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Autonomous quantum error correction and fault-tolerant
quantum computation with squeezed cat qubits
Qian Xu 1,4, Guo Zheng 1,4, Yu-Xin Wang 1, Peter Zoller 2,3, Aashish A. Clerk 1 and Liang Jiang 1✉

We propose an autonomous quantum error correction scheme using squeezed cat (SC) code against excitation loss in continuous-
variable systems. Through reservoir engineering, we show that a structured dissipation can stabilize a two-component SC while
autonomously correcting the errors. The implementation of such dissipation only requires low-order nonlinear couplings among
three bosonic modes or between a bosonic mode and a qutrit. While our proposed scheme is device independent, it is readily
implementable with current experimental platforms such as superconducting circuits and trapped-ion systems. Compared to the
stabilized cat, the stabilized SC has a much lower dominant error rate and a significantly enhanced noise bias. Furthermore, the
bias-preserving operations for the SC have much lower error rates. In combination, the stabilized SC leads to substantially better
logical performance when concatenating with an outer discrete-variable code. The surface-SC scheme achieves more than one
order of magnitude increase in the threshold ratio between the loss rate κ1 and the engineered dissipation rate κ2. Under a practical
noise ratio κ1/κ2= 10−3, the repetition-SC scheme can reach a 10−15 logical error rate even with a small mean excitation number of
4, which already suffices for practically useful quantum algorithms.
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INTRODUCTION
Quantum information is fragile to errors introduced by the
environment. Quantum error correction (QEC) protects quantum
systems by correcting the errors and removing the entropy1–3.
Based upon QEC, fault-tolerant quantum computation (FTQC) can
be performed, provided that the physical noise strength is below
an accuracy threshold4–7. However, realizing FTQC is yet challen-
ging due to the demanding threshold requirement and the
significant resource overhead8–11. Unlike discrete-variable (DV)
systems, continuous-variable (CV) systems possess an infinite-
dimensional Hilbert space. Encoding the quantum information in
CV systems, therefore, provides a hardware-efficient approach to
QEC12–16. Various bosonic codes have been experimentally
demonstrated to suppress errors in CV systems17–22.
The standard QEC procedure relies on actively measuring the

error syndromes and performing feedback controls1. However,
such adaptive protocols demand fast, high-fidelity coherent
operations and measurements, which poses significant experi-
mental challenges. At this stage, the error rates in the encoded
level are still higher than the physical error rates in current devices
due to the errors during the QEC operations23–26. To address these
challenges, we may implement QEC non-adaptively via engi-
neered dissipation - an approach called autonomous QEC
(AutoQEC)27,28. Such an approach avoids the measurement
imperfection and overhead associated with the classical feedback
loops. AutoQEC schemes that can greatly suppress dephasing
noise in bosonic systems have been both theoretically investi-
gated and experimentally demonstrated using the two-
component cat code20,22,29–33. However, AutoQEC against excita-
tion loss, which is usually the dominant error source in a bosonic
mode, remains challenging. It requires either large nonlinearities
that are challenging to engineer (e.g., the multiphoton processes
needed for n-fold rotation-symmetrical codes with n ≥ 429,34,35) or

couplings to an intrinsically nonlinear DV system19,36,37 that is
much noisier than the bosonic mode.
In this work, we propose an AutoQEC scheme against excitation

loss with low-order nonlinearities and accessible experimental
resources. Our scheme is, in principle, device-independent and
readily implementable in superconducting circuits and trapped-
ion systems. The scheme is based on the squeezed cat (SC)
encoding38, which involves the superposition of squeezed
coherent state. We introduce an explicit AutoQEC scheme for
the SC against loss errors by engineering a nontrivial dissipation,
which simultaneously stabilizes the SC states and corrects the loss
errors. We show that the engineered dissipation is close to the
optimal recovery obtained using a semidefinite program-
ming39–41. Notably, our proposed dissipation can be implemented
with the same order of nonlinearity as that required by the two-
component cat, which has been experimentally demonstrated in
superconducting circuits20,42,43 and shown to be feasible in
trapped-ion systems44.
Furthermore, we show that similar to the stabilized cat qubits,

the stabilized SC qubits also possess a biased noise channel (with
one type of error dominant over others), with an even larger bias
(defined to be the ratio between the dominant error rate and the
others) � en

2

(compared to � en for the cat), where n denotes the
mean excitation number of the codewords. Consequently, we can
concatenate the stabilized SC qubits with a DV code tailored
towards the biased noise to realize low-overhead fault tolerant
QEC and quantum computation45–50. We develop a set of
operations for the SC that are compatible with the engineered
dissipation and can preserve the noise bias needed for the
concatenation. Compared to those for the cat30, these operations
suffer less from the loss errors because of the AutoQEC. Moreover,
they can be implemented faster due to a larger effective
dissipation gap and a cancellation of the leading-order non-
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adiabatic errors. In combination, the access to higher-quality
operations leads to much better logical performance in the
concatenated level using the SC qubits. For instance, we can
achieve one-to-two orders of magnitude improvement in the κ1/κ2
threshold, where κ1 is the excitation loss rate and κ2 is the
engineered dissipation rate, for the surface-SC and repetition-SC
scheme (compared to surface-cat and repetition-cat, respectively).
Furthermore, the repetition-SC can achieve a logical error rate as
low as 10−15, which already suffices for many useful quantum
algorithms8,51, even using a small SC with n ¼ 4 under a practical
noise ratio κ1/κ2= 10−3.
We note that aspects of the SC encoding were also recently

studied in ref. 38, with an emphasis on the enhanced protection
against dephasing provided by squeezing (a point already noted
in refs. 52–54). Unlike our work, ref. 38 neither explored the
enhanced noise bias provided by squeezing, nor exploited the
ability to concatenate the SC code with outer DV codes using bias-
preserving operations; as we have discussed, these are key
advantages of the SC approach. Our work also goes beyond ref. 38

in providing an explicit, fully autonomous approach to SC QEC
that exploits low-order nonlinearities, and it is compatible with
several experimental platforms. In contrast, ref. 38 studied an
approach requiring explicit syndrome measurements and a
formal, numerically-optimized recovery operation. It was unclear
how such an operation could be feasibly implemented in
experiment. We also note that the SC has also been studied in
the context of quantum transduction55 (a very different setting
than that considered here) and preparation of SC states has been
recently demonstrated experimentally56.

RESULTS
Squeezed cat encoding
The codewords of the SC are defined by applying a squeezing
along the displacement axis (which is taken to be real) to the cat
codewords:

SC±
r;α0

��� E
:¼ ŜðrÞ C ±

α0
�� �

(1)

where C ±
α0

�� �
:¼ N ± ð α0j i þ �α0j iÞ with N ± ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1 ± e�2α02 Þ
p being

normalization factors, and ŜðrÞ :¼ exp½12 rðâ2 � ây2Þ� is the squeezing
operator. The above codewords with even (jSCþ

r;α0 i) and odd
(jSC�

r;α0 i) excitation number parity are defined to be the X-basis
eigenstates. Similar to other bosonic codes16, the performance of the
SC code is related to the mean excitation number n of the
codewords:

n :¼ 1
2 hSCþ

r;α0 jâyâjSCþ
r;α0 i þ hSC�

r;α0 jâyâjSC�
r;α0 i

� �
¼ α02 coth 2α02 cosh 2r � sinh 2rð Þ þ sinh2r

(2)

For a SC code with fixed n, according to Eq. (2), the amplitude α0
of the underlying coherent states varies with the squeezing
parameter r as

