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Exact electronic states with shallow quantum circuits from
global optimisation
Hugh G. A. Burton1,3✉, Daniel Marti-Dafcik 1, David P. Tew1 and David J. Wales 2

Quantum computers promise to revolutionise molecular electronic simulations by overcoming the exponential memory scaling.
While electronic wave functions can be represented using a product of fermionic unitary operators, the best ansatz for strongly
correlated electronic systems is far from clear. In this contribution, we construct universal wave functions from gate-efficient, spin
symmetry-preserving fermionic operators by introducing an algorithm that globally optimises the wave function in the discrete
ansatz design and continuous parameter spaces. Our approach maximises the accuracy that can be obtained with near-term
quantum circuits and provides a practical route for designing ansätze in the future. Numerical simulations for strongly correlated
molecules, including water and molecular nitrogen, and the condensed-matter Hubbard model, demonstrate the improved
accuracy of gate-efficient quantum circuits for simulating strongly correlated chemistry.
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INTRODUCTION
Computing molecular properties and processes relies on solving
the Schrödinger equation to find the many-electron wave
function. An exact solution to this problem formally scales
exponentially with the number of electrons. Therefore, current
high-accuracy algorithms with polynomial scaling, including
coupled-cluster and many-body perturbation theory, fail when
the electronic entanglement and correlation cannot be easily
approximated1. These situations often arise in open-shell systems
with strong spin coupling, such as stretched molecular bonds and
transition metal complexes2. For this reason, universally accurate
simulations of complex processes, such as metalloenzyme
catalysis and high-temperature superconductivity, remain diffi-
cult3. Gate-based quantum computation has the potential to
overcome this challenge by representing the electronic wave
function using polynomially scaling quantum resources, providing
a route for solving strongly correlated electronic structure
problems4.
Current and near-term quantum devices are impaired by noise

and are limited to shallow quantum circuits5. The most promising
near-term approaches optimise the parameters of an ansatz for
the quantum state, and algorithms such as the variational
quantum eigensolver6 (VQE) are expected to outperform classical
computational methods with modest quantum resources. How-
ever, the best ansatz for strongly correlated wave functions is far
from clear, raising the question of how near-term quantum
computing can usefully address unsolved electronic structure
problems in chemistry. These questions are further complicated
by the lack of numerical insight into the mathematical limits of
different ansätze, such as how the accuracy scales with the
number of operators or circuit depth.
We present a method for discovering highly compact ansätze

by combining products of spin symmetry-preserving fermionic
operators with a global optimisation algorithm, the Discretely
Optimised Variational Quantum Eigensolver (DISCO-VQE), which
optimises both the discrete sequence of operators and their

continuous variational parameters. Numerical simulations demon-
strate that accurate wave functions for strongly correlated
electronic systems can be parametrised with efficient quantum
circuits. These advances facilitate the design of high-accuracy
quantum ansätze for solving challenging electronic structure
problems on quantum devices, which will provide a deeper
theoretical understanding of how these mathematical approxima-
tions encode strong electron correlation.
Ansatz-based approaches apply a unitary transformation Û to an

initial state Φ0j i in the form of a quantum circuit, constructed
through a series of parametrised building blocks as
Û ¼ Û1ðθ1Þ � � � ÛNðθNÞ. The parameters θi are optimised on a
classical computer by extremising an objective function, such as
the electronic energy, which is evaluated using the quantum
computer. This product structure defines a family of wave
functions that we term unitary product states (UPS), and
encompasses every quantum computational chemistry ansatz
that has been proposed to date.
The ideal unitary product state should satisfy:

● Universality — describe any electronic eigenstate;
● Practicality — minimise circuit depth with few

entangling gates;
● Symmetry — preserve good quantum numbers for operators

that commute with the Hamiltonian.

Currently, the most popular ansätze use either hardware-
efficient unitary operators constructed from qubit operations that
minimise the depth of a specific quantum circuit7, or physically-
motivated fermionic unitary operations8 based on the second-
quantised representation of electronic systems1. Second-
quantised fermionic operators conserve particle number and
Pauli antisymmetry, ensuring that truncated approximations
predict accurate properties beyond the energy, and providing
suitable initial states for fault-tolerant quantum phase estimation,
where efficiency depends on the initial overlap with exact states.
However, fermionic operators require multiple gate operations
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that lead to deep quantum circuits, creating a trade-off between
symmetry-preservation and gate efficiency8.
Initial developments based on fermionic operators included the

unitary coupled cluster approach6,8 (UCC), inspired by the success
of coupled cluster theory for classical computing9. The UCC unitary
transformation is an exponential of a sum of anti-Hermitian
fermionic operators, usually restricted to one- and two-body
excitations8. However, since fermionic operators generally do not
commute, representing this unitary transformation as a quantum
circuit requires a Trotter approximation, which is only exact in the

infinite limit: eÂþB̂ ¼ lim
m!1 ðeÂ=meB̂=mÞm. Instead, focus has shifted to

a particular UPS form called disentangled UCC10. While it has been
shown theoretically that exact states can be represented using a
suitably-ordered infinite product of one- and two-body fermionic
operators10, finite expansions are sensitive to the operator order, fail

for strong correlation11,12, and do not conserve the hŜ2i quantum
number13. In our view, refering to these states as UCC is no longer
appropriate since the connection to the many-body cluster
operator is not retained in practice. The ADAPT-VQE optimisation
algorithm14, and its extensions15–18, iteratively build a UPS from a
pool of operators, selecting the operator with the largest energy
improvement at each step. Although promising, variants of ADAPT-
VQE that use qubit operators may not converge to the exact
ground state19, and current qubit and fermionic implementations
are not guaranteed to conserve spin symmetry17,20. Furthermore, as
we show in this work, the ADAPT-VQE optimisation strategy will
generally not identify the best representation with the fewest
number of operators from a given pool.
Here we describe an approach that fulfils the ansatz require-

ments using a symmetry-preserving unitary product state (s-UPS)
that conserves Pauli antisymmetry, particle number symmetry,

and the hŜzi and hŜ2i quantum numbers using a fermionic
operator pool. We prove that this ansatz is universal and
demonstrate that it is gate-efficient. Identifying the appropriate
choice of the operators is system-dependent and challenging. We
solve this problem by introducing the DISCO-VQE algorithm,
which simultaneously optimises the operator sequence and their
variational parameters. Our approach discovers the most accurate
s-UPS representation with a minimal number of parameters,
demonstrating that high-accuracy gate-efficient quantum circuits
can be achieved, and providing a practical route for designing
highly accurate ansätze in the future.

RESULTS
Symmetry-preserving unitary product states
Fermionic unitary operators correspond to an exponential of anti-
Hermitian second-quantised operators κ̂rs¼pq¼ ¼ ayr a

y
s � � � aqap�

aypa
y
q � � � asar . These operators ensure Pauli antisymmetry, conserve

particle number, and can be mapped onto qubit operators using
fermion-to-qubit encodings21,22. We define a symmetry-preserving
unitary product state (s-UPS) of length M as

Ψðt; μÞj i ¼
YM

i¼1

eti κ̂μi Φ0j i; (1)

where Φ0j i is an arbitrary initial state, and only spin-adapted
generalised one-body and paired two-body operators are allowed,
that is κ̂μi 2 fκ̂qp þ κ̂qp; κ̂

qq
ppg. The indices p, q (where p < q) denote

arbitrary spin orbitals and the absence (presence) of an overbar
indicates a high-spin (low-spin) orbital. Individual operators may
appear multiple times with different amplitudes, defined by the
continuous coordinates t= (t1,…, tM). Because the κ̂μi need not
commute, the ansatz depends on the sequence of operators,
denoted by the ordered indices μ= (μ1,…, μM).

Using generalised fermionic operators, where p and q represent
arbitrary spin orbitals, removes any dependence on the separation
of occupied or virtual orbitals in a mean-field reference. In contrast
to many-body perturbation theory, these operators represent Lie
algebra generators23 for unitary transformations in the D-
dimensional Hilbert space and can rotate any initial state into
any exact state. Universality of the generalised (unpaired) one-
and two-body fermionic operators has been proved by realising
that their nested commutators can generate the full Lie algebra10.
Since a product of unitary operators corresponds to an
exponential of a sum of operators and their commutators,
eÂeB̂ ¼ eÂþB̂þ1

2½Â;B̂�þ:::, combining enough operators in a suitable
order can represent any unitary transformation in the Hilbert
space24. The universality of the s-UPS ansatz can be proved using
the additional observation that generalised two-body operators
can be expressed as nested commutators of one-body and paired
two-body operators, as we show in the Supplementary Methods
and illustrate diagrammatically in Supplementary Figure 1. This
proof requires the reference state to have at least one pair of
doubly occupied and doubly unoccupied orbitals. We postulate
that M≤(D− 1) will allow any initial state to be rotated into an
exact state without redundant parameters, and provide numerical
examples that support this hypothesis. In practice, we expect
sufficient accuracy with smaller M values.
Since these elementary operators are spin-adapted (the

commutators ½Ŝ2; κ̂� and ½Ŝz; κ̂� vanish), the s-UPS ansatz conserves
the spin symmetry of the initial state for every truncation M,
avoiding spin-constrained optimisation13 or spin projection17. In
contrast, spin-adapted unpaired two-body operators require the
exponentiation of a sum of non-commuting operators, and their
application in a quantum circuit requires a Trotter approximation,
which destroys the spin adaptation13. Furthermore, paired two-
body operators κ̂qqpp can be implemented with a constant number
of two-qubit controlled-NOT (CNOT) gates, while the CNOT count
for unpaired two-body operators grows linearly with the number
of orbitals (see Supplementary Methods).
The s-UPS ansatz can be viewed as a generalisation of the

quantum-number-preserving (QNP) approach25 and the swap-
network k-UpGGCSD framework26, where spin-adapted orbital
rotation gates (generalised spin-adapted one-body operators) and
pair exchange gates (paired two-body operators) between
nearest-neighbour qubits are used to define low-depth quantum
circuits with local connectivity. Since we include operators
connecting any pair of orbitals, and allow a variable operator
ordering, we expect greater accuracy with fewer parameters.
Furthermore, while universality of the QNP ansatz was only
postulated and demonstrated numerically25, our fermionic repre-
sentation has allowed a rigorous proof.

Discretely optimised variational quantum eigensolver
Fixed operator orderings are typically poor approximations to
the optimal unitary product state and very little is understood
about what constitutes a good ordering14,27. Without a priori
information, the optimal operator ordering can be approached
as a coupled discrete and continuous optimisation problem for
the continuous operator amplitudes t and the discrete ordered
operator set μ. Exploiting the variational principle, the optimal
s-UPS representation can be identified by minimising the
energy

Eðt; μÞ ¼ Φ0h j
Y1

i¼M

e�ti κ̂μi

 !
Ĥ
YM

i¼1

eti κ̂μi

 !
Φ0: (2)

The nonlinearity of E(t, μ) with respect to t creates local minima
that hinder global optimisation12,28. Previous discrete optimisation
strategies include mapping the problem to a probabilistic
framework29, genetic algorithms30,31, or an iterative gate-by-gate
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optimisation algorithm32. However, stochastic approaches are not
guaranteed to find the global minimum, while the gate-by-gate
approach cannot escape local discrete minima, and the strong
interdependence of the operators means that crossover steps in
genetic algorithms are less likely to lower the energy30.
Instead, we have developed the Discretely Optimised Varia-

tional Quantum Eigensolver (DISCO-VQE), which facilitates global
optimisation by taking steps in both the continuous and discrete
spaces for the s-UPS ansatz. For a given μ, we define a local
discrete neighbourhood as the operator sequences connected by:

● cyclically permuting the ordered set;
● mutating one operator into another from the pool;
● swapping the position of two operators.

Following the generalised basin-hopping (GBH) approach33–35,
we define a biminimum34 as a configuration (t, μ) that is a
minimum in the continuous parameters and lies lower in energy
than neighbouring minima after a step in the discrete space,
including relaxation of the continuous parameters. DISCO-VQE
alternates between a series of basin-hopping36,37 steps that
explore the continuous energy landscape for a fixed set of
operators, and discrete steps in the space of operator orderings
(Fig. 1). After each round of basin-hopping steps we identify the
lowest-energy configuration that can be reached by cyclically
permuting the operators and reoptimisation of the continuous
coordinates. Similarly, we identify the lowest energy mutation and
pair swap for each operator and accept this step if it lowers the
energy. By testing mutations and pair swaps for every operator
individually, DISCO-VQE can completely change the discrete
parameters in each macrocycle and, in principle, the optimal
operator sequence could be discovered after one macro iteration.
In practice, the combined space of continuous and discrete
parameters exhibits many local biminima and uphill moves are
required to escape these traps. The full algorithm is detailed in the
Supplementary Methods.
To avoid a bias towards any particular region of the discrete

space, the search is initialised with identity operators that
represent the initial state Φ0j i. In the future, the use of informed
guesses based on intuition into the best operator order may
improve the optimisation efficiency.

Analysis of computational scaling
Obtaining high-accuracy wave functions using adaptive algo-
rithms, such as DISCO-VQE and ADAPT-VQE, increases the
computational cost relative to a fixed ansatz approach. For M
operators chosen from a pool of size N, the computational scaling

of DISCO-VQE is determined by the cost of the operator mutations
and pair swaps. One cycle of operator mutations tests whether the
energy is lowered when each of the M operators is replaced with
another operator from the pool, giving a scaling of OðMNÞ.
Similarly, one cycle of pair swaps considers every possible way to
interchange the current operators, with a scaling of OðM2Þ. The
overall scaling of the discrete search is therefore OðmaxðM2;MNÞÞ,
allowing the combinatorial space of operator sequences to be
searched with polynomial scaling in M and N.
Global optimisation allows highly accurate wave functions to be

discovered with smaller operator pools and fewer variational
parameters than methods such as ADAPT-VQE. To avoid stagna-
tion, the standard fermionic ADAPT-VQE implementation14 must
consider all unpaired two-body operators with a pool that scales
as N � Oðn4qÞ, where nq is the number of qubits. The discrete
gradients needed to iteratively grow the ansatz scale as OðNÞ,
giving fermionic ADAPT-VQE an overall scaling of Oðn4qÞ. In
contrast, our spin-adapted one-body and paired two-body
operator pool scales as N � Oðn2qÞ. Assuming that chemical
accuracy can be achieved with M≤N, which is true for the
examples we consider, the overall scaling of DISCO-VQE becomes
OðMn2qÞ, which is at worst the same as fermionic ADAPT-VQE with
unpaired two-body operators. Further reductions may be achieved
with additional restrictions, such as constraining the operators to
act between nearest-neighbour qubits to give N � OðnqÞ. The
current state of knowledge does not provide a prediction for how
the number of operators M required to achieve a given accuracy
will scale with the system size.
The computational cost of DISCO-VQE scales linearly with the

number of basin-hopping steps in the continuous space and the
number of discrete macrocycles, which are primarily determined
by the amount of computing resources available. In this work, our
aim is to calibrate the best achievable accuracy, so we use a large
number of cycles, as detailed in the Supplementary Methods.
However, any number of basin-hopping steps must always be at
least as accurate as the current best optimisation with the same
initial guess, while the reoptimisation in the discrete search means
that the continuous space can still be explored without any basin-
hopping steps (Supplementary Figure 2). Furthermore, because
DISCO-VQE starts by selecting mutations for the initial empty set
of operators, which is essentially the same as the ADAPT-VQE
procedure, even a single discrete macrocycle will ensure that
DISCO-VQE is at least as accurate as ADAPT-VQE with the same
operator pool (Supplementary Figure 2). Consequently, even for a
single macrocycle, DISCO-VQE will always match or exceed the
accuracy of current state-of-the-art VQE calculations.

Exact wave functions using DISCO-VQE
The universality of the s-UPS ansatz means that wave functions
with an arbitrarily small energy error can be obtained using a finite
number of spin-adapted one-body and paired two-body unitary
operators. DISCO-VQE calculations on linear and tetrahedral H4

show that chemical accuracy (1.59 mEh) requires only nine and five
operators, respectively (Fig. 2a–b). Furthermore, exact ground
states can be identified using thirteen or eight operators,
respectively, compared to a Hilbert space of 36 configurations.
These results support our postulate that exact s-UPS representa-
tions require a finite number of operators M that is less than the
Hilbert space size, in contrast to previous theoretical work that
could only demonstrate universality in the limit M→∞10.
Practical electronic structure calculations generally require

consistent accuracy for every relevant geometry of a molecule.
DISCO-VQE achieves this goal for linