differentiate phase noise terms from the quadrature noise, we
include a bookkeeping prefactor ϵ in the phase noise terms. The
full Hamiltonian has ϵ= 1 and the linear noise drive approxima-
tion Eq. (12) has ϵ= 0.
In writing Eq. (16) for ρ̂½ξ�ðtÞ, we have assumed that the

measurement and feedforward is running at all times. Instead, the
anticipated operation would have the feedforward turned off and
the spectator mode in steady state at the start of the experiment.
At a definite time t= 0, i.e., the start of the experiment, the qubit
has a known coherence ρ↑↓(0), thus we neglect all qubit dynamics
for t < 0 by modifying Eq. (1) to

Ĥq;½ξ�ðtÞ ¼ 1
2
ξqðtÞσ̂zθðtÞ; (56)

where θ(t) is the step function. To implement the turn-on of the
feedforward in the master equation at t= 0, we modify Eqs. (17)
and (18)

ĤintðtÞ ¼ 1
2i

ffiffiffiffiffiffiffiffiffi
γffκc

p
d̂ � d̂

y� �
σ̂zθðtÞ; (57)

L̂ðtÞ ¼ ffiffiffiffiffi
κc

p
d̂ þ ffiffiffiffiffi

γff
p

σ̂zθðtÞ: (58)

For t < 0, the master equation simply describes a damped, driven
oscillator dispersively coupled to the environmental noise.
With the above refinement in hand, we now find the deformed

master equation of the coherence operator58,

ρ̂"#;½ξ�ðtÞ � h" jρ̂½ξ�ðtÞj #i: (59)

The equation of motion for the coherence operator is (dropping
its explicit t-dependence and [ξ] subscript for clarity)
d
dt ρ̂"# ¼ �i½Ĥs; ρ̂"#� þ κcD½d̂�ρ̂"#

� θðtÞ 2
ffiffiffiffiffiffiffiffiffi
κcγff

p ðd̂ρ̂"# � ρ̂"#d̂
yÞ þ 2γff ρ̂"# � iξqðtÞρ̂"#

h i
(60)

We represent ρ̂"#;½ξ�ðtÞ by its Wigner function W[ξ](x, p; t) via

W ½ξ�ðx; p; tÞ ¼ 1
π

Z
dye�2ipyhx þ yjρ̂"#;½ξ�ðtÞjx � yi (61)

where xj i are the amplitude quadrature eigenstates, X̂ xj i ¼ x xj i.
We thus derive the equation of motion for W[ξ](x, p; t):

∂tW ½ξ�ðx; p; tÞ ¼ ϵβsξsðtÞ x∂p � p∂x
 �þ βsξsðtÞ

ffiffiffiffiffiffiffi
2n1

p
∂p þ κc

2 ∂xx þ ∂ppþ 1
2 ∂

2
p þ 1

2 ∂
2
x

� �h
þ κc

2 λ2 ∂pp� ∂xx
 �� iξqðtÞθðtÞ � i

ffiffiffiffiffiffiffiffiffiffiffiffi
2κcγff

p
∂p þ 2p
 �

θðtÞ � 2γffθðtÞ
�
W ½ξ�ðx; p; tÞ:

(62)

This deformed Fokker–Planck equation is at most quadratic in x, p,
and their derivatives, as expected because the original master
equation is at most quadratic in d̂; d̂

y
. Thus for a Gaussian initial

condition of the spectator, the Wigner function is Gaussian for
all times.
We introduce the Fourier-transformed Wigner function via

Wðx; p; tÞ ¼
Z

dk
2π

Z
dq
2π

eikxþiqpW½k; q; t�; (63)

for which the Gaussian ansatz is given by
W½k;q;t�
W½0;0;0� ¼ exp �iνðtÞ þ ikxðtÞ þ iqpðtÞ½ �

´ exp � 1
2 fk2σxðtÞ þ q2σpðtÞg � kqσxpðtÞ

� �
:

(64)

Here the Gaussian parameters are: the quadrature means
xðtÞ; pðtÞ, the covariances σx(t), σp(t), and σxp(t), and finally
the overall phase ν(t) which yields the stochastic qubit
coherence:

