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Hierarchical quantum circuit representations for neural
architecture search
Matt Lourens 1✉, Ilya Sinayskiy 2,3, Daniel K. Park 4,5, Carsten Blank 6 and Francesco Petruccione 1,3,7

Quantum circuit algorithms often require architectural design choices analogous to those made in constructing neural and tensor
networks. These tend to be hierarchical, modular and exhibit repeating patterns. Neural Architecture Search (NAS) attempts to
automate neural network design through learning network architecture and achieves state-of-the-art performance. We propose a
framework for representing quantum circuit architectures using techniques from NAS, which enables search space design and
architecture search. We use this framework to justify the importance of circuit architecture in quantum machine learning by
generating a family of Quantum Convolutional Neural Networks (QCNNs) and evaluating them on a music genre classification
dataset, GTZAN. Furthermore, we employ a genetic algorithm to perform Quantum Phase Recognition (QPR) as an example of
architecture search with our representation. Finally, we implement the framework as an open-source Python package to enable
dynamic circuit creation and facilitate circuit search space design for NAS.
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INTRODUCTION
Machine learning using trainable quantum circuits provides
promising applications for quantum computing1–4. Among various
parameterised quantum circuit (PQC) models, the Quantum
Convolutional Neural Network (QCNN) introduced in ref. 5 stands
out for its shallow circuit depth, absence of barren plateaus6, and
good generalisation capabilities7. It has been implemented
experimentally8 and combines techniques from Quantum Error
Correction (QEC), Tensor Networks (TNs) and deep learning.
Research at this intersection has been fruitful, yielding deep-
learning solutions for quantum many-body problems9–12,
quantum-inspired insights for deep learning13–15 and equiva-
lences between them16–18. Deep learning has been widely
successful in recent years with applications spanning from content
filtering and product recommendations to aided medical diag-
nosis and scientific research. Its main characteristic, learning
features from raw data, eliminates the need for manual feature
design by experts19. AlexNet20 demonstrated this and marked the
shift in focus from feature design to architecture design21.
Naturally, the next step is learning network architecture, which
Neural Architecture Search (NAS) aims to achieve22. NAS has
already produced state-of-the-art deep-learning models with
automatically designed architectures21,23–25. NAS consist of three
main categories: search space, search strategy and performance
estimation strategy22. The search space defines the set of possible
architectures that a search algorithm can consider, and carefully
designed search spaces help improve search efficiency and reduce
computational complexity26. Search space design often involves
encoding architectures using a cell-based representation. Usually,
a set of primitive operations, such as convolutions or pooling, are
combined into a cell to capture some design motif (compute
graph). Different cells are then stacked to form a complete
architecture. Cell-based representations are popular because they
can capture repeated motifs and modular design patterns, which

are often seen in successful hand-crafted architectures. Similar
patterns also appear in quantum circuit designs5,27–31. For
example, Grant et al.27 use hierarchical architectures based on
tensor networks to classify classical and quantum data. Similarly,
Cong et al.5 use the multiscale entanglement renormalisation
ansatz (MERA) as an instance of their proposed QCNN and discuss
generalisations for quantum analogues of convolution and
pooling operations. In this work, we formalise these design
patterns by providing a hierarchical representation for quantum
circuits. We use the QCNN as a basis and illustrate search space
design and architecture search with NAS for PQCs.
The QCNN belongs to the class of hybrid quantum-classical

algorithms, in which a quantum computer executes the circuit,
and a classical computer optimises its parameters. Two key factors
must be considered when using PQCs for machine learning: the
method of data encoding (feature map)32,33 and the choice of a
quantum circuit34–36. Both the challenge and objective are to find
a suitable quantum circuit for a given feature map that is
expressive and trainable33. The typical approach to finding a
circuit is to keep the architecture (gates layout) fixed and to
optimise continuous parameters such as rotation angles. Optimis-
ing architecture is referred to as variable structure ansatz in
literature and is generally not the focus because of its computa-
tional complexity2. However, the architecture of a circuit can
improve its expressive power and the effectiveness of initialisation
techniques28. Also, the QCNN’s defining characteristic is its
architecture, which we found to impact model performance
significantly. Therefore, we look towards NAS to optimise
architecture in a quantum circuit setting. This approach, some-
times referred to as quantum architecture search (QAS)37,38, has
shown promising results for the variational quantum eigensolver
(VQE)39–42, the quantum approximate optimisation algorithm
(QAOA)43,44 and general architecture search37,38,45–47. However,
these approaches are often task-specific or impose additional
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constraints, such as circuit topology or allowable gates, to make
them computationally feasible. To the best of the author’s
knowledge, there is currently no framework that can generate
hierarchical architectures such as the QCNN without imposing
such constraints.
One problem with the cell-based representation for NAS is that

the macro architecture, the sequence of cells, is fixed and must be
chosen22. Recently, Liu et al.26 proposed a hierarchical representa-
tion as a solution, where a cell sequence acts as the third level of a
multi-level hierarchy. In this representation, lower-level motifs act
as building blocks for higher-level ones, allowing both macro and
micro architecture to be learned. In this work, we follow a similar
approach and represent a QCNN architecture as a hierarchy of
directed graphs. On the lowest level are primitive operations such
as convolutions and pooling. The second level consists of
sequences of these primitives, such as convolution-pooling or
convolution–convolution units. Higher-level motifs then contain
sequences of these lower-level motifs. For example, the third level
could contain a sequence of three convolution-pooling units, as
seen in Fig. 1d. For the primitives, we define hyperparameters
such as strides and pooling filters that control their architectural
effect. This way, the representation can capture design motifs on
multiple levels, from the distribution of gates in a single layer to
overall hierarchical patterns such as tensor tree networks. We
demonstrate this by generating a family of QCNN architectures
based on popular motifs in literature. We then benchmark this
family of models and show that alternating architecture has a
greater impact on model performance than other modelling
components. By alternating architecture, we mean the following:
given a quantum circuit that consist of n unitary gates, an altered
architecture consists of the same n gates rearranged in a different
way on the circuit. The types of rearrangements may be changing
which qubits the gates act upon, altering the order of gate
occurrences, or adjusting larger architectural motifs, such as
pooling specific qubits (stop using them) while leaving others

available for subsequent gates and so on. We create architectural
families to show the impact of alternating architecture, any two
instances of the family will have the exact same unitaries, just
applied in a different order on different qubits. Consider the
machine-learning pipeline for classifying musical genres from
audio signals, seen in Fig. 1. We start with a 30-s recording of a
song (Fig. 1a) and transform it in two ways. The first is tabular form
(Fig. 1b), derived from standard digital signal processing statistics
of the audio signal. The second is image form (Fig. 1c), constructed
using a Mel-frequency spectrogram. Both datasets are bench-
marked separately, with their own data preprocessing and
encoding techniques applied. For the tabular data, we test
Principal Component Analysis (PCA) and tree-based feature
selection before encoding it in a quantum state using either
qubit, IQP, or amplitude encoding. Once encoded, we choose two-
qubit unitary ansatzes (Supplementary Fig. 1) Um and Vm for the
convolution and pooling primitives m= 1, 2,…, 6, as shown in
Fig. 1d. We test them across different instances of an architecture
family. Of all the components in this pipeline, alternating
architecture, that is changing how each Um and each Vm are
spread across the circuit, had the greatest impact on model
performance. In addition to our theoretical framework, we
implement it as an open-source Python package to enable
dynamic QCNN creation and facilitate search space design for
NAS. It allows users to experimentally determine suitable
architectures for specific modelling setups, such as finding circuits
that perform well under a specific noise or hardware configura-
tion, which is particularly relevant in the Noisy Intermediate-Scale
Quantum (NISQ)48 era. In addition, as more qubits become
available, the hierarchical nature of our framework provides a
natural way to scale up the same model. In summary, our
contributions are the architectural representation for QCNNs, a
Python package for dynamic QCNN creation, and experimental
results on the potential advantage of architecture search in a
quantum setting.