α0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� sinh2r

p
er ; (3)

which holds for the regime of interest where α0>1. See a graphic
illustration of the interdependency between n; α0 and r in
Supplementary Note 2. Note that α0 is closely related to how
separated in phase space the two computational-basis states
are, which determines their resilience against local error
processes16,29. At fixed n, α02 can be written as a concave
quadratic function of e2r, which has a maximum α02max ¼ n2 þ n
(see Supplementary Note 2).
For the SC, it is convenient to consider the subsystem

decomposition of the oscillator Hilbert space H ¼ HL �Hg ,
where HL represents a logical sector of dimension 2 (which we

refer to as a logical qubit) and Hg represents a gauge sector of
infinite dimension (which we refer to as a gauge mode).
Analogous to the modular subsystem decomposition of the GKP
qubit57, whose logical sector carries the modular value of the
quadratures, the logical sector of the SC carries the parity
information (excitation number modulo 2). Similar decomposition
for the cat was used in refs. 32,58. We can choose a basis under the
subsystem decomposition spanned by squeezed displaced Fock
states ±j iL � j~̂n ¼ nig � N ± ;nŜðrÞ½D̂ðα0Þ± ð�1ÞnD̂ð�α0Þ� nj i (we
use ≈ since the right-hand side should be orthonormalized within
each parity branch. See Supplementary Note 1 for details). By
choosing this basis, the SC codewords in Eq. (1) coincide with
±j iL � j~̂n ¼ 0ig, i.e., the codespace is the two-dimensional sub-
space obtained by projecting the gauge mode to the ground
state. Furthermore, the bosonic annihilation operator â can be
expressed as

â ¼ ẐL � ðe�rα0 þ cosh r~̂a� sinh r~̂a
yÞ þ Oðe�2α02Þ; (4)

where ẐL is the Pauli Z operator acting on the logical qubit, and
~̂a ¼P1

n¼0

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p j~̂n ¼ nigh~̂n ¼ nþ 1j is the annihilation operator
acting on the gauge mode.
Typical bosonic systems suffer from excitation loss (â), heating

(ây), and dephasing (âyâ) errors, with loss being the prominent
one16. We now explain why the SC code can correct the loss errors
by analyzing the Knill-Laflamme error correction conditions59,60

and evaluating the QEC matrices16. Consider a pure loss channel
with a loss probability γ, the leading-order Kraus operators are
f̂I; ffiffiffi

γ
p

âg. The detectability of a single excitation loss is quantified
by the matrix:

P̂codeâP̂code ¼ e�rα0 qþq�1

2 Ẑc þ ierα0 q�q�1

2 Ŷc

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� sinh2r

p
Ẑc � ierα0e�2α02 Ŷc;

(5)

where P̂code is the projection onto the code space, Ẑc :¼ ẐL �
0j ig 0h j (Ŷc :¼ ŶL � 0j ig 0h j) is the Pauli Z (Y) operator in the code

space, and q :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�e�2α02

1þe�2α02

q
. See Supplementary Note 2 for a detailed

derivation. The approximation in the second line is made in the
regime of interest where e�2α02 � 1.
Eq. (5) indicates that a single excitation loss mostly leads to an

undetectable logical phase-flip error with a probability that
decrease with the squeezing parameter r, which can be better
understood by considering the action of the decomposed â
operator (Eq. (4)) on the codeword âð þj iL � 0j igÞ ¼ �j iL� ffiffiffi

n
p ð ffiffiffi

η
p

0j ig �
ffiffiffiffiffiffiffiffiffiffiffi
1� η

p
1j igÞ, where

η :¼ ðn� sinh2rÞ=n: (6)

As shown in Fig. 1, after a single excitation loss, the branch of the
population (with ratio η) that stays in the ground state of the gauge
mode leads to undetectable logical phase-flip errors. In contrast, the
other branch (with ratio 1− η) that goes to the first excited gauge
state is in principle detectable. The detectable branch is also
approximately correctable since P̂codeâ

yâP̂code � n̂Ic þOðe�2α02ÞX̂c .
Therefore, we expect that we can suppress the loss-induced phase
flip errors by a factor η that decreases with the squeezing r.
Moreover, the X̂c and Ŷc terms in the QEC matrices for both loss,
heating, and dephasing are exponentially suppressed by α02. As
shown in Eq. (3), α02 can be greatly increased by adding squeezing
(with α02max ¼ n2 þ n). Consequently, we expect that the SC can also
have significantly enhanced noise bias compared to the cat.

Autonomous quantum error correction
While we have shown that the SC encoding can, in principle,
detect and correct the loss errors, it remains a non-trivial task to
find an explicit and practical recovery channel. In this section, we
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provide such a recovery channel, showing surprisingly that it
requires only experimental resources that have been previously
demonstrated.
As shown by the blue arrow in Fig. 1, we can, in principle,

perform photon counting measurement on a probe field that is
weakly coupled to the gauge mode, and apply a feedback parity
flip ẐL on the logical qubit upon detecting an excitation in the
probe field61. Such measurement and feedback process can be
equivalently implemented by applying the dissipative dynamics as
described by Lindblad master equation dρ̂

dt ¼ κ2D½F̂�, with the jump
operator F̂ given by

F̂ ¼ ðẐL � ~̂IÞŜðrÞðâ2 � α02ÞŜyðrÞ; (7)

and D½Â�ρ̂ :¼ Âρ̂Â
y � 1

2 fÂ
y
Â; ρ̂g. When α0 � 1, F̂ / ẐL � ~̂a repre-

sents a logical phase flip conditioned on the gauge mode losing
an excitation. In the Fock basis, such an operator can be
approximately given by

F̂ � 1
α0
ŜðrÞðc1âþ c2â

yÞðâ2 � α02ÞŜyðrÞ; (8)

with c1+ c2= 1 (see Supplementary Note 1 for more details).
In Methods, we propose two reservoir-engineering approaches

to implement such a nontrivial dissipator using currently
accessible experimental resources. We sketch the main ideas
here. The first approach utilizes three bosonic modes that are
nonlinearly coupled. As shown in Fig. 5a, a high-quality mode b
and a lossy mode c, together, serve as a nonreciprocal bath62 that
provides a directional interaction e�iθẐL � ~̂a from the gauge mode
to the logical qubit in the storage mode a. Such a coupled system
can be physically realized in, e.g., superconducting circuits42,43.
The second approach couples a bosonic mode nonlinearly to a
qutrit f gj i; ej i; fj ig. As shown in Fig. 6, the bosonic mode is

coupled to the gf transition via ŜðrÞðâ2 � α02ÞŜyðrÞ fj i gh j þ h:c: and
to the ef transition via ẐL ej i fh j þ h:c:. By enhacing the decay from
ej i to gj i, we can obtain the effective dissipator F̂ by adiabatically
eliminating both ej i and fj i. Such a system can be physically
realized in, e.g., trapped-ion system44.
With the engineered dissipator in Eq. (7), the SC can be

autonomously protected from excitation loss, heating and
dephasing. We now derive the error channel of the dissipatively

stabilized SC qubit in the memory level. The dynamics of the
system are described by the Lindblad master equation:

dρ̂
dt ¼ κ2D½F̂�ρ̂þ κ1ð1þ nthÞD½â�ρ̂

þκ1nthD½ây�ρ̂þ κϕD½âyâ�ρ̂:
(9)

The logical phase-flip and bit-flip error rates of the SC under the
dynamics described by Eq. (9) can be analytically obtained (see
Methods for the derivations):

γZ ¼ ½κ1ð1þ 2nthÞ þ κϕe
�2r �ðn� sinh2rÞ; (10)