ρ"#;½ξ�ðtÞ ¼ trs½ρ̂"#;½ξ�ðtÞ� ¼
Z

dxdpW ½ξ�ðx; p; tÞ ¼ e�iνðtÞ: (65)

In general ν(t) is complex-valued; the real part is a true
accumulated phase, and the imaginary part is the mean loss of
coherence due to the quantum average over measurement
outcomes implicit in the unconditional master equation. We thus
identify the real and imaginary parts of ν(t) with the accumulated
phase ϕ[ξ](t) and the measurement imprecision noise decoherence
Λimp(t) (cf. Eqs.(24) and (26)):

ϕ½ξ�ðtÞ � Re½νðtÞ�; ΛimpðtÞ � �Im½νðtÞ�: (66)

After substituting the Gaussian ansatz in Eq. (62) and matching
Fourier coefficients, we find

∂tνðtÞ ¼ �ξqðtÞ þ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
2κcγff

p
pðtÞ þ 2iγff

h i
θðtÞ; (67)

∂txðtÞ ¼ � κa
2 xðtÞ þ ϵβsξsðtÞpðtÞ

þ2i
ffiffiffiffiffiffiffiffiffiffiffiffi
2κcγff

p
σxpðtÞθðtÞ;

(68)

∂tpðtÞ ¼ � κϕ
2 pðtÞ � ϵβsξsðtÞxðtÞ þ

ffiffiffiffiffiffiffi
2n1

p
βsξsðtÞ

þi
ffiffiffiffiffiffiffiffiffiffiffiffi
2κcγff

p
2σpðtÞ � 1
� �

θðtÞ; (69)

∂tσxðtÞ ¼ �κaσxðtÞ þ κc
2
þ 2ϵβsξsðtÞσxpðtÞ; (70)

∂tσpðtÞ ¼ �κϕσpðtÞ þ κc
2
� 2ϵβsξsðtÞσxpðtÞ; (71)

∂tσxpðtÞ ¼ �κcσxpðtÞ þ ϵβsξsðtÞ σpðtÞ � σxðtÞ
� �

; (72)

where κϕ= κc(1+ λ2) (cf. Eq. (6)) and κa= κc(1− λ2) is the
amplitude quadrature damping rate. The overall phase ν(t) has
three contributions: the direct environmental noise ξq(t), the
added noise from the homodyne current∝ γff, and the signal in
the homodyne current / pðtÞ containing both the environmental
and added quantum noises.
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Making the linear noise drive approximation (by setting ϵ= 0),
we find the overall phase ν(t):

νðtÞ ¼ R t
0 dt

0 ξqðt0Þ � κϕ
2 αs

R t0
�1 dse�κϕðt0�sÞ=2ξsðsÞ

h i
� 2iγff

ð1þλ2Þ2 ð1� λ2Þ2t þ 8λ2
κϕ

1� e�κϕt=2
 �h i

:
(73)

We immediately read off the real part of ν(t) as Eq. (24), and the
imaginary part of ν(t) as Eq. (26), upon replacement of γff using Eq.
(25).

Linear noise drive approximation
We analyze here the effects of the unwanted displaced-frame
spurious phase noise term βsξsðtÞd̂

y
d̂ (c.f. Eq. (8)), and derive Eqs.

(10) and (11) that determine when it is valid to drop this
interaction. We also derive an approximate expression that
describes the small amount of extra qubit dephasing that would
result from retaining the spurious phase noise coupling, and
confirm via explicit numerical simulations its validity.
We start with Eqs. (67)–(72) with ϵ= 1, so as to retain the phase

noise terms. Generically, these equations are not analytically
solvable for nonzero squeezing (λ2 ≠ 0). We discuss the interplay of
phase noise and squeezing below. For now, we let λ2= 0 which
sets κϕ= κa= κc in Eqs. (67)–(72). With one decay rate for both
quadratures, the equations are solvable. The overall complex qubit
phase is thus given by