Fig. 1 Machine-learning pipeline for music genre classification. The machine-learning pipeline we implemented for music genre
classification. Given an audio signal of a song (a), we generate two forms of data: tabular (b) and image (c). Each form has data preprocessing
applied before being encoded into a quantum state (d). The QCNN circuit shown in (d) favours Principal Component Analysis (PCA) because
qubits are pooled from bottom to top, and principal components are encoded from top to bottom. This architecture is an instance of the
reverse binary tree family that we generated with our framework.
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The remainder of this paper is structured as follows: we begin
with our main results by summarising the architectural represen-
tation for QCNNs and then show the effect of alternating
architecture, justifying its importance. We then provide an
example of architecture search with our representation by
employing an evolutionary algorithm to perform QPR. Following
this, we give details of our framework by providing a mathema-
tical formalism for the representation and describing its use. Next,
with the formalism at hand, we show how it facilitates search
space design by describing the space we created for the
benchmark experiments. We then discuss generalisations of
formalism and the applicability of our representation with search
algorithms. After this, we elaborate on our experimental setup in
“Methods”. Finally, we discuss applications and future steps.

RESULTS
Architectural representation
Figure 2 shows our architectural representation for QCNNs. We
define two-qubit unitary ansatzes from a given set of gates, and
capture design motifs Ml

k on different levels l of the hierarchy. On
the lowest level l= 1, we define primitives which act as building
blocks for the architecture. For example, a convolution operation
with stride one is encoded as the directed graph M1

1, and with
stride three as M1

2. The directed graph M1
3 is a pooling operation

that measures the bottom half of the circuit, and M1
4 measures

from the inside outwards. Combined, they can form higher-level
motifs such as convolution-pooling units M2

1 (e),
convolution–convolution units M2

2, or convolution-pooling-
convolution units M2

3. The highest level l= L contains only one
motif ML

1, the complete QCNN architecture. ML
1 is a hierarchy of

directed graphs fully specifying how to spread the unitary
ansatzes across the circuit. This hierarchical representation is
based on the one from ref. 26 for deep neural networks (DNNs),
and allows for the capture of modularised design patterns and
repeated motifs. The two lines of code (e) and (f) show the power
of this representation as it is all that is required to create the entire
QCNN circuit from Fig. 1d. The code comes from the Python
package we implemented based on the work of this paper. It
facilitates dynamic QCNN creation and search space design.

Architectural impact
The details regarding specific notation and representation of the
framework are given after this section, first we justify it with the
following experimental results. We also give background on
QCNNs in Supplementary Note 1 and on quantum machine
learning in Supplementary Note 2 for more context. To illustrate
the impact of architecture on model performance, we compare
the fixed architecture from the experiments of ref. 29 to other
architectures in the same family while keeping all other
components the same. The only difference in each comparison
is architecture (how the unitaries are spread across the circuit). The

Fig. 2 Hierarchical quantum circuit representation. An overview of our architectural representation for QCNNs. From a given set of gates, we
build two-qubit unitary ansatzes. The representation then captures design motifs Ml

k on different levels l of the hierarchy. On the lowest level
l= 1, we define primitives which act as building blocks for the architecture. For example, a convolution operation with stride one is encoded
as the directed graph M1

1. The directed graph M1
3 is a pooling operation that measures the bottom half of the circuit. Combined, they form the

level two motif (e): a convolution-pooling unit M2
1. Higher-level motifs consist of combinations of lower-level motifs up until the final level l= L,

which contains only one motif ML
1, the complete QCNN architecture. ML

1 is a hierarchy of directed graphs fully specifying how to spread the
unitary ansatzes across the circuit. The two lines of code (e) and (f) show the power of this representation as it is all that is required to create
the entire QCNN circuit from Fig. 1d. The code comes from the Python package we implemented based on the work of this paper. It facilitates
dynamic QCNN creation and search space design.
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architecture in ref. 29 is represented within our framework as:
(sc, F*, sp)= (1, even, 0)↦Qfree(8)+ (Qconv(1)+Qpool(0, Feven)) 3,
3, see Algorithm 1. To evaluate their performance, we use the
country vs rock genre pair, which proved to be one of the most
difficult classification tasks from the 45 possible combinations. We
compare eight unitary ansatzes with different levels of complexity,
shown in Supplementary Fig. 1.
Table 1 shows the results of the comparisons, the reference

architecture is as described above and the discovered alteration
found via random search. We note the first important result, we
improved the performance of every ansatz, in one case, by
18.05%, through the random search of the architecture space.
Ansatz refers to the two-qubit unitary used for the convolution
operation of a model. For example, the model in Fig. 1d is
described by (1, right, 0) and ansatz (a) corresponds to U1, U2 and
U3 being the circuit in Supplementary Fig. 1a. Each value
represents the average model accuracy and standard deviation
from 30 separate trained instances on the same held-out test set.
The second important result is that alternating architecture can

improve model performance without increasing complexity. For
instance, the best-performing model for the reference architecture
is with ansatz (g), which has an average accuracy of 73.24%.
However, this ansatz causes the model to have 10 × 3= 30
parameters. In contrast, by alternating the architecture with the
simplest ansatz (a), the model outperformed the best reference
model with an average accuracy of 75.14% while only having
3 × 2= 6 parameters. The parameter counts come from each
model having N= 8 qubits and the same number of unitaries,
3N− 2→ 3(8)− 2= 22, of which 13 are for convolutions. See
“Search space design” and Algorithm 1 for more details. A model
has three convolutions, and each convolution shares weights
between its two-qubit unitaries. This means that the two-qubit
unitary ansatz primarily determines the number of parameters to
optimise for a model. For example, a model with ansatz (a) have
2 × 3= 6 parameters to optimise because the ansatz has two
parameters.
Another interesting result is for ansatz (c), the reference

architecture could only obtain an average accuracy of 52.69%,
indicating its inability to find any kind of local minimum during

training, leading one to think it might be a barren plateau. But, the
altered architecture was able to find a local minima and improve
the average accuracy by 18.05%.
We would like to note that our primary objective in these

experiments is to demonstrate the potential for performance
improvement. As such, we only conducted random search for ~2 h
on an i7-1165G7 processor for each ansatz. Consequently, for
higher parameter ansatzes, which correspond to longer training
times, the search space was less explored. This is likely the reason
behind the observed decrease in performance improvement for
larger parameter ansatzes. Therefore the observed improvements
are all lower bounds for the potential performance increase from
alternating architecture. We anticipate that significantly better
architectures may still exist within the space. Table 2 presents the
performance of the family of reverse binary trees (as described in
Algorithm 1) for ansatz (a). Due to its quick training time, ansatz (a)

Table 1. Architectural vs ansatz impact.