γX;Y ¼ κϕ
n� sinh2r
� �

e2rðsinh22r=4þ cosh 4rÞ
2 sinh 2 n� sinh2r

� �
e2r

	 
 ; (11)

where γX,Y denotes the sum of the logical X and Y error rates,
which we refer to as the bit-flip rate for simplicity. Note that similar
to the cat63, the full error channel of the stabilized SC, which is
analyzed in detail in Supplementary Note 3, is not a Pauli error
channel in general. For simplicity, we make the Pauli-twirling
approximation only keeping the diagonal terms of the process
matrix in the Pauli basis. We only consider the dephasing error
κϕD½âyâ� for γX,Y since the loss-induced bit-flip rate has a more
favorable scaling � e�4α02 with α058,64. The loss and the heating
contribute to γZ in the same way (both suppressed by a factor η)
since their undetectable portion (η) is the same (see Eq. (4) and its
hermitian conjugate). The dephasing also contributes to γZ, but
with an extra e−2r suppression, when combined with the parity-
flipping dissipator F̂. See Methods for details. Setting r= 0 and
removing the κϕ term in γZ, we restore the error rates of the
dissipative cat30.
In the regime where e−r≪ 1 and γZ is mainly contributed by

excitation loss, we can simplify Eqs. (10) and (11) as

γZ � ηnκ1; γX;Y � 9
16

κϕα
02e�2α02e4r ; (12)

where

α0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ηð1� ηÞ

p
n: (13)

As plotted in Fig. 2a, fixing n, γZ decreases monotonically with the
squeezing r (unless r approaches the maximum squeezing
rmax � sinh�1ð ffiffiffi

n
p Þ. See Methods for details.) as the undetectable

portion η of the loss-induced errors decreases (see Eq. (6)). The
change of γX,Y with r (or equivalently, η) is roughly captured by the
change in the displacement amplitude α0 (see Eq. (13)), and γX,Y
takes the minima roughly when α0 reaches the maxima
α0max ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ n

p
. Note that the minimal bit-flip rate of the SC

enjoys a more favorable scaling γX;Y / e�2n2 with n, compared to
γX;Y / e�2n for the cat, so that the SC can have a much larger noise
bias under the same excitation number constraint.
In principle, one needs to consider the tradeoff between γZ and α0

and choose the optimal η depending on the tasks of interest. Smaller
η leads to better protection from excitation losses, which is preferred
by, e.g., the idling operations. Larger α0, on the other hand, leads to a
larger noise bias and a widened effective dissipation gap, which can
support faster operations, e.g., the bias-preserving CNOT gate
introduce in the next section. Here, the effective dissipation gap is
defined as the the excitation gap of the effective Hamiltonian

Ĥeff ¼ 1
2 κ2F̂

y
F̂ ¼ 1

2 κ2ŜðrÞðây2 � α02Þðâ2 � α02ÞŜyðrÞ, which charac-
terizes the leakage rate and the non-adiabatic error rate under a
Hamilotnian perturbation30,58,65. Since Ĥeff is the same as that for a
cat with a displacement α0 up to a unitary transformation, the
effective dissipation gap for the dissipative SC is 2κ2α02. In the
following, we fix n ¼ 4 and η= 1/4 if not specified otherwise, which
corresponds to a squeezing of r= 1.32 (11.5 dB). Such a parameter
choice leads to γZ ≈ κ1, which removes the enhancement factor n
present for the stabilized cats30,31 (for n ¼ 4). Meanwhile, α02 � 3

4 n
2

Fig. 1 The illustration of a SC that suffers from a single excitation
loss and then approximately corrects it. Each dashed box
represents a state (visualized by the Wigner function) of the SC,
which is decomposed as a product of a logical qubit and a gauge
mode. A single excitation loss corrupts the codeword þj ic (left) into
the state â þj ic=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
þh jcâyâ þj ic

q
(right). During such a process, a phase

flip happens on the logical qubit, and a fraction 1− η of the gauge
mode population gets excited (indicated by the thick orange arrow).
The excited population can be detected and then corrected, as
indicated by the blue arrow.
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provides a sufficiently large noise bias and a large effective
dissipation gap.
In Fig. 2b, we benchmark the performance of our Auto-QEC

scheme against loss errors by comparing it to the optimal recovery
channel given by a semidefinite programming (SDP) method39–41.
We consider the composite channel N ¼ D 	 N γ 	 E, where E
denotes the encoding map from a qubit to the SC, N γ denotes a
Gaussian pure loss channel (corresponding to Eq. (9) with
κ2= κϕ= nth= 0) with loss probability γ≔ κ1t, and D denotes
the recovery channel either using the autonomous QEC with the
dissipator Eq. (7) or the optimal recovery channel. We use the
entanglement fidelity Fe :¼ Φþ� ��ðN � IÞð Φþ�� �

Φþ� ��Þ Φþ�� �
, where

Φþ�� �
denotes a Bell state for the logical qubit and an ancilla qubit,

as the error metric for the composite channel. We evaluate the
entanglement infidelity (EI) 1− Fe as a function of the loss
probability γ. Note that the EI is the objective function for the SDP.
As shown in Fig. 2b, the EI obtained using the Auto-QEC is close to
the optimal EI, especially in the low-γ regime, demonstrating that
our proposed autonomous QEC scheme is close to optimal for
correcting excitation loss errors. We note that it is crucial to have
the phase-flip ẐL correction in the dissipator F̂ in order to correct
the loss-induced phase-flip errors. Otherwise, a simple dissipator
ŜðrÞðâ2 � α02ÞŜyðrÞ directly generalized from the dissipative cat
would still give an unsuppressed phase-flip rate γZ ¼ κ1n.
We note that the SC encoding also emerges as the optimal or

close-to-optimal single-mode bosonic code through a bi-convex
optimization (alternating SDP) procedure for a loss and dephasing
channel with dephasing being dominant, as shown in ref. 66.

Bias-preserving operations
To apply the autonomously protected SC for computational tasks,
we need to develop a set of gate operations that are compatible
with the engineered dissipation. Furthermore, the operations
should preserve the biased noise channel of the SC, which can be
utilized for resource-efficient concatenated QEC and fault-tolerant

quantum computing49,50,58,67,68. Following the literature for the
cat and the pair-cat30,63,69,70, we develop a set of bias-preserving
operations B ¼ fP ±j ic ;MX ; X; ZðθÞ; ZZðθÞ; CNOT; Toffolig for the
SC, which suffice for many concatenated QEC schemes (e.g.,
concatenation with the repetition codes or the surface codes). The
detailed design of each operation is presented in Methods.
Overall, the bias-preserving operations for the SC can achieve

much higher fidelity (lower dominant Z-type error rates) than
those for the cat for the following two reasons: (1). The operations
suffer less from the excitation loss errors, which are (partially)
autonomously corrected. (2). The non-adiabatic errors are
significantly suppressed by the ẐL correction in the dissipator F̂
(see Eq. (7)) and the enlarged effective dissipation gap (/ α02), so
that the gate operations could be implemented faster. In Fig. 3, we
show the total Z-type error rates for the Z-axis rotation Z(θ) and
the CNOT gate as a function of the gate time. Compared to the cat
gates in ref. 30 with the same n, the SC Z(θ) (CNOT) gate can
achieve a 42.0 (7.56) times reduction in the lowest error rates.
While we have fixed η= 1/4 as mentioned in last section, it is not
necessarily the optimal choice of the squeezing. In fact, with η
approaching 1/2, we obtain even lower errors at faster gate times.
We note that compared to the cat stabilized by â2 � α2 in the

literature, a simple extension to a SC stabilized by ŜðrÞðâ2 �
α02ÞŜyðrÞ can also lead to improvement in the gate speed and
fidelities due to the enlarged effective dissipation gaps. However,
adding the extra phase flip in the dissipator brings a much more
significant improvement due to the suppression of the loss-
induced errors and the leading-order non-adiabatic errors. See
Discussion for more details.