νðtÞ ¼ �2iγfft

þ
Z t

0
dt0 ξqðt0Þ � κc

2 αs

Z t0

�1
dse�

κc
2 ðt0�sÞξsðsÞ cosψðt0; sÞ

" #

(74)

where ψðt0; sÞ is the accumulated phase due to the displaced-
frame spurious phase noise:

ψðt0; sÞ � ϵβs

Z t0

s
dτξsðτÞ: (75)

From this we see that making the linear noise drive approximation
(setting ϵ= 0) amounts to assuming ψ(t, s)= 0 (cf. the real part of
Eq. (74) vs. the real part of Eq. (73)).
This exact closed-form expression for the accumulated phase

ϕ½ξ�ðtÞ ¼ Re½νðtÞ� is a remarkably simple extension of Eq. (24).
Unfortunately, it makes ϕ[ξ](t) a nonlinear function of ξs(t), making
analytic classical stochastic averaging challenging. While pertur-
bative approaches to this problem are possible (see e.g., refs. 59,60),
we consider a more heuristic approach.
We want to find conditions where it is safe to neglect the

unwanted frequency noise, i.e., approximate the phase
ψðt0; sÞ ’ 0. Note crucially that from Eq. (74), contributions from
this phase are exponentially suppressed if t0 � s>1=κc: the cavity
only experiences this phase diffusion over a limited time
window ~ 1/κc. This observation then motivates the following
heuristic condition: the effect of frequency noise (in the displaced
frame) can be neglected as long as the RMS value of ψðt0; sÞ is
small on timescales t0 � s � 1=κc, i.e.

1� cosψð1=κc; 0Þ 	 1
2
ψð1=κc; 0Þ2 � 1 (76)

Computing the variance of ψ(1/κc, 0) in terms of the noise spectral
density, the condition of Eq. (76) becomes

1
2
β2s

Z
dω
2π

S½ω�
ω2 jY fidðω; 1=κcÞj2 � 1; (77)

where Yfid(ω, τ) is the free induction decay filter function in Eq.
(22). Substituting for Yfid(t), this becomes Eq. (10).
Because the expression Eq. (24) for the accumulated qubit

phase ϕ[ξ](t) is an approximation, the perfect noise cancellation
that can be achieved for optimal αs= 1 is only approximately true.

Here we seek an estimate of the additional small qubit dephasing
that will arises from the displaced-frame spurious phase noise, Eq.
(9). We again focus on the no squeezing case, λ2= 0, and assume
that the spectral density always satisfies Eq. (10) for a given κc.
In Eq. (74), whose real part is ϕ[ξ](t), the∝ αs term will typically

be suppressed by the phase noise. Following the argument above,
a nonzero RMS value of ψ(1/κc, 0) results in cosψð1=κc; 0Þ<1,
thereby effectively renormalizing αs to ~αs<αs. We equate the
renormalized linear-in-ξs(t) qubit phase accumulation (with
transduction strength ~αs) to the full qubit phase accumulation
with the RMS-averaged phase ψ(1/κc, 0):

~αs 	 αscosψð1=κc; 0Þ (78)

This renormalization effect suggests a simple mitigation strategy:
to optimally cancel long-time qubit dephasing, one should
increase αs above one, so that the renormalized parameter
~αs ¼ 1. In practice, this tuning would happen naturally if one
adjusted the experimental parameters that control αs to
minimize the long-time dephasing. This suggests that our
general strategy can be effective even in regimes where the
leading effects of the residual displaced-frame phase noise
contribute.
In what follows, we will use Eq. (78) to test whether our

approximate treatment of the spurious phase noise is indeed
accurate. If αs= 1, then the renormalization in Eq. (78) will lead to
a small amount of extra dephasing. Using Eq. (35) the long-time
qubit dephasing is now given by

χðt ! 1Þ ¼ 1
2 β2s

R
dω
2π

S½ω�
ω2 jY fidðω; 1=κcÞj2

h i
S½0�t

þΛimpðtÞ þ χ initð1Þ
(79)

where the first term is our estimate for the extra dephasing from
cavity phase noise (expanded to lowest order in the noise). We see
that this extra dephasing is suppressed over the bare dephasing
Γ0= S[0]/2 by the LHS of Eq. (10):