Architecture vs ansatz

Architecture Alteration

Ansatz,
#
Params

Reference New alteration Δ (sc, F
*, sp)

a 6 65.37 ± 2.8 75.14 ± 1.7 + 9.77 (6, left, 2)

b 6 56.34 ± 3.2 70.46 ± 1.0 + 14.12 (1, odd, 3)

c 12 52.69 ± 3.8 70.74 ± 1.3 + 18.05 (1, odd, 0)

d 18 67.13 ± 1.5 77.87 ± 2.4 + 9.87 (1, outside, 2)

e 18 67.87 ± 2.5 73.61 ± 1.8 + 5.74 (6, left, 0)

f 18 69.21 ± 2.6 74.80 ± 2.8 + 5.59 (1, left, 3)

g 30 73.24 ± 2.9 79.47 ± 2.2 + 6.23 (2, left, 1)

h 30 69.35 ± 4.1 71.71 ± 3.7 + 2.36 (2, left, 1)

The average accuracy and standard deviation of the country vs rock genre
pair on a held-out test set after 30 separate trained instances. The best
performing architecture for each ansatz is highlighted in bold. All
architectures come from the family of reverse binary trees, generated
with algorithm 1. The “reference” architecture is the one used in the
experiments of ref. 29 and the “alteration” was found through random
search within the same family. The unitary ansatzes (a–h) are shown in
Supplementary Fig. 1.

Table 2. Search space of 1a.

Performance across architecture search space

Convolution stride, sc

F*, sp 1 2 3 4 5 6 7 Avg

Even 67.01 63.63 60.76 64.93 59.98 63.1 59.49 62.81

0 65.97 58.68 56.25 66.67 62.85 59.72 63.43 61.88

1 66.32 66.32 63.54 60.07 61.46 71.88 54.17 63.73

2 66.67 60.76 60.07 68.06 54.17 58.8 63.89 61.81

3 69.1 68.75 63.19 64.93 61.46 60.19 56.48 63.84

Inside 66.41 71.96 58.25 54.25 69.27 68.15 60.53 64.18

0 65.28 72.22 60.07 49.65 70.49 68.4 60.65 63.94

1 67.01 71.18 58.68 55.9 66.32 68.4 60.19 64.09

2 68.4 71.53 58.33 51.74 71.88 68.98 58.8 64.26

3 64.93 72.92 55.9 59.72 68.4 66.67 62.5 64.42

Left 62.85 61.63 59.38 59.03 51.56 72.52 72.45 62.22

0 66.67 67.01 56.94 61.46 52.08 71.18 73.61 63.79

1 59.03 62.15 52.78 57.99 52.08 71.18 73.61 60.8

2 63.19 63.19 63.19 60.76 51.74 75.93 71.76 63.51

3 62.5 54.17 64.58 55.9 50.35 72.69 70.83 60.79

Odd 61.11 68.75 63.37 62.76 64.67 60.52 57.99 62.96

0 60.76 71.88 63.19 58.33 63.54 59.38 57.87 62.29

1 63.54 67.36 64.58 63.54 64.24 62.5 59.26 63.73

2 60.42 70.14 64.58 65.97 69.1 58.8 56.94 64.16

3 59.72 65.62 61.11 63.19 61.81 61.11 57.87 61.65

Outside 60.68 65.8 65.54 57.12 62.15 59.83 67.13 62.51

0 67.36 59.72 71.88 54.17 67.01 60.07 70.37 64.15

1 53.47 69.79 62.15 56.25 61.11 58.33 70.83 61.49

2 57.99 70.83 60.07 61.11 59.03 59.26 66.67 62.07

3 63.89 62.85 68.06 56.94 61.46 61.57 60.65 62.29

Right 70.05 65.63 64.41 53.65 68.66 63.69 60.65 63.94

0 70.14 63.54 64.58 50 68.4 61.11 62.96 62.96

1 69.79 67.71 64.58 69.1 68.06 67.01 57.87 66.62

2 70.14 62.15 63.89 43.75 68.75 62.04 61.57 61.75

3 70.14 69.1 64.58 51.74 69.44 64.35 60.19 64.37

Avg 64.68 66.23 61.95 58.62 62.72 64.69 63.04 63.11

Country vs Rock average accuracy within the reverse binary tree search
space, all with the ansatz from Supplementary Fig. 1a. The convolution
stride sc is shown on the horizontal axis and the combinations of pooling
filter F* and stride sp on the vertical. The best pooling filter and convolution
stride combinations are presented in bold along with the overall best
architecture (sc, F*, sp)= (6, left, 2).
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was the only case for which we managed to exhaust the search
space (168 architectures). In “Search space design”, we discuss
how the size of the family can be easily increased or decreased.
Each value represents the average accuracy of five trained
instances on the country vs rock genre pair. The overall accuracy
of the whole space is 63.11%, indicating that the reference
architecture from Table 1 was close to the mean performance. The
best-performing architecture in this space is (sc, F*, sp)= (6, left, 2),
with an average accuracy of 75.93%. This is the alteration from
Table 1 discovered through random search within the family of
reverse binary trees. It seems that the combination of Fleft and
sc= 6 performs particularly well for this task, with an average
accuracy of 72.52%. In general, it appears that the convolution
stride sc and pooling filter F* have the most significant impact on
performance. It is also worth noting that convolution strides of
sc= 3, 4, 5 performed poorly compared to the other values. The
range of performance in this space goes from a minimum of
43.75% to a maximum of 75.93%, demonstrating the potential
impact of architectural choices on model performance.
Finally, we compared the performance of two different

architectures on the image data across all genres. This time, we
used ansatz (g) to compare the Frightm and Fevenm pooling filters,
shown in Figs. 3 and 4. The image data is a low-resolution
(8 × 32= 256= 28 pixels) spectrogram of the audio signal. We did
not expect high accuracy from this data, but were interested in the
variation of performance for different architectures. Figures 3
and 4 show the difficulty of some genre pairs. Interestingly, the
Frightm pooling filter outperformed the Fevenm filter on almost all
genres. If we focus on the genre pairs that the models were able
to classify, we see that Frightm had 14 models that achieved an
accuracy above 75%, compared to the 5 of Fevenm . We also note that
the image data had no PCA or tree-based feature selection applied

to it, and the Frightm filter was still favoured. A similar result was
obtained with ansatz (a). This shows architecture impacts
performance even on low-resolution data.

Architectural search
In this section, we present an example of applying our
architectural representation in conjunction with evolutionary
search to perform Quantum Phase Recognition (QPR). The
specifics of the search algorithm can be found in "Generalisation
and search” but we utilise an algorithm similar to the one
employed in ref. 26. Mutations involve replacing a primitive within
a motif with a randomly generated one, while crossover consists
of combining two motifs end-to-end, if possible, or interweaving
them otherwise. To facilitate comparison, we consider the same
task and setup from the original QCNN paper5. The objective is to
recognise a Z2 ´Z2 symmetry-protected topological (SPT) phase
for a ground state that belongs to a family of cluster-Ising
Hamiltonians49:

H ¼ �J
XN�2

i¼1

ZiXiþ1Ziþ2 � h1
XN
i¼1

Xi � h2
XN�1

i¼1

XiXiþ1: (1)

Here, Xi, Zi are Pauli operators acting on the spin at site i and the
SPT phase contains a S= 1 Haldane chain50. The ground state can
belong to an SPT, paramagnetic or antiferromagnetic phase
depending on the values of h1, h2, and J. Our goal is to identify a
QCNN capable of distinguishing between SPT and other phases by
measuring a single qubit. Following the approach in ref. 5, we
consider a system of N= 15 spins and train a circuit on 40 equally
spaced points along h2= 0, where the ground state is known to
be in the SPT phase when h1 ≤ 1. We also evaluate the circuit with

Fig. 3 Frightm pooling filter results. QCNN with the Frightm pooling filter
using low-resolution image data. The accuracies for all genre pairs
are provided.

Fig. 4 Fevenm pooling filter results. QCNN with the Fevenm pooling filter
using low-resolution image data. The accuracies for all genre pairs
are provided.
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the same sample complexity5:

Mmin ¼ 1:962

ðarcsin ffiffiffi
p

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
arcsin p0

p Þ (2)

where P represents the probability of measuring a non-zero
expectation value and P0= 0.5. Equation (2) calculates the
minimum number of measurements required to be 95% confident
that P ≠ 0.5, with P being the expectation value of the circuit U
encoded with the ground state ψg

�� �
transformed into a

probability: p ¼ ð ψg

� ��U ψg

�� �þ 1Þ=2. Therefore a well-performing
QCNN will yield low values of Mmin near the phase boundary for
points within the SPT phase. We define the fitness of an
architecture as a linear combination of the sample complexity
values Min,Mmiddle for points in the SPT phase, and the mean
squared error MSEout for points outside the boundary. Figure 5
illustrates the points considered for Min, Mmiddle and MSEout.
During search we assigned the majority of the weight to Min as the
goal is to develop a model that confidently identifies SPT phases
near the boundary. To prevent a model from classifying all points
as SPT, MSEout is included, while Mmiddle ensures overall good
performance. Finally, during search we added a regularisation
term for the number of parameters, to find well-performing
architectures with low computational complexity.
Table 3 and Fig. 5 show the performance of the best

architecture found during search. The search algorithm identified
a QCNN with only 11 parameters, in contrast to the 1308
parameters of the original reference architecture. For points in the
SPT phase near the boundary, the sample complexity of the
discovered architecture (Min= 36.079) is lower than that of the
reference (61.523), resulting in 25 fewer measurements required
on average. Although the reference architecture exhibits slightly
better sample complexity for points in the middle of the phase
boundary (Mmiddle= 10.992) compared to the discovered archi-
tecture (Mmiddle= 13.253), and a marginally lower MSE for points
outside the phase boundary (MSEout= 0.164 compared to
MSEout= 0.167), the improvements in Min and the number of
parameters are substantial and more advantageous. The discov-
ered architecture is shown in Supplementary Fig. 2, and the phase
diagram it generates is shown in Fig. 5. The search was conducted
on a system equipped with two Intel Xeon E5-2640 processors
(2.0 GHz) and 128 GB of RAM, and it took ~2 h to discover the final
architecture (over 831 generations). Although we anticipate that

extending the search may yield even better architectures, the
primary goal of this experiment was to demonstrate a represen-
tative example of the search process and showcase the ease of
obtaining promising results. This emphasises the potential
advantages of architecture search in quantum computing tasks,
where the computational cost of a circuit can be reduced while
maintaining or even improving performance. We attribute this
success to a well-defined search space, with our representation
aiming to simplify the process of creating such spaces. Moreover,
our representation allows for the incorporation of hardware
constraints, facilitating the search for architectures that perform
well on specific quantum devices. We believe this to be a
necessary step towards the development of efficient quantum
algorithms for real-world applications. By employing a well-
structured representation and search space, we can streamline the
process of discovering optimised quantum circuit architectures
that are better suited for specific tasks and hardware.

Digraph formalism
We represent the QCNN architecture as a sequence of directed
graphs, each acting as a primitive operation such as a convolution
(Qconv) or pooling (Qpool). A primitive is the directed graph
G= (Q, E); its nodes Q represent available qubits, and oriented
edges E the connectivity of the unitary applied between a pair of
them. The direction of an edge indicates the order of interaction
for the unitary. For example, a CNOT gate with qubit i as control
and j as target is represented by the edge from qubit i to qubit j.
We also introduce other primitives, such as Qfree, that free up
pooled qubits for future operations. The effect of a primitive is
based on its hyperparameters and the effect of its predecessor.
This way, their individual and combined architectural effects are
captured, enabling them to be dynamically stacked one after
another to form the second level l= 2 motifs. Stacking these
stacks in different ways constitutes higher-level motifs until a final
level l= L, where one motif constitutes the entire QCNN
architecture. In the case of pooling, controlled unitaries are used
in place of measurement due to the deferred measurement
principle51. We define a QCNN architecture in Definition 1.
Definition 1. The k= 1, 2,…Kl motif on level l= 1, 2,…, L is the

tuple Ml
k ¼ ðMl�1

j jj 2 f1; 2; ¼ ; Kl�1gÞ. Motifs on the lowest level
M1

k are primitive operations, which form the set
Mð1Þ ¼ fM1

1;M
1
2; ¼ ;M1

K1
g. At the highest level l= L there is only

one motif ML
1 which is a hierarchy of tuples. ML

1 is flattened
through an assemble operation: M ¼ assembleðML

1Þ which
encodes each primitive into a directed graph Gm= (Qm, Em), the
nodes Qm are available qubits and edges Em the connectivity of

Fig. 5 Quantum phase recognition result. Expectation values for
the circuit found via evolutionary search for a system of
N= 15 spins. Points represent a test set of 64 × 64 ground states
for various h1 and h2 values of the Hamiltonian, J= 1. The inside,
middle and outside points were used to evaluate an architecture’s
fitness during search. The same colour scale as in5 is used to
facilitate comparison.

Table 3. Performance of architecture found with an evolutionary
search.

Metric Reference Found

Number of parameters 1308 11

Sample complexity (inside) 61.523 36.079

Sample complexity (middle) 10.992 13.253

MSE (outside) 0.164 0.167

Different performance metrics (lower is better) for the 15-qubit QCNN from
ref. 5 and the architecture found via evolutionary search. The best
performing architecture for each metric is highlighted in bold. Sample
complexity represents the expected number of measurements required to
be 95% confident that the ground state is in the SPT phase (non-zero
expectation value). Metrics are calculated on a set of points in the test set,
where inside refers to SPT points near the phase boundary, outside to non-
SPT points near the phase boundary and middle to points in between, as
shown in Fig. 5.
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unitaries applied between them. M describes the entire QCNN
architecture, M= (G1, G2,…, G∣M∣).
Figure 2 shows example motifs on different levels for a QCNN.

Higher-level motifs are tuples, and the lowest-level ones directed
graphs. The dependence between successive motifs is specified in
Definition 2.
Definition 2. Let x ∈ {c, p, f} indicate the primitive type for

{Qconv, Qpool, Qfree} and ML
1 be the highest level motif for a

QCNN. Then assembleðML
1Þ flattens depth-wise into M= (G1,

G2,…, G∣M∣) where Gm ¼ ðQx
m; E

x
mÞ. G1 is always a Qfree(Nq)

primitive specifying the number of available qubits with Nq. For
m > 1, Gm is defined as:

If Gm is a QfreeðNf Þprimitive then :

Qf
m ¼ f1; 2; ¼ ;Nfg;

Efm ¼ fg:
If Gm is a convolution primitive :

Qc
m ¼ Qx

m�1 if x 2 fc; fg;
Qx
m�1 n fi 2 ði; jÞ 2 Exm�1g if x ¼ p;

�
Ecm ¼ fði; jÞjði; jÞ 2 Qc

m ´Qc
mg:

If Gmis a pooling primitive :

Qp
m ¼ Qx

m�1 ifx 2 fc; fg;
Qx
m�1 n fi 2 ði; jÞ 2 Exm�1gif x ¼ p;