Concatenated quantum error correction
With the bias-preserving operations, we can concatenate the SC
with an outer discrete-variable code to suppress the logical error

Fig. 3 Error rates of the bias-preserving Z-rotation and CNOT gate
for the stabilized SC. We plot the total Z error probability of the Z(π)
gates (a) and the CNOT gates (b) versus the gate time. For the CNOT
gate, pZ :¼ pZc

þ pZt þ pZcZt
is the sum of the control-mode, target-

mode, and the correlated phase flip rates. κ1/κ2 is fixed at 10−3. The
blue lines represent the gates on the cat qubits30, and the red lines
represent our proposed gates on the SC qubits with η= 1/4. n is
chosen as 4 for both cat and SC. The insets are the zoomed-in error
rates of the SC gates around the optimal gate times. As detailed in
Methods, the Z(π) gate requires a linear drive of strength π

8T ( π4T) for
the cat (SC). The CNOT gate requires a nonlinear coupling between
the control and the target mode of strength π

8T ( π4T) for the cat (SC).

Fig. 2 Error rates of the stabilized SC. a The phase γZ (orange) and
bit γX,Y (cyan) error rate of the dissipatively stabilized SC as a
function of squeezing r under the parameters n ¼ 4; κ1 ¼ 100κϕ
¼ κ2=100; nth ¼ 0:01. The solid lines represent the analytical expres-
sions Eqs. (10) and (11) while the diamonds represent the
numerically extracted values. All the error rates are normalized by
those of the dissipative cat γZ;c; ðγX;YÞc , which are given by Eqs. (10)
and (11) with r= 0. b The entanglement infidelity of a joint loss and
recovery channel varying with the loss probability γ for the SC
encoding with n ¼ 4. The recovery channel is either the engineered
dissipation (the circles) or the optimal recovery channel determined
by an SDP program39–41 (the stars).
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rates to the desired level. To compare the SC with the standard
cat, we follow the literature and consider the concatenation with a
repetition code30 and a thin rotated surface code58. The surface-
cat scheme can arbitrarily suppress the errors in a resource-
efficient manner once the ratio between the loss rate κ1 and the
engineered dissipation rate κ2 is below a certain threshold.
The repetition-cat, on the other hand, cannot arbitrarily suppress
the errors for a cat with constrained n. Below a κ1/κ2 threshold, as
the repetition code size increases, the logical Z error rate is
exponentially suppressed while the logical X error is linearly
amplified. Thus, a minimal total logical error rate is present.
The concatenated schemes with the cat face several challenges.

First, the κ1/κ2 thresholds (e.g., ~5 × 10−4 for the surface-cat in
Fig. 4a. See also a comparable estimation in ref. 58) are very low
because of the low-fidelity bias-preserving operations. Also, the
minimal logical error probability of the repetition-cat (e.g., ~10−2

for n ¼ 4, see Fig. 4d) is not low enough for fault-tolerant
algorithms, except for cats with very large mean photon number,
because of the limited noise bias.
In the following, we will show that these challenges can be

overcome by using the dissipative SC. The κ1/κ2 thresholds for
both the surface code and the repetition code can be significantly
improved by concatenating with the dissipative SC. Moreover, the
repetition-SC can reach sufficiently low logical error probability
~10−15 even with a small SC n ¼ 4 (see Fig. 4d). It is worth
noticing that the thresholds for concatenated cat code shown in
Fig. 4a, c are approximately independent of the size of the cat
since the optimal CNOT gate error is independent of n for cat
code.
We first consider the concatenation of the SC with a dX by dZ

thin surface code. Similar to ref. 58, we fix the X distance dX to 3,
which suffices to suppress the logical X error rate, and increase the
Z distance dZ to suppress the logical Z error rate. At fixed η= 1/4,
we obtain the logical Z error probability for dZ code cycles as a
function of κ1/κ2 for different dZ, as shown in Fig. 4a. The physical
error rates of each physical operation involved in the surface-code
QEC are presented in Supplementary Note 5. We obtain a κ1/κ2
threshold at 0.93%, which is around 20 times higher than that of
the surface-cat58. Note that by optimizing the choice of the

squeezing, the maximum threshold we obtained for n ¼ 4 is
around 1.2%. Moreover, in Fig. 4b we show that this threshold can
be further increased to about 3% by increasing n to 7. Note that
the κ1/κ2 threshold of the surface-cat remains almost the same
when increasing n. We attribute the increase of the κ1/κ2 threshold
(for the concatenated SC schemes) to the reduced physical-
operation error rates (see the previous section).
Next we consider the concatenation of the SC with a repetition

code with size dZ. As shown in Fig. 4c, we obtain a 3.9%κ1/κ2
threshold for the logical Z error rate (again, see Supplementary
Note 5 for the physical error rates used for the simulation), which
is roughly nine times higher than that of the repetition-cat. Below
the κ1/κ2 threshold, as previously mentioned, a minimal total
logical error rate is present. To obtain the minimal total logical
error rate (by optimizing over dZ), we find approximate expres-
sions for the logical Z and X error probabilies in the sub-threshold
regime (κ1/κ2 < 10−3):

pZL � 0:059dZ
p0Z

0:056

� �0:48dZ
;

pXL � 2dZðdZ � 1ÞpX;Y ;
(14)

where p0Z :¼ pZt þ pZcZt denotes the sum of the target-mode and
the correlated phase-flip rate of the CNOT gate (phase flips on
the control mode have negligible contribution to the logical error
rate for the repetition code), pX,Y the total non-Z error rates of the
CNOT gate (the total rates of all the two-qubit Pauli errors that do
not contain Z terms). p0Z and pX,Y are in general functions of the
CNOT gate time κ2T. To obtain simple expressions for them,
we restrict the CNOT gate time to be κ2T ≥ 1, which limits
the nonadiabatic leakage during the gate. In this regime, we have

p0Z � κ1nT , pX;Y � 5:57 ´ e�2α02

α02
1
κ2T

. Note that we do not see the
contribution from the loss rate κ1 to pX,Y since for fast gate, pX,Y is
dominated by the nonadiabatic errors.
In Fig. 4d, we plot the minimal total logical error probability

pL ¼ pZL þ pXL of the repetition-SC by optimizing dZ and κ2T for
n ¼ 4 and η= 1/4. As a comparison, we also include minimal
logical error probabilities of the repetition-cat with n ¼ 4 using
the physical error rates in ref. 58. When κ1/κ2 ≥ 10−3, the optimal

Fig. 4 Logical errors of the SC and the cat concatenated with repetition codes or surface codes. a Surface code logical Z error probabilities
for a range of code distance dZ= 3, 5, 7,...,15 (from red to brown) with fixed dX= 3. The SC is fixed to n ¼ 4; η ¼ 1=4. The dashed lines indicate
the threshold values of κ1/κ2. b Surface code thresholds in κ1/κ2 varying with the average excitation number of the SC or the cat. c Repetition
code logical Z error probabilities for a range of code size dZ. d Repetition code minimum total logical error probabilities, under the long gate
time constraint T≥1/κ2. Both the cat and the SC have an average excitation number n ¼ 4. The logical error probabilities for both the surface
codes and the repetition codes are obtained from Monte Carlo simulations of dZ code cycles and one final round of perfect stabilizer
measurement. We use the same minimum-weight-perfect-matching (MWPM) decoder as described in Ref. 58.
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gate error is no longer attained under the long gate time
constraint, κ2T ≥ 1 for the SC. Therefore, in that regime, the SC
results can be understood as an upper bound of the minimum
total logical error rates. For a practical noise ratio κ1/κ2= 10−3, the
minimal logical error probability of the repetition-SC can reach
~10−15, which suffices for many useful quantum computational
tasks8,51. In contrast, the logical error probability of the repetition-
cat (with n ¼ 4) can only reach ~10−2, which is far from being
useful. Even with a larger cat size of n ¼ 8 as considered in, e.g.,
ref. 58, the minimum logical error probability is still roughly ~10−5

at such a noise ratio. To reach a similar level of logical error
probability as the repetition-SC, we need either a much larger cat
with n � 10 (with the repetition code), or a more sophisticated
outer code, e.g., the surface code. We attribute the drastic
reduction in the minimal logical error rate of the repetition-SC to
the significantly enhanced noise bias, or equivalently, the reduced
physical bit-flip rates of the SC, which are exponentially
suppressed by n2, instead of n for the cat.