Γres
Γ0

	 β2s

Z
dω
2π

S½ω�
ω2

jY fidðω; 1=κcÞj2
� �

� 1: (80)

Next, we will text this approximation against numerically-exact
stochastic averaging, showing a good agreement. This shows that
our approximate treatment of the residual displaced-frame phase
noise is valid.
To check the validity of the linear noise drive approximation, we

numerically compute the qubit coherence function under the full
spectator Hamiltonian Eq. (8) using generated noise time series
and averaging over the noise realizations. We numerically
integrate Eqs. (67)–(72) for the Gaussian parameters and neglect
the quantum effects (i.e., the imaginary parts).
Neglecting squeezing (λ2= 0) to simplify the numerical

integration, we compare the numerically computed dephasing
function χn(t) to the analytic expression Eq. (29) calculated under
the linear noise drive approximation. We consider Lorentzian
noise

S½ω� ¼ S0ðγ2=4Þ=ðω2 þ γ2=4Þ (81)

of moderate to large bandwidth γ ≥ κc and varying zero-frequency
noise strengths 10−3≤ S0/κc ≤ 10−1.
We average over 105 noise realizations for each numerically

integrated χn(t). We verify convergence of the numerical simula-
tions by also numerically integrating the linear noise drive
approximation decoherence functions at each parameter choice
and comparing with the analytic expressions. To compare the
approximation with the full spectator dynamics, we compute a
residual dephasing function

χresðtÞ ¼ χnðtÞ � χðtÞ; (82)
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where χ(t) is the analytic expression Eq. (29), neglecting Λimp(t).
This is compared with the estimated linear residual dephasing
with rate Γres given by Eq. (80). The results are shown in Fig. 7
where we plot the ratio χresðtÞ=ðΓrestÞ as a function of time. We see
that Eq. (80) is a good order-of-magnitude estimate of the residual
long-time dephasing rate.
The interplay between classical spurious phase noise (c.f. Eq. (9))

and squeezing places further constraints on the operating regime
of the spectator mode beyond Eq. (77). This is due to the random
mixing of canonical squeezed and amplified quadratures by the
phase noise. Generically, the Gaussian parameter equations of
motion (cf. Eqs. (67)–(72)) are not solvable in closed form when
the spectator mode is parametrically driven, λ2 ≠ 0. However,
following refs. 41–43, we obtain the following heuristic estimate for
how much the phase noise degrades the squeezing.
The phase noise generates an RMS average rotation of phase

space by angle θrms, thus rotating the maximally-amplified
amplitude quadrature (X) fluctuations into the maximally-
squeezed phase quadrature (P):

ðΔPÞ2 ¼ ðΔPð0ÞÞ2cos2θrms þ ðΔXð0ÞÞ2sin2θrms (83)

The unperturbed quadrature fluctuation levels are ΔP(0)= (1− λ2)/
(1+ λ2) and ΔX(0)= (1+ λ2)/(1− λ2). Because of this quadrature
mixing, a non-zero θrms sets a limit to the maximum amount of
squeezing that can be used. By minimizing (ΔP)2 with respect to
λ2, the optimal parametric drive (i.e. squeezing strength) is

determined by:

ð1� λ2Þ4
ð1þ λ2Þ4

¼ θ2rms: (84)

Applying more squeezing than this limit increases (ΔP)2. To be
safe, we want to err on the side of using less than the optimal
amount of squeezing. We thus use the following (heuristic)
constraint (obtained by bounding the denominator on the RHS
above by its maximum value):

ð1� λ2Þ4\16θ2rms; (85)

The mean rotation angle θrms is set by the RMS-averaged
accumulated phase space rotation over the lifetime of the
spectator mode 1/κc:

θ2rms ¼ ϕðtÞ½ �2; ϕðtÞ ¼
Z 1=κc

0
dtβsξsðtÞ: (86)

For Gaussian noise the limit on squeezing is thus

ð1� λ2Þ4\16β2s

Z
dω
2π

S½ω�
ω2

sin2ðω=2κcÞ: (87)