�
Epm ¼ ði; jÞjði; jÞ 2 Qp

m ´Qp
m; i ≠ j;

�
d�ðiÞ ¼ 0; dþðiÞ ¼ 1; d�ðjÞ � 1; dþðjÞ ¼ 0

�
:

with d−(i) and d+(i) referring to the indegree and outdegree of
node i, respectively, and ⧹ to set difference.
We show this digraph perspective in Fig. 6, it is the data

structure of the circuit in Fig. 1d. If the mth graph in M is a

convolution, we denote its two-qubit unitary acting on qubit i
and j as Uij

mðθÞ. Similarly, for pooling, we notate the unitary as
Vij
mðθÞ. The action of Vij

mðθÞ is measuring qubit i (the control),
which causes a unitary rotation V on qubit j (the target). With
this figure and notational scheme in mind, Definition 2 reads as
follows:
Qx
m is the set of available qubits for the mth primitive in M,

where x ∈ {c, p, f} for convolution, pooling or Qfree respectively.
The first primitive G1 is Qfree(Nq) which specifies the number of
available qubits Nq for future operations. Any proceeding m > 1
primitive Gm only has access to qubits not measured up to that
point. This is the previous primitive’s available qubits Qx

m�1 if its
type x ∈ {c, f } is a convolution or Qfree. Otherwise, for pooling,
x= p, it’s the set difference: Qx

m�1 n fi 2 ði; jÞ 2 Exm�1g since the i
indices during pooling ði; jÞ 2 Epm indicates measured qubits.
This is visualised as small red circles in Fig. 6. The only way to
make those qubits available again is through Qfree(Nf), which
can be used to free up Nf qubits. For the convolution primitive,
Ecm is the set of all pairs of qubits that have Uij

mðθÞ applied to
them. Finally, for the pooling primitive, Epm is the set of pairs of
qubits that have pooling unitaries Vij

mðθÞ applied to them. The
restriction is that if qubit i is measured, it cannot have any
other rotational unitary V applied to it within the same
primitive Gm. This means the indegree d− of node i is zero.
Similarly, if qubit i is measured, it may only have one
corresponding target, meaning that the outdegree d+ of node
i is one. In the same vein, no target qubit j can be the control
for another, d+(j)= 0. Every target qubit j have at least one
corresponding control qubit i, d−(j)≥1. It is possible for multiple
measured qubits to have the same target qubit, giving Epm a
surjective property.

Fig. 6 Directed graph view of Fig. 1d. Graph view for the circuit architecture in Fig. 1d. The same two-qubit unitary is used in all layers for the
convolution operation, i.e., Uij

m ¼ Um: Similarly, in this example, we use the same two-qubit pooling unitaries Vij
m ¼ Vm. The top left graph is

G1 ¼ ðQc
1; E

c
1Þ with all eight qubits Qc

1 available for the convolution operations Uij
1; ði; jÞ 2 Ec1. Below G1 is G2 with half the qubits of Qp

2 measured,
indicated by the ith indices of Vij

m; ði; jÞ 2 Ep2 . For example, qubit 8 2 Qp
2 is measured and V2 applied to qubit 1 2 Qp

2 as indicated by
V81
2 ; ð8; 1Þ 2 Ep2 . This pattern repeats until one qubit remains in G6, which is measured and used to classify the music genre.
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Following this definition, we can express a convolution or
pooling operation for the mth graph in M as:

eUm ¼
Y

ði;jÞ2Ecm
Uij
mðθÞ; (3)

eVm ¼
Y

ði;jÞ2Epm
Vij
mðθÞ: (4)

Let eWm ¼ eUm or eVm be the mth primitive in M based on whether
it’s a convolution or pooling and the identity I if it’s a Qfree
primitive. Then the state of the QCNN after one training run is:

ψj i ¼ eW jMj � � � eW4 eW3 eW2 eW1Uencoding 0j i: (5)

We note that the choice of V is unrestricted, which means that
within one layer each V can be a different rotation. Figure 1d
shows a special case where the same V is used per layer, which is
computationally favourable compared to using different ones. To
enable weight sharing, the QCNN require convolution unitaries to
be the same i.e., Uij

m ¼ Ukh
m where ði; jÞ 2; ðk; hÞ 2 Ecm. This formula-

tion only regards one and two-qubit unitaries for convolutions,
one-qubit unitaries being described with Ecm ¼ ði; iÞ; i 2 Qc

m. In
“Generalisation and search”, we extend it to multiple qubit
unitaries.
After training, ψj i in Eq. (5) is measured based on the type of

classification task, in this work, we focus on binary classification
allowing us estimate ŷ by measuring the remaining or specified
qubit in the computational basis:

ŷ ¼ Pðy ¼ 1Þ ¼ j 1h j ψj ij2: (6)

We note that multi-class classification is also possible by
measuring the other qubits and associating each with a different
class outcome. Following this, we calculate the cost of a training
run with Cðy; ŷÞ, then using numerical optimisation the cost is
reduced by updating the parameters from Eqs. (3) to (4) and
repeat the whole process until some local minimum is reached.
Resulting in a model alongside a set of parameters to be used for
classifying unseen data.

Controlling the primitives
We define basic hyperparameters that control the individual
architectural effect of a primitive. There are two broad classes of
primitives, special and operational. A special primitive has no
operational effect on the circuit, such as Qfree. Its purpose is to
make qubits available for future operational primitives and
therefore has one hyperparameter Nf for this specification. Nf is
typically an integer or set of integers corresponding to qubit

numberings:

Qf
m ¼ f1; 2; ¼ ;Nfg if Nf is an integer; (7)

Qf
m ¼ Nf if Nf is a set of integers: (8)

Each operational primitive has its own stride parameter
analogous to classical CNNs. For a given stride s, each qubit gets
paired with the one s qubits away modulo the number of available
qubits. For example, a stride of 1 pairs each qubit with its
neighbour. This depends on the qubit numbering used which is
based on the circuit topology. For illustration purposes, we use a
circular topological ordering, but any layout is possible as long as
some ordering is provided for Qf

1. For the convolution primitive,
we define its stride sc ∈ {1, 2, 3, . . . } as:

Ecm ¼ fði; ði þ scÞmod jQc
mjÞji 2 Qc

mg if jQc
mj> 2; (9)

Ecm ¼ fði; jÞji; j 2 Qc
m; i ≠ jg if jQc

mj ¼ 2; (10)

Ecm ¼ fði; iÞji 2 Qc
mg if jQc

mj ¼ 1: (11)

Equation (10) captures the case where there are only two qubits
available for a convolution and Eq. (11) when there is only one which
implies the convolution unitaries only consist of single qubit gates. A
stride of sc= 1 is a typical design motif for PQCs and the graph
formalism allow for a simple way to capture and generalise it. To
achieve translational invariance for all strides the two constraints:
jEcmj ¼ jQc

mj and ði; jÞ≠ ðk; hÞ where ði; jÞ 2; ðk; hÞ 2 Ecm are added.
Another option for translational invariance is a Qdense primitive,
which only differs from Qconv in that Ecm generates all possible
pairwise combinations of Qc

m. This primitive is available in the python
package but left out from the definition (because of its similarity).
Figure 7 shows different ways in which sc generate Ecm for

jQc
mj ¼ 8.
The pooling primitive has two hyperparameters, a stride sp and

filter F�m. The filter indicates which qubits to measure and the
stride how to pair them with the qubits remaining. We define the
filter as a binary string:

F�m ¼ w1w2 � � �wjQp
m j

wi ¼ 1 if qubit i ismeasured;

wi ¼ 0 otherwise:

�
(12)

For N= 8 qubits, the binary string F�m ¼ 00001111 translates to
measuring the rightmost qubits, i.e., fiji 2 Qp

m; i � 5g. Figure 6 is an
example where the pattern F�2 ¼ 00001111 ! F�4 ¼ 0011 ! F�6 ¼
01 is used, visually the qubits are removed from bottom to top.
Encoding filters as binary strings is useful since generating them
becomes generating languages, enabling the use of computer
scientific tools such as context free grammars and regular expressions
to describe families of filters. Pooling primitives enable hierarchical
architectures for QCNNs, and in “Search space design”, we illustrate
how they can be implemented to create a family resembling reverse
binary trees. The action of the filter is expressed as: F�m ? Qp

m ¼ Qx
mþ1

where ⋆ slices Qp
m corresponding to the 0 indices of F�m, i.e.,

wi= 0(not measured). For example 010⋆{4, 7, 2}= {4, 2}. This example

Fig. 7 Visualisation of different convolution strides. Diagram showing how changing the convolution stride sc generates different
configurations for Ecm.
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illustrates the case where an ordering was given to the set of available
qubits to represent some specific topology of the circuit. Let Qx

mþ1 ¼
F�m ? Qp

m then the pooling primitive stride sp= {1, 2,… } is defined as:

Epm ¼ fði; ðj þ spÞmod jQx
mþ1jÞji 2 Qp

m n Qx
mþ1; j 2 Qx

mþ1g: (13)

Search space design
We show how the digraph formalism facilitates QCNN generation
and search space design. Grant et al.27 exhibited the success of
hierarchical designs that resemble reverse binary trees. To create a
space of these architectures, we only need three levels of motifs.
The idea is to reduce the system size in half until one qubit
remains while alternating between convolution and pooling
operations. Given N qubits, a convolution stride sc, pooling stride
sp and a pooling filter F* that reduce system size in half, a reverse
binary tree QCNN is generated in Algorithm 1.

Algorithm 1. QCNN, reverse binary tree architecture.

Algorithm 1 shows how to create instances of this architecture
family. First, two primitives are created on the first level of the
hierarchy, a convolution operation M1

1 and a pooling operation M1
2.

They are then sequentially combined on level two as M2
1 ¼ ðM1

1;M
1
2Þ

to form a convolution-pooling unit. The third-level motif M3
1 repeats

this second-level motif M2
1 until the system only contains one qubit.

This is log2ðNÞ repetitions for N qubits because we chose F* to
reduce the system size in half during each pooling operation. The
addition and multiplication symbols act as append and extend for
tuples. For example, Ml

1 þMl
2 ¼ ðMl

1;M
l
2Þ and Ml

k ´ 3 ¼
ðMl

k ;M
l
k ;M

l
kÞ which allow for an intuitive way to build motifs. It is

easy to expand the algorithm for more intricate architectures, for
instance, by increasing the number of motifs per level and the
number of levels. A valid level four motif for Algorithm 1 would be
M4

1 ¼ ðM3
1 þM3

2Þ ´ 3, where M3
2 ¼ Qfreeð4Þ þM2

2 þM2
1 and M2

2 ¼
M1

1 ´ 2 which is the reverse binary tree architecture M3
1 then two

convolutions and one convolution-pooling unit on four qubits, all
repeated three times. Motifs can also be randomly selected on each
level to generate architectures. The python package we provide acts
as a tool to facilitate architecture generation this way.
In more detail, we now analyse the family of architectures

generated by Algorithm 1. First, we consider the possible pooling
filters F* that reduce system size in half. It is equivalent to
generating strings for the language A ¼ fwjw has an
equal number of 0s and 1s; jwj ¼ jQp

mjg. Let Nm�1 ¼ jQx
m�1j indi-

cate the number of available qubits for the filter F�m. Then based

on the
4
2

	 

¼ 6 possible equal binary strings of length four, we

construct the following pooling filters:

Frightm ¼ f0n
21

n
2jn ¼ Nm�1g; (14)

F leftm ¼ f1n
20

n
2jn ¼ Nm�1g; (15)

Foddm ¼ fð01Þn2jn ¼ Nm�1g; (16)

Fevenm ¼ fð10Þn2jn ¼ Nm�1g; (17)

F insidem ¼ f0n
41

n
20

n
4jn ¼ Nm�1g if Nm�1 > 2;

f01g if Nm�1 ¼ 2;

(
(18)

Foutsidem ¼ f1n
40

n
21

n
4jn ¼ Nm�1g ifj;Nm�1 > 2;

f10g if Nm�1 ¼ 2:

(
(19)

where the exponent a3≡ {a} ∘ {a} ∘ {a}= aaa refers to the regular
operation concatenation: A∘B= {xy∣x∈ A, y∈ B}. The pooling filter
Finside yields 0110. Visually this pattern pools qubits from the inside
(the middle of the circuit). See Fig. 8c. Figure 8a shows the
repeated usage of Fright for pooling. This particular pattern is useful
for data preprocessing techniques such as principal component
analysis (PCA) since PCA introduces an order of importance to the
features used in the model. Typically, the first principal component
(which explains the most variance) is encoded on the first qubit,
the second principal component on the second qubit and so on.
Therefore, it makes sense to pool the last qubits and leave the first
qubits in the model for as long as possible.
If N= 8, sc= 1, sp= 0 and F*= Fright then Algorithm 1 generates

the circuit in Fig. 1d, Fig. 2, Fig. 6f, and Fig. 8a. Specifically, Fig. 8
shows how different values for sc, spandF* generate different
instances of the family using Algorithm 1. The possible combina-
tions of N, sc, sp, F* represent the search space/family size. Since F*

reduces system size in half, it’s required that the number of
available qubits N is a power of two. Using integer strides causes
the jEcmj ¼ jQc

mj constraint (see “Controlling primitives”), which
enable translational invariance. The complexity of the model(in
terms of the number of unitaries used) then scales linearly with the
number of qubits N available. Specifically, N qubits result in 3N− 2
number of unitaries. This is because of the geometric series:
Nð 1

20
þ 1

21
þ � � � þ 1

2log2N�1Þ þ Nð 1
21
þ 1

22
þ � � � þ 1

2log2N�1Þ. Where the first
sum is for convolution unitaries and the second for pooling.

Generalisation and search
The digraph formalism extends naturally to multi-qubit unitaries,
enabling the representation of more intricate and larger-scale
architectures. In general, a primitive with n-qubit unitaries is
represented as a hypergraph G= (Q, E), where the edges E consist
of n-tuples. We introduce two additional hyperparameters, step
and offset, which control the construction of E. For instance, Fig. 9
shows three primitives, each with 3-qubit unitaries. The first two
have a stride of one, meaning that each 3-qubit unitary connects
to its neighbours. In contrast, the last primitive has a stride of
three, connecting every third qubit within the unitary. The offset
parameter determines the starting point for counting; Fig. 9a
begins with the first qubit, while Fig. 9b starts with the third. The
step parameter controls the position of the next unitary; for
example, Fig. 9a, b has a step of three, skipping two qubits before
creating another edge starting on the third qubit. Consequently,
the primitives with 2-qubit unitaries we’ve been considering thus
far are all special cases with a step of one and an offset of zero.
Another aspect to consider is the execution order of the unitaries,
which by default is the sequence in which the edges were created
for a primitive. Our package introduces an additional hyperpara-
meter to control this order. For example to execute the third edge
of Fig. 9a first followed by edge five, four, one and two, a value of
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(3, 5, 4, 1, 2) can be passed to the edge order hyperparameter.
Lastly, a boundary condition hyperparameter can also be
specified, allowing for the definition of open or periodic
boundaries for the qubits. This essentially determines whether
edge creation is calculated in modulo with respect to the number
of qubits or not, which in turn influences whether edge creation
ceases when no further connections can be made based on the
stride parameter.