DISCUSSION
Although in this work we benchmark the performance of the
concatenated codes as a function of κ1/κ2 for both the cat and
the SC, it might be of different difficulty level to engineer the same
dissipation rate κ2 for the cat and the SC, depending on
the hardware implementation. Therefore, we can compare the
performance of the concatenated codes as a function of κ1/M,
where M is the physical rate that is most challenging to engineer
in practice. Here we focus on the implementation in super-
conducting circuits.
For example, a potential hardware challenge is to engineer

strong nonlinear couplings. In this case, we can compare the
concatenated codes as a function of κ1/Jm, where Jm denotes the
largest nonlinear coupling strength required. For the cat, Jm is
simply given by g2, the strength of the two-photon exchange

Hamiltonian g2 â2b̂
y þ h:c:

� �
. Assuming an adiabaticity con-

straint ϵ, the lossy mode can be adiabatically eliminated, and
Jm ¼ ffiffiffi

n
p

κ2=2ϵ42,58. For the SC, as shown in the Methods, the
maximum nonlinear coupling strength is given by
Jm ¼ α0 sinh 2rκ2=

ffiffiffiffiffi
ϵ0

p
. Here, ϵ0 is the relevant adiabatic condi-

tion for our proposed stabilization scheme using three
bosonic modes.
Using these relations, we can change the horizontal axis in

Fig. 4a to κ1/Jm and obtain about a 3.5 times increase in the κ1/Jm
threshold for the surface-SC compared to the surface-cat.
Furthermore, results in Fig. 4a are obtained by optimizing the
parameters, such as the squeezing r and the gate times, with the
target function set to be the threshold in κ1/κ2. If the target
function is set to the threshold in κ1/Jm instead, it is likely that the
optimal code parameters are different, and the corresponding
threshold could be further increased. Based on these considera-
tions, we expect that the SC should maintain advantages over the
cat even considering the experimental constraints (which will be
hardware-specific) in the circuit level. We leave it to future work on
optimizing the hardware design and quantifying the hardware-
specific improvement.
To better understand the novelty and necessity of the partity-

flipping dissipator F̂ we introduced in Eq. (7), we compare it with a
parity-preserving dissipator

F̂
0 ¼ ŜðrÞðâ2 � α02ÞŜyðrÞ � 2α0̂IL � ~̂a; (15)

which is a straightforward extension from â2 � α2 that stabilizes
the cat. Such a dissipator was recently considered in ref. 71 for
stabilizing the SC. We show that the extra phase-flip correction in
F̂ is essential for reducing SC’s error rate in both the memory level
and gate operations, which then leads to better logical
performance in the concatenated level.

In the memory level, the change of a parity flip on the dissipator
does not affect the bit-flip error rate we derived in Eq. (11). So a SC
stabilized by F̂

0
can also have a favorable scaling between the

minimal bit-flip rate and n: γX;Y / e�2n2 . Nevertheless, F̂
0
lacks the

parity flip ZL that corrects the detectable portion of the loss-
induced errors, as shown clearly from Fig. 1 (the missing of the
blue arrow). Therefore, a SC stabilized by F̂

0
is not capable of

correcting the loss errors. As such, it suffers from the same phase-
flip error rate as a cat, γZ ¼ κ1n.
Regarding the gate operations, we take the Z rotation and the

CNOT gate as examples. For the Z rotation, a SC stabilized by F̂
0

only enjoys a suppression in the non-adiabatic errors by the the
increased adiabatic gap, 4κ2α02, compared to conventional cat of
the same n. In contrast, a SC stabilized by F̂ corrects the leading-
order non-adiabatic error in 1=α02, since the the extra ẐL in F̂
compensates the parity-flip associated with the non-adiabatic
transition (to the leading order). The residual errors are proportion
to the correction factor, ξ / 1=α02, as discussed in Methods
(see Eq. (33)). Therefore, while the minimal Z(θ) gate error for the
SC with F̂

0
is roughly suppressed by a factor 1=n compared to the

cat, that for the SC with F̂ is suppressed by an 1=n2 factor (see
Table 1).
The errors of CNOT operation can be analyzed in a similar

fashion. Due to the enlarged adiabatic gap, the minimal Z error
rate of our SC gate with F̂

0
is a factor of 2ffiffiffiffiffiffiffi

nþ1
p smaller than that of

the cat gate30. For the mean excitation number we consider,
n ¼ 4, this factor is only slightly less than 1. However, with the
parity-flipping dissipator F̂, the gate error enjoys a η suppression
in the loss errors and an additional / 1=α02 suppression in the
non-adiabatic error. Combining these advantages, the CNOT gate
error ratio with that of the cat roughly scales as n�3=2 (see Table 1).
Since the fault-tolerant threshold is mostly limited by errors of

the CNOT and the idling operation, the thresholds of the
concatenated SC schemes using F̂

0
is comparable to that of the

concatenated cat scheme even at optimal squeezing for small
mean excitation number. As such, having the extra phase-flip
correction in the dissipator F̂ is crucial for concatenated QEC and
fault-tolerant quantum computing.
The stabilized cat qubits have been considered as a candidate

for hardware-efficient, fault-tolerant, and scalable computation
tasks in superconducting circuits58,68. The dissipative SC, which we
show has an overall advantage over the cat, could play an
important role along this direction.
The dissipative SC could also find its application in trapped-ion

systems. On the one hand, encoding into the motional states of
the ions provides an alternative approach for storing and
protecting the quantum information. How to process the

Table 1. Comparison of the optimal gate error rates for the SC and
the cat. All errors are normalized by the optimal gate errors of the cat,

which are given by pZðθÞ ¼ θ
2

ffiffiffiffiffiffi
1
n
κ1
κ2

q
and pCNOT ¼ π

2
ffiffi
2

p
ffiffiffiffi
κ1
κ2

q
58. The

definitions of F̂ and F̂
0
are given in Eq. (7) and Eq. (15) respectively. The

optimal gate errors for SC are reached at η � 1
2. The optima Z(θ) gate

time for SC with F̂
0
and F̂ are approximately π

4
ffiffiffiffiffiffiffi
κ1κ2

p n�5=2 and
π

4
ffiffiffiffiffiffiffiffiffi
3κ1κ2

p n�7=2 respectively. The gate times for CNOT are approximately
π

4
ffiffiffiffiffiffiffiffiffi
2κ1κ2

p n�3=2 and π
12
ffiffiffiffiffiffiffi
κ1κ2

p n�5=2 respectively. Since the cooling time is

mostly assumed to be constant in our gate scheme, it is neglected for
simplicity. We only provide the scaling of the gate errors with n for the
SC since the exact expressions are complicated, as shown in Methods.

Normalized gate error SC with F̂
0

SC with F̂

Z(θ) 1=ðnþ 1Þ � n�2

CNOT 2=
ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p � n�3=2
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information (e.g., implementing quantum gates) remains to be
explored. On the other hand, if the information is stored in the
internal states of the ions (the conventional approach), the
bosonic codes like the SC could lead to more robust information
processing. One could utilize multi-species ions72,73 with multiple
levels74 and dissipatively protect the motional modes while
leaving a subset of the ions’ internal states that carry the
information intact. The protected motional modes can, for
instance, be used for scalable, parallel, and high-quality entangling
gates mediated by localized phonon modes75.