To check whether this condition is indeed sufficient, we
consider the limit of quasistatic noise, where we can perform
exact calculations. In this case, ξs(t)= ξs, a Gaussian random
variable with variance σ2. The Gaussian parameter equations of
motion are exactly solvable. It can be shown that the most
stringent limit on squeezing is set by the increased measurement
imprecision noise due to amplitude quadrature noise being
rotated into the squeezed phase quadrature. This causes an
increase in the long-time measurement imprecision noise
dephasing Λimp(t→∞). For each noise realization ξs, Λimp(t→∞)
is (up to a constant)

Λimpðt ! 1Þ ¼ 2γfft

ð1þ λ2Þ2
ð1� λ2Þ2 þ 16λ2β

2
s ξ

2
s

ð1� λ2Þ2κ2c

" #
; (88)

where the first term in brackets is the dephasing due to the
fluctuations in the squeezed phase quadrature, and the second
term is the contribution due to the small rotation θ∝ ξs/κc of the
amplitude quadrature into the phase quadrature.
We can now use this expression to determine when it is

permissible to neglect the last term, i.e., the unwanted rotated
noise from the amplified quadrature is valid. We immediately
obtain

ð1� λ2Þ4\16β2s ξ
2
s=κ

2
c : (89)

Taking the stochastic average of this condition over the classical
noise then yields the quasistatic noise limit of our more general
Eq. (87) derived above:

ð1� λ2Þ4\16β2sσ
2=κ2c : (90)

Parameter estimation in a photonic state
Here we briefly review the problem of estimating the small
rotation angle of a squeezed displaced state and show that the
estimation error exhibits Heisenberg scaling when the coherent
state is correctly squeezed. We start with a coherent state and
show that the estimation error is bounded by the standard
quantum limit in total photon number, then we consider a
squeezed state and show an improved scaling of the estimation
error with total photon number.
Suppose we have a coherent state ψ0j i ¼ D̂ðαÞ 0j i, where the

displacement operator is D̂ðαÞ ¼ exp½αây � α
â�. Without loss of
generality, we take the displacement to be real α > 0 which
defines the amplitude quadrature [X̂ ¼ ðây þ âÞ=2]. This state is

Fig. 7 Numerical verification of the linear noise drive approxima-
tion. The ratio of residual dephasing due to the spurious phase
noise χresðtÞ (cf. Eq. (82)) to the estimated residual linear dephasing
(rate Γres, cf. Eq. (80)) vs. time. Here we consider Lorentzian noise of
indicated zero-frequency strengths S0= S[0] (this is the relevant
small parameter which should satisfy S0/κc≪ 1). Each plot shows a
different noise bandwidth γ, as indicated. We see that, after some
initial nonlinear residual dephasing, the linear rate estimate Eq. (80)
is a reasonable estimate of the residual dephasing, validating the
linear noise drive approximation. Here we take βs= 1 and λ2= 0. The
linear drive strength λ1 is irrelevant.
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rotated in phase space by a small angle θ≪ 1:

ψθj i ¼ eiθâ
yâ ψ0j i: (91)

The problem is to estimate this angle given n ¼ α2 photons in the
state ψθj i. For small θ≪ 1, a measurement of the phase
quadrature [P̂ ¼ iðây � âÞ=2] yields the estimate

hP̂i ¼ α sin θ 	 αθ ¼
ffiffiffi
n

p
θ: (92)

The uncertainty ΔP associated with this measurement depends on
the variance of the phase quadrature:

ðΔPÞ2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hP̂2i � hP̂i2

q
¼ 1

4
: (93)

The estimation error, Δθ ¼ ΔP=ðj∂hP̂i=∂θjÞ, is thus
Δθ ¼ 1

2
ffiffiffi
n

p (94)

in terms of the total number of photons n in the state ψθj i. This is
the standard quantum limit scaling of the estimation error with n
measurement photons (i.e., n photons in the state ψθj i)29.
Now we turn to the case where the state is squeezed. The initial

state is ψ0j i ¼ D̂ðαÞŜð�rÞ 0j i, where the squeeze operator is ŜðξÞ ¼
exp½ðξ
â2 � ξây2Þ=2� for ξ= reiϕ. The phase ϕ= π is chosen to
reduce the variance of the phase quadrature. Again the state is
rotated in phase space by an angle θ≪ 1 (cf. Eq. (91)) and again
the angle estimate is given by the measurement of the phase
quadrature hP̂i ¼ α sin θ 	 αθ. The uncertainty ΔP associated with
this measurement is now