Algorithm 2. Original QCNN from ref. 5.

The hyperparameters provided are sufficient to generate a
diverse array of hierarchical architectures. For example, we
demonstrate how to represent the original QCNN from ref. 5

within our framework in Algorithm 2. The arguments for each
convolution and pooling primitive are stride, step, and offset.
The Qdense primitive generates 2-qubit unitaries between all
pairwise combinations of n+ 1 qubits. Subsequently, the
second primitive M1

2 takes M
1
1 as its mapping, which just means

it treats M1
1 as a single n+ 1-qubit unitary, and distributes it

across the circuit with a stride of 1, step of n, and offset of
n− 1. This is followed by n convolutions of n-qubit unitaries,
each having an offset incremented by one from the previous.
For n= 3 and N= 15, the first and last convolution is illustrated
in Fig. 9a, b. Next, a pooling layer with n-qubit unitaries is
applied, measuring the outer n− 1 qubits from each nth qubit,
this corresponds to the filter F� ¼ f1n�1

2 01
n�1
2 g. Finally, a

convolution is performed on all remaining qubits. In practice,
each of these primitives is given a mapping for their
corresponding unitary. The mappings of the original QCNN
are based on 2v × 2v Gell–Mann matrices, where v indicates the
number of qubits the unitary acts upon. For instance, the first
unitary of the primitive M1

2 operates on v= n+ 1 qubits, M1
3 on

v= n qubits and pooling M1
3 on n qubits where v= n− 1 to

leave a qubit for the control. For M1
5, v equals the number of

remaining qubits. It’s easy to generate a family of architectures
related to the original by providing the algorithm with different
values of stride, step, offset, pooling filters, mappings and

Fig. 8 Hyperparameters summary. An example of how the hyperparameters of the primitives effect the circuit architecture of the family
generated by Algorithm 1. Three are shown, the convolution stride sc, pooling stride sp and pooling filter F*. These are specified in “Controlling
primitives”. Controlled-Rθz gates are used for convolutions and CNOTs for pooling as an example. The convolution stride sc determine how
convolution unitaries are distributed across the circuit. Each convolution primitive typically consists of multiple unitaries and the QCNN
requires them to be identical for weight sharing. The pooling stride sp determine how pooling unitaries are distributed, for a given pooling
primitive, a portion of available qubits gets pooled via controlled unitary operations and sp dictates which controls match to which targets.
The pooling filter F* dictates which qubits to pool according to some recursive pattern/mask. For example, circuit d) always pools the outside
qubits during pooling primitives, resulting in the middle qubit making it to the end of the circuit.
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relaxing the dependence on n based on how large we want the
search space to be.
Next, we discuss the applicability of search algorithms with

our representation. The framework’s expressiveness is demon-
strated in Fig. 2e, f, where only two lines of code are needed to
specify a complete architecture, and in Fig. 10, which illustrates
how to capture circuits from refs. 5,27. This expressiveness
allows search algorithms to explore an extensive range of
architectures and numerous design choices. Moreover, the

modularity of the framework enables search algorithms to
identify robust building blocks to combine into motifs, serving
as the foundation for architectural designs. This is especially
advantageous in the context of genetic algorithms, as it
facilitates the definition of crossover and mutation operations
in various ways. For example, mutations can involve adjusting a
single hyperparameter of a primitive or replacing an entire
primitive within a motif. Crossovers may include combining
motifs at the same or different levels or interweaving two

Fig. 10 Representation of architectures from literature. Example architectures from ref. 5 (c) and ref. 27 (d), generated using our Python
package to demonstrate its expressibility, interpretability, and scalability. a The 15-qubit original QCNN is created with the first three
parameters of each primitive being stride, step, and offset, respectively. The unitary U mappings employ generalised Gell–Mann matrices
parametrised based on the number of qubits they act upon. Line 5, Qfree(15)+m1+m2+m3, controls the system size; applying the same
architecture to N qubits only requires changing it to Qfree(N). To introduce a depth d parameter to the circuit, the last line should be modified
to m4 � d þ m5. b A 16-qubit MERA circuit is generated. For an 8-qubit MERA circuit, the last line would be changed to
Qfreeð8Þ þm1

1 þm1
2 � 2, and in general, QfreeðNÞ þm1

1 þm1
2ðlog2N � 1Þ produces an N-qubit MERA circuit. These examples highlight the

representation’s strengths: the essence of an architecture is captured with a few lines of code in a modular and understandable manner, and
scaling up to larger systems is accomplished with minimal adjustments.

Fig. 9 Hypergraph example. Examples how 3-qubit unitaries are represented with the framework. For general n-qubit unitaries the graphs
become hypergraphs with n-tuples as edges.
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motifs by alternating their final sequence of primitives. In the
case of reinforcement learning, modularity allows an agent to
make decisions at multiple levels of granularity, enabling it to
explore and exploit different combinations of primitives and
motifs. Hill climbing algorithms can also leverage this
modularity in various ways. For instance, we can generate a
random fixed high-level motif, such as a MERA circuit, and then
iteratively optimise the hyperparameters of each primitive
within the motif. In each step, we adjust a hyperparameter to
neighbouring values, evaluate the resulting objective values,
and select the best configuration. Once we have updated all
the hyperparameters of all primitives, we obtain a final motif,
which can be used as a starting point for the next iteration. This
approach of adjusting individual hyperparameters within a
multi-level motif allows for incremental changes to the
architecture. Such fine-grained modifications can be beneficial
in approaches like Bayesian optimisation, where smoothness in
objective values is advantageous. In addition, the hierarchical
nature of our representation allows it to capture scale-invariant
circuit motifs, as seen in the MERA (Fig. 10) and TTN (Fig. 8)
circuits. This inherent capability promotes scalability: it enables
search algorithms to start with smaller subsystems, then scale
up to larger ones using only the ’Qfree’ primitive. As a result,
there’s no need to re-establish such motifs for larger systems,
leading to reduced computational costs and broadened
possibilities for architectural exploration (provided there are
scale-invariant features to the problem at hand). Lastly, the
intuitive nature of the representation facilitates interpretability,
for instance, in one experiment, we observed a spike in
performance for a convolution stride of five. Upon further
investigation, we discovered a strong correlation between
features one and six, which was previously unknown. This
insight informed future experiments and design choices for the
problem at hand. The specific experiment pertains to a pulsar
classification task in radio astronomy, which is currently
undergoing further experimentation.
Finally, we present the evolutionary algorithm used in our

experiments, which is based on the approach described in
ref. 26 and detailed in Algorithm 3. We refer to an architecture
as a genotype, and its fitness is determined by the sample
complexity for both inside and middle points, as well as the
mean squared error (MSE) for outside points in the test set (see
Fig. 5). Specifically, fitness ¼ c1

Min
Mcap

þ c2
Mmiddle
Mcap

þ c3MSEout þ λnp
where we cap Min and Mmiddle by some large value Mcap and np
is the number of parameters required for the architecture. The
weights c1, c2, and c3 sum to one, assigning importance to each
term. Our experiments showed that setting c1 = 0.7, c2 = 0.05,
and c3 = 0.25 led to generally well-performing architectures,
we also chose Mcap = 500 since fit genotypes exhibit sample
complexity below 100. We initialise the population with a pool
of 100 random primitives (Qconv, Qpool, Qdense), each having
random hyperparameters. Upon initialisation, we perform
mutation and crossover operations based on tournament
selection with a 5% selection pressure. After the selection,
we mutate the fittest genotype by choosing one of its
primitives and replacing it with a randomly generated one.
The crossover operator acts on the two fittest individuals,
attempting to combine them tail-to-head. If this is not possible,
they are interleaved up to the point where they can be
combined. Just like the approach in26, we do not remove any
genotypes from the pool, leading to a more diverse population.

Algorithm 3. Evolutionary Search Algorithm

DISCUSSION
This work has introduced a framework for representing hierarch-
ical quantum circuits, enabling circuit generation and search space
design. The framework is implemented as a readily available
Python package that allows for the generation of complex
quantum circuit architectures, which is particularly useful for
Neural Architecture Search (NAS). Our numerical experiments
illustrate the significance of alternating architectures for para-
meterised quantum circuits and present a pathway to enhance
model performance without increasing its complexity.
Looking ahead, our primary goal is to investigate various search

strategies leveraging this architectural representation, aiming to
automate the discovery of quantum circuits tailored for a range of
tasks. Although we’ve demonstrated the value of this representation
for evolutionary algorithms, we’re keen to explore alternative search
algorithms such as reinforcement learning or Bayesian optimisation.
Another interesting consideration is the theoretical analysis of

QCNN architectures that generalise well across multiple datasets.
Recently, it has been shown how symmetry can be used to inform
the inductive biases of a model52,53, and we suspect that our
numerical results stem from the search finding architectures that
respect symmetries of the data. Symmetry is a natural starting
point for creating primitives, the convolution primitive is already
constrained by translational symmetry and additional primitives
can be developed by considering other symmetries. This approach
effectively narrows the search space, enabling a system to
automatically discover general equivariant architectures that align
well with the data. The framework also allows for the specification
qubit orderings that correspond to physical hardware setups.
Therefore, benchmarking the effect of noise on different
architectures on NISQ devices would be a useful exploration.

METHODS
Overview
Figure 1 gives a broad view of the machine-learning pipeline we
implement for the benchmarks. There are various factors
influencing model performance during such a pipeline. Each step,
from a raw audio signal to a classified musical genre, contains
various possible configurations, the influence of which propagates
throughout the pipeline. For this reason, it is difficult to isolate any
configuration and evaluate its effect on the model. With our goal
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being to analyse QCNN architectures (Fig. 1d) on the audio data,
we perform random search in the family created by Algorithm 1
with different choices of circuit ansatz and quantum data
encoding. These are evaluated on two different datasets: Mel
spectrogram data (Fig. 1b) and 2D statistical data (Fig. 1c), both
being derived from the same audio signal (Fig. 1a). We preprocess
the data based on requirements imposed by the model
implementation before encoding it into a quantum state. These
configurations are expanded on below:

Data
We aimed to use a practical and widely applicable dataset for the
data component and chose the well-known54 music genre
dataset, GTZAN. It consists of 1000 audio tracks, each being a
30-s recording of some song. These recordings were obtained
from radio, compact disks and compressed MP3 audio files55. Each
is given a label of one of the following ten musical genres: blues,
classical, country, disco, hip-hop, jazz, metal, pop, reggae, rock.
Binary classification is used for the analysis of model performance

across different architectures. Meaning there are
10
2

	 

¼ 45

possible genre pairs to build models from. Each pair is equally
balanced since there are 100 songs for each genre. The dataset
enables the comparison of 45 models per configuration within the
audio domain.

Model implementation
For all experiments, we evaluate instances of Algorithm 1 with
N= 8 qubits, resulting in 3(8)− 2= 22 two-qubit unitaries. We test
each model based on different combinations of model architec-
ture, two-qubit unitary ansatz and quantum data encoding. The
specific unitaries for Um are chosen from a set of eight ansatzes
that were used in ref. 29. They are based on previous studies that
explore the expressibility and entangling capability of parame-
terised circuits56, hierarchical quantum classifiers27 and extensions
to the VQE57. These are shown in Supplementary Fig. 1, the ansatz
for pooling also comes from ref. 29 and is shown in Supplementary
Fig. 3. For quantum data encoding, we compare qubit encoding36

with IQP encoding58 on the tabular dataset. Amplitude encoding59

is used for the image data.
Each model configuration considers all 45 genre pairs for

classification, for example, rock vs reggae. Cross entropy is used as
the cost function Cðy; ŷÞ during training, for rock vs reggae this
would be:

Cðy; ŷÞ ¼ �ðy logðŷÞ þ ð1� yÞ logð1� ŷÞÞ: (20)

where

yi ¼
1 if song i is labelled rock;

0 if song i labelled reggae:

�
(21)

ŷi is obtained from Eq. (6), i represents one observation, and both
y, ŷ are all the observations in vector form.

Data creation
We benchmark the model against two different forms of data,
namely tabular and image. To construct the dataset in tabular
form, we extract specific features from each audio signal using
librosa60 as shown in Fig. 1b. Each row represents a single audio
track with its features as columns. The specific features extracted
are those typically used by music information retrieval systems,
namely: chroma frequencies, harmonic and percussive elements,
Mel-frequency cepstral coefficients, root-mean-square, spectral
bandwidth, spectral centroid, spectral roll-off, tempo and the zero
crossing rate. See Supplementary Table 1 for a short description of
these features. To construct the dataset in image form, we extract
a Mel-frequency spectrogram (Fig. 1c) from each audio signal. The

Mel scale is a non-linear transformation based on how humans
perceive sound and is frequently used in speech recognition
applications61. The spectrogram size depends on the number of
qubits available for the QCNN. We can encode 2N values with
amplitude encoding into a quantum state, where N is the number
of available qubits. Using N= 8 qubits, we scale the image to
8 × 32= 256= 28 pixels, normalising each pixel between 0 and 1.
The downscaling is done by binning the Mel frequencies into
eight groups and taking the first three seconds of each audio
signal.

Data preprocessing
Two primary forms of preprocessing are applied to the data
before it is sent to the model: feature scaling and feature
selection. The features are scaled using min-max scaling, where
the range is based on the type of quantum data encoding used.
For amplitude encoding, the data is scaled to the range [0, 1],
qubit encoding to [0, π/2] and IQP encoding to [0, π]. Feature
selection is only applied to the tabular data. Using qubit encoding
with N= 8 qubits results in selecting eight features. Principal
Component Analysis (PCA) and decision trees are used to perform
the selection. The tree-based selection is used to compare against
PCA to verify whether PCA does not heavily bias the model’s
results.

Model evaluation
The model is trained with 70% of the data while 30% is held out as
a test set to evaluate performance. During training, fivefold cross-
validation is used on each model. The average classification
accuracy and standard deviation of 30 separate trained instances
are calculated on the test set as performance metrics.

DATA AVAILABILITY
The music genre classification dataset analysed during the current study is available
on TensorFlow Datasets, https://www.tensorflow.org/datasets/catalog/gtzan.

CODE AVAILABILITY
The theoretical framework discussed in this paper has been implemented as an
open-source Python package, which is available on GitHub at https://github.com/
matt-lourens/hierarqcal. This package was used to generate all the circuits in the
paper.
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