METHODS
Physical realization of the dissipator
In this section, we present the details of the two approaches
implementing the dissipator in Eq. (7). Before describing our
recipes, it is worth discussing the challenges involved here. The
most straightforward method to realizing a generic Lindblad
dissipator D½F̂� is to couple the system to an auxiliary reservoir
mode c (with decay rate κc) via a coupling Hamiltonian
gðF̂ĉy þ h:c:Þ. In the limit where mode c acts as a Markovian
environment for the system, i.e., κc≫ g, we realize the target
dissipator F̂ with an effective dissipation rate 4g2/κc. For the
dissipator in Eq. (7), this simple route requires a strong fourth-
order nonlinear coupling, which has not been demonstrated yet
due to the experimental challenges.
Here we present two approaches for realizing the desired

nonlinear dissipator using accessible experimental resources: The
first approach utilizes three nonlinearly-coupled bosonic modes,
which can be physically realized in, e.g., superconducting
circuits42,43; The second approach couples a bosonic mode
nonlinearly to a qutrit, which can be physically realized in, e.g.,
trapped-ion system44.
The first approach only requires third-order nonlinearities,

which can be experimentally generated by four-wave fixing, to
implement our desired dissipator, making use of a more
structured engineered dissipation proposed in ref. 62. Under the
subsystem decomposition of the storage mode a encoding the SC,
one can realize a general nonlinear dissipator of the form

D½e�iθẐL � ~̂A� (with an angle θ), by coupling a gauge-mode

operator ~̂A and an auxiliary mode b to the input and output
ports of a directional waveguide, respectively, and introducing a

dispersive interaction between an auxiliary mode b and the logical

qubit: Ĥdisp: ¼ λ
2 ẐLb̂

y
b̂. For the dissipator in Eq. (7), we choose

~̂A ¼ ~̂a. The physical interactions (in the Fock basis) can be

obtained from the mapping ~̂a ! 1
2α0 ŜðrÞ â2 � α02

� �
Ŝ
yðrÞ, and

ẐL ! 1
2α0 ŜðrÞ âþ ây

� �
Ŝ
yðrÞ, which means that we need a nonlinear

coupling between the storage mode a and the waveguide port.
While it is challenging to directly achieve this using e.g., a physical
circulator, the directional dynamics can be synthetically engi-
neered by adding another reservoir mode c. The whole setup is
illustrated in Fig. 5a, whose dynamics is given by master equation

d
dt

ρ̂ ¼ �i½Ĥdisp: þ Ĥtun:; ρ̂� þ κcD½ĉ�; (16)

where the tunnel coupling Hamiltonian Ĥtun: of the total system-
reservoir is given by

Ĥtun: ¼ Jab~̂a
y
b̂þ ðJac ~̂a� iJbcb̂Þĉy þ h:c:; (17)

Jab ¼
ffiffiffiffiffiffiffiffiffi
ΓaΓb

p
=2; Jac ¼

ffiffiffiffiffiffiffiffiffi
Γaκc

p
=2; Jbc ¼

ffiffiffiffiffiffiffiffiffi
Γbκc

p
=2: (18)

In the regime where the joint b,c modes act as a Markovian
reservoir for mode a, i.e., κc �

ffiffiffiffiffiffiffiffiffi
ΓaΓb

p
and Γb≫ Γa, we can

adiabatically eliminate both b and c to obtain an effective
dissipator (using the effective operator formalism76), as

d
dt

ρ̂ ¼ ΓaD iλẐL � Γb

iλẐL þ Γb
~̂a

" #
ρ̂: (19)

Setting λ= Γb, we obtain the desired dissipator ẐL � ~̂a to stabilize
the SC (see Supplementary Note 6 for a detailed derivation).
When deriving Eq. (19), we require the physical setup Eq. (16) to

operate in the regime where adiabatic elimination remains valid. It
is thus natural to ask what are the imperfections given realistic
physical parameters, i.e., when the decay rates κc, Γb of auxiliary
modes b,c cannot be infinitely large. In that case, one can show
the dominating error due to finite reservoir bandwidth is due to
the finite decay rates κc and Γb, and it is preferable to set κc ~ Γb to
optimize over hardware resources (see Supplementary Note 6 for
details). In this regime, the extra error introduced by physical
implementation is determined by the ratio Γa/Γb, which heur-
istically describes the branching ratio between the logical qubit
population that does not undergo the parity flip (uncorrected
error) and the population that does (corrected error) whenever a
gauge mode excitation decays into the environment. More
specifically, as shown in Supplementary Note 6, we can
approximately derive the discrepancy between the desired
suppression factor for the loss-induced phase flip rate ηpred (using
Eq. (6)) and the numerically extracted (achievable) value ηsim, as
ηsim � ηpred ¼ ð1� ηpredÞðΓa=2ΓbÞ. As shown in Fig. 5b, by setting
Γa/Γb= 0.1, we can realize the desired η within 50% accuracy.
To make the required nonlinearity more clear, we can also

explicitly write down the physical Hamiltonian Eq. (16) in the Fock
basis:

Ĥtun: ¼ J
2α0 â

y2
s ðb̂þ ĉÞ � J

2 α
0ðb̂þ ĉÞ � i

2 κcb̂ĉ
y þ h:c:;

Ĥdisp: ¼ κcer

4α0 ðâþ âyÞb̂yb̂;
(20)

where âs ¼ cosh râþ sinh rây is the squeezed annihilation opera-
tor, and J :¼ ffiffiffiffiffiffiffiffiffi

Γaκc
p

=2. We have assumed that κc= Γb= λ. Ĥtun:
involves several cubic nonlinear couplings between the a,b modes
and between the a,c modes. In addition, Ĥtun: requires a resonant
linear coupling between the b,c modes and some linear drives
with strength Jα0

2 on the b,c modes that pump energy into the
system. Note that all the nonlinear terms are cubic, which have
been experimentally demonstrated in superconducting cir-
cuits42,43. The maximum nonlinear coupling strength is

Fig. 5 Physical realization of the stabilized SC in superconducting
circuits. a Realization of the parity-flipping dissipator ẐL � ~̂a using
three nonlinearly coupled bosonic modes. b Comparison between
the numerically extracted η (ηsim) and the theoretically predicted η
(ηpred in Eq. (6)) for a range of finite Γa/Γb. The dashed line indicates
the ideal case where ηsim ¼ ηpred .
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Jm :¼ J sinh 2r=2α0. Now we can write κ2 as a function of Jm and κc.
Comparing the dissipator

ffiffiffiffiffi
Γa

p
ẐL � ~̂a in Eq. (19) with the dissipatorffiffiffiffiffi

κ2
p

F̂ � ffiffiffiffiffi
κ2

p
2α0ẐL � ~̂a, we have κ2 ¼ Γa=4α02, so that κ2 ¼ 4J2m

κcsinh
22r
.

If we take Γa= ϵ0κc (and correspondingly, κc ¼ 4α0Jmffiffiffi
ϵ0

p
sinh 2r), where

ϵ0 < 1 is related to the adiabatic elimination condition discussed
above, we can obtain Jm ¼ α0 sinh 2rκ2=

ffiffiffiffiffi
ϵ0

p
.

Now we present the second approach for implementing the
dissipator F̂ ¼ 1

α0 ŜðrÞâðâ2 � α02ÞŜyðrÞ using a coupled boson-qutrit
system. Note that a simpler dissipator stabilizing a cat â2 � α2 was
obtained using a coupled boson-qubit system in trapped-ion
platform in ref. 44. However, the dissipator F̂ cannot be directly
engineered using their approach since there are many frequency-
degenerate terms, e.g., â and âyâ2, that cannot be independently
controlled by a single sideband drive. To resolve this, we
generalize their approach by introducing a third internal level of
the ion, and implementing the dissipator F̂ in two steps associated
with different electronic transitions. Specifically, we use the
motional mode of the ions in a 1D harmonic trap as the bosonic
mode, which is coupled to three internal levels gj i; ej i and fj i via
several laser beams:

d
dt

ρ̂ ¼ �i½Ĥeff ; ρ̂� þ J ρ̂; (21)

where Ĥeff ¼ νâyâþ ωe ej i eh j þ ωf fj i fh j þ 1
2Ω0ð fj i gh je�iωf t þ h:c:Þþ

Ĥcoup � i Γ2 ej i eh j, with
Ĥcoup ¼P3

i¼1
Ωi cos½η0ðâþ âyÞ�ð fj i gh je�iðωfþδiÞt þ h:c:Þ

þ P5
i¼4

Ωi sin½η0ðâþ âyÞ�ð ej i fh je�iðωe�ωfþδiÞt þ h:c:Þ;
(22)

and

Jρ̂ ¼ Γ
R 1
�1 duNðuÞe�iη0u âþâyð Þ

´ gj i eh jρ̂ ej i gh jeiη0u âþâyð Þ:
(23)

Here ν is the trap frequency, η0 the Lamb-Dick parameter, Γ the
engineered decay rate from ej i to gj i, and N(u) the normalized
dipole pattern. Ĥcoup describes the coupling between the motional

mode and the internal states, illustrated in Fig. 6, and J ρ̂
describes the spontaneous emission of the ion from ej i to gj i and
its associated momentum kicks. The drive with amplitude Ω0 in
Ĥeff comes from a laser that is coupled to the ion along a
constrained (transverse) direction, thereby only driving the
internal transitions. By tuning the laser detunings δ1=−2ν, δ2=
2ν, δ3= 0, δ4=−ν, and δ5= ν, and choosing appropriate driving
strength {Ωi} (see Supplementary Note 6), we can obtain a
coupling Hamiltonian (neglecting the fast-rotating terms):

Ĥcoup ¼ Ω0
gf ŜðrÞðâ2 � α02ÞŜyðrÞ fj i gh j

þΩ0
ef

1
α0 ŜðrÞâŜ

yðrÞ ej i fh j þ h:c:
(24)

In the regime where 2α0Ω0
gf � Γ, Ω0

gf � Ω0
ef , we can obtain a

reduced dynamics on the motional mode by adiabtically
eliminating the ej i; fj i states:
d
dt

ρ̂m ¼ κ2D½F̂�ρ̂m; (25)

where ρ̂m is the reduced density matrix on the motional mode.
Through numerically simulations we find that we can obtain the
dissipator F̂ with the desired rate by setting Ω0

ef ¼ 0:5Γ;
Ω0
gf=Ω

0
ef ¼ 1=20. A large κ2, therefore, demands large Γ and

driving strength. Note that we have assumed that Γ and {Ωi}, i= 1,
2, 3, 4, 5 are much smaller than ν, so that the off-resonant terms
can be safely neglected (secular approximation). In practice,
however, one might be able to go beyond this weak-drive regime
by carefully canceling the effects from the off-resonant terms. We
have also neglected the effects from the momentum kicks here,
which only lead to a small increase in the phase-flip suppression
factor η ! ηþOðη20Þ. See Supplementary Note 6 for a more
detailed analysis. We stress that our proposed approach requires
the same order of nonlinearity as that required by a two-
component cat, which has been considered to be feasible in
trapped-ion system44.

The memory error rates of the squeezed cat
In this section, we provide the derivation of the memory error
rates for the SC in Eqs. (10) and (11).
Since the bit-flip error rate is exponentially small in α0, the

subsystem decomposition is insufficient to obtain an analytical
expression of it. Thus, we derive the bit-flip error rate using the
conserved quantities of the system29,65. To facilitate the analysis,
we first neglect the ẐL term in the dissipator in Eq. (7) since it does
not contribute to the bit-flip rate, and then analyze the system
dynamics in the squeezed frame:

dρ̂s
dt

¼ κ2D½â2 � α02�ρ̂s þ κϕD½âys âs�ρ̂s; (26)

where Âs :¼ Ŝ
yðrÞÂŜðrÞ for any operator Â. Note that we we

consider the dephasing here, which is the dominant source for the
bit-flip errors. The two conserved quantities associated with the
dominant dissipator â2 � α02 are

Ĵþþ ¼ P1
n¼0

2nj i 2nh j;

Ĵþ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2α02

sinh 2α02

q P1
q¼�1

�1ð Þq
2qþ1 Iq α02ð ÞĴ qð Þ

þ�;
(27)

where Iq 	ð Þ is the modified Bessel function of the first kind, and

Ĵ
qð Þ
þ� ¼ âyâ�1ð Þ!!

ây âþ2qð Þ!! Ĵþþâ
2qþ1 for q ≥ 0 and Ĵ

qð Þ
þ� ¼ Ĵþþâ

y2qþ1 âyâð Þ!!
âyâþ2jqj�1ð Þ!!

for q < 0. The steady state coherence of the system initialized in

ρ̂ð0Þ can be computed through cþþ 1ð Þ ¼ tr Jyþþρ 0ð Þ
n o

and

cþ� 1ð Þ ¼ tr Jyþ�ρ 0ð Þ
n o

. Thus, we compute the bir-flip rate

perturbatively by considering the dephasing in the squeezed

Fig. 6 Laser configuration for the coupling Hamiltonian in Eq. (22)
for implementing the SC in trapped-ion system. The motional
mode of the ion is coupled to three internal states via the sideband
transitions, represented by the black and green arrows. Starting
from gj i � ψj i ( ψj i is an arbitrary motional state), the system goes
through a two-step coherent transition gj i � ψj i ! fj i � F̂1 ψj i !
ej i � F̂2F̂1 ψj i (indicated by the black and the green solid arrows,
respectively) and decays rapidly to gj i � F̂2F̂1 ψj i (indicated by

the black dashed arrows). Here F̂1 / ŜðrÞðâ2 � α02ÞŜyðrÞ and

F̂2 / ŜðrÞâŜyðrÞ. Adiabatically eliminating the ej i; fj i states, we obtain
the effective dissipator on the motional mode F̂ ¼ F̂2F̂1.
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frame,

γX;Y ¼ �κϕ tr Jyþ�D Ŝ
y
rð ÞâyâŜ rð Þ

h i
Cþ
α

�� �
C�
α

� ��n o
; (28)

which is then simplified to Eq. (11).
The phase-flip error rate Eq. (10) can be easily derived by analyzing

the errors under the subsystem decomposition. The loss and heating

errors are in the form â � ẐL � ðe�rα0 þ cosh r~̂a� sinh r~̂a
yÞ,

ây � ẐL � ðe�rα0 þ cosh r~̂a
y � sinh r~̂aÞ. They both contribute to the

phase-flip rate via the undetectable term e�rα0ẐL ¼
ffiffiffiffiffiffi
ηn

p
ẐL (the

detectable part associated with the ẐL � ~̂a
y
term is approximately

correctable by F̂). The dephasing is in the form âyâ � ÎL � ½e�2rα02þ
e�2rα0ð~̂aþ ~̂a

yÞ þ cosh2r~̂a
y
~̂aþ sinh2r~̂a~̂a

y � cosh r sinh rð~̂a2 þ ~̂a
y2Þ�. It

contributes to the phase-flip rate dominantly by the e�2rα0̂IL � ~̂a
y

term, which creates an excitation in the gauge mode that is
subsequently destroyed by F̂ with a residual phase flip. Therefore, the
dephasing contributes to the phase-flip rate by κϕe�4rα02 ¼
κϕe�2rηn.
Eq. (10) is valid in the regime where α0 � 1, which is violated

when r approaches the maximum squeezing allowed by the
energy constraint. We now provide a leading-order correction to
the loss-induced phase flip rate in such a regime. We have

assumed that the dissipator F̂ ¼ ẐLðâ2 � α2Þ � ẐL � ð~̂a2 þ 2α0~̂aÞ
can perfectly correct the detectable part of the loss-(or heating-)
induced errors by removing the excitation in the gauge mode
while applying a phase-flip correction on the logical qubit.
However, it is not a perfect correction because of the non-

Hermitian part of the dynamics induced by FyF � ÎL � ½~̂ay2~̂a2þ
2α0ð~̂ay2~̂aþ ~̂a

y
~̂a
2Þ þ 4α02~̂a

y
~̂a�. The second term above further

excites the gauge mode, which introduces additional non-
negligible Z errors when α0 � 1 does not hold. Through analysis
of a simplified 3-level system, we obtain a correction factor for the
phase-flip rate in the form of

ξ ¼ 1
2ð1þ 3α02Þ ; (29)

which works well for α0 
 1:5. This factor represents that, if the
qubit evolves from an initial state of ±j iL � ~n ¼ 1j i under the
dissipator F̂, a population of 1− ξ would end up in ∓j iL � ~n ¼ 0j i
and ξ would be in ±j iL � ~n ¼ 0j i in steady state. Therefore, the
phase-flip rate in Eq. (10) has an extra correction:

γZ ! γZ þ κ1ð1þ nthÞnð1� ηÞξ þ κ1nthð1� η0Þξ � κϕe
�2rηξ;

(30)

where η0 ¼ ðn� cosh2rÞ=n, which approaches η in the large
squeezing limit.
The correction factor’s effect becomes significant as η

approaches 0. In the limit of large n and only considering the
dominant loss error, the Z error rate has a minimum value
γZ;min �

ffiffi
2

p
4 κ1. Worth noticing, this minimum rate is independent

of n. Therefore, the SC enjoys an exponential suppression of the
bit-flip rate while maintaining a bounded phase-flip rate by
increasing n, which is drastically different from the cat code or its
DV counterpart, the repetition code.

Bias-preserving operations for the squeezed cat
In this section, we present the detailed design and error analysis
for the Z rotation Z(θ) and the CNOT gate for the SC, which are
representatives of bias-preserving opearations B. See Supplemen-
tary Note 4 for the rest of the operations in B.

Similarly to the cat, the Z-axis rotation Z(θ) can be generated by
a resonant linear drive

ĤZ ¼ θ

4α0T
erðâþ âyÞ; (31)

in the presence of the engineered dissipation in Eq. (7) for a time T. In

the subsystem basis, HZ � θ
4α0T ẐL � ð2α0 þ ~̂aþ ~̂a

yÞ. The total phase
flip error probability of the Z rotation is pZ ¼ pNAZ ðTÞ þ κ1ηnT , where
the second term represents the loss-induced phase flips and the first
term represents the non-adiabatic errors due to the non-adiabatic

excitation ẐL � ~̂a
y
in ĤZ . We note that compared to the parity-

preserving dissipator D½̂IL � ~̂a�, which is used in the literature for the
cat (by applying a driven two-photon dissipation), the parity-flipping
dissipator F̂ in Eq. (7) can significantly reduce the non-adiabatic errors

induced by ẐL � ~̂a
y
. The reason is that the majority of the parity flips

associated with the non-adiabatic transitions can be flipped back
through the application of the dissipator. The remaining errors with a
fraction ξ leads to the residual non-adiabatic error pNAZ proportional
to ξ (see the previous Methods section). Under the adiabatic limit
θ

4α0T � 4κ2α02, the system’s evolution under the dissipator F̂ can be
approximated by the dynamics of the density matrix ρ̂trunc with a
truncated 2-level gauge basis:

κ2D½F̂�ρ̂ � 4κ2α
02ðð1� ξÞD½ẐL � ~̂a� þ ξD½̂IL � ~̂a�Þρ̂trunc: (32)

Performing first-order adiabatic elimination76 on the gauge
excited state results in an effective Z error rate ξθ2

16κ2α04T
. Notice

that adiabatic elimination does not capture the higher-order errors
and the result only holds under the adiabatic limit. A more
accurate expression can be derived through solving the ordinary
differential equations of the two level system. As a result, the
modified non-adiabatic error has the form:

pNAZ ðTÞ ¼ ξθ2

16κ2α04T2 ðc1T þ c2
e�2κ2α02T � 1

2κ2α02
Þ: (33)

Performing numerical fit, we obtain c1= 1.5, c2= 1.8.
The CNOT gate is implemented by applying the engineered

dissipation only on the control mode and a Hamiltonian term that
drives a phase rotation on the target mode conditioned on the
states of the control mode:
d
dt ρ̂ ¼ κ2D½F̂c�ρ̂� i½ĤCNOT; ρ̂�;
ĤCNOT ¼ π

4α0T erðâc þ âycÞ � 2α0
h i

ðâyt ât � α02Þ; (34)

where F̂c denotes the engineered dissipator in Eq. (7) on the control
mode. The noise terms are not shown for simplicity. We note that
compared to the standard CNOT gate on the cat30,58, we turn off the
dissipation on the target mode during the gate to circumvent the
need for high-order coupling terms between the two modes.
Although the target mode temporarily loses the protection against
the excitation loss, we can still implement a high-quality gate if the
gate time is short enough and the leakage on the target mode can
be subsequently returned to the code space without introducing too
many errors. Similar strategy and insights have been made in ref. 77.
To deal with the non-adiabatic transitions on the target mode, which
preserve the parity, we apply a parity-preserving dissipation

κ2D½ŜðrÞðâ2t � α02ÞŜyðrÞ� on the target mode (while the control
mode is, as always, protected by the parity-flipping dissipation) for a
time Tcool. In our simulations, we fix the cooling time T cool ¼ 8 ´ 1

4κ2α02

to ensure that the leakage is suppressed to below 0.5%. Using the
Pauli-twirling approximation, the Z-type errors of the CNOT gate are

pZc ¼ κ1ηn T þ T coolð Þ þ pNAZ ðTÞ;
pZt ¼ κ1n T

2 þ T cool
� �

;

pZcZt
¼ 1

2 κ1nT ;

(35)
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where pZc ; pZt and pZcZt denote the Z error on the control, target
mode and the correlated Z error, respectively. They sum to the
total Z error probability pZ ¼ κ1nð1þ ηÞðT þ T coolÞ þ pNAZ ðTÞ. Note
that, unlike the Z rotation, the CNOT gate does not enjoy a full
suppression of the loss-induced errors (by a factor η) due to the
lack of the engineered dissipation on the target mode during the
gate. The non-adiabatic error pNAZ ðTÞ on the control mode has a
similar form as Eq. (33):

pNAZ ðTÞ ¼ ξπ2

16κ2α02T2 1:5T þ 0:6
e�2κ2α02T � 1

2κ2α02

 !
(36)

We also present the non-Z error rate of the CNOT gate here.
Note that the CNOT gate has a significantly larger non-Z error rate
than all other bias-preserving operations in B. As discussed
numerically in ref. 58, the non-Z error of a cat’s CNOT gate scales

approximately as 1:8 e�2α2

α2
1
κ2T

. For our CNOT gate on the SC, we find
a similar expression

pX;Y ¼ 5:57
e�2α02

α02
1
κ2T

; (37)

in the regime where κ2T > 1. Note that for shorter gate time, we
cannot find a simple expression for pX,Y and a numerical
simulation of the gate has to be performed to determine pX,Y.

DATA AVAILABILITY
The Python codes and numerical simulation results are available from the
corresponding author upon reasonable request.
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