ðΔPÞ2 	 1
4
e�2r ; (95)

assuming a small rotation angle θ≪ e−2r. The estimation error is
thus

Δθ ¼ 1
2α

e�r : (96)

The total number of photons in the squeezed coherent state is
n= nd + ns where nd ¼ jhâij2 ¼ α2 is the displacement photon
number, and ns ¼ hâyâi � jhâij2 ¼ sinh2r is the squeezing photon
number. For r≫ 1 we have er ¼ 2

ffiffiffiffiffi
ns

p
, thus the estimation error is

Δθ ¼ 1=4
ffiffiffiffiffiffiffiffiffi
ndns

p
. Minimizing over the partition of the fixed total

photon number n yields nd ¼ ns ¼ n=2. Therefore, in terms of n,
the estimation error is

Δθ ¼ 1
n
; (97)

which is Heisenberg-limited scaling of the estimation error with n
measurement photons29.

Autonomous spectator
As discussed in the main text, Eq. (16) is not limited to describing
the physical setup of homodyne measurement and feedforward. As
shown in ref. 35, measurement and feedforward can be imple-
mented autonomously using nonreciprocal interactions generated
via engineered dissipation. Here we give a basic overview of how
such an autonomous spectator system can be engineered.
To implement an autonomous spectator mode, nothing must

change in Eq. (12) for Ĥs;½ξ�ðtÞ nor in Eq. (1) for Ĥq;½ξ�ðtÞ. Only the
physical system which implements the coherent interaction Ĥint,
Eq. (17), and the dissipation L̂, Eq. (18), must change. Namely, Ĥint,
must actually be implemented as written, and L̂, must be
engineered by coupling the qubit and spectator to a reservoir35,61.
Recall that in the measurement and feedforward picture, the
combination of dissipation and coherent interaction is a descrip-
tion of the homodyne detection and feedforward of the
measurement record; no Ĥint between the spectator and qubit is
actually directly implemented. These changes to the physical
setup are shown in Fig. 3.

A crucial element of the autonomous spectator implementation
is the longitudinal coupling to the qubit required by Ĥint (cf. Eq.
(17)), i.e., an interaction of the form

Ĥlong ¼ g eiθd̂ þ e�iθd̂
y� �
σ̂z; (98)

where â is a photonic mode and θ picks out a quadrature of that
mode. E.g., in the context of superconducting circuits, such
couplings have been studied theoretically62–64 and demonstrated
experimentally for linear resonators65. Longitudinal couplings
have also been experimentally realized by dispersively coupling
a cavity to a qubit and displacing the linear cavity66.
To engineer the collective dissipation generated by L̂ (cf. Eq.

(18), we follow refs. 35,61 and introduce an auxiliary mode b̂ with a
damping rate γb to which we couple both the spectator and the
qubit:

Ĥaux ¼ 1
2
ffiffiffiffiffiffiffiffiffi
γbκc

p
d̂
y
b̂þ h:c:

� �
þ 1
2
ffiffiffiffiffiffiffiffiffi
γbγff

p
b̂þ b̂

y� �
σ̂z: (99)

By heavily damping this mode, γb≫ κc, γff, we can adiabatically
eliminate it from the dynamics, thus deriving a dissipative
interaction between the spectator and qubit.
The auxiliary Hamiltonian can be rewritten as

Ĥaux ¼ 1
2
ffiffiffiffiffi
γb

p
b̂
y
L̂þ h:c:

� �
; (100)

in terms of the collective jump operator L̂. Thus in the limit
γb≫ κcγff we arrive at the dissipative interaction

D½L̂�ρ̂; (101)

for the reduced spectator-qubit density matrix ρ̂ ¼ trbfρ̂totg (i.e.,
after tracing out the auxiliary mode b̂).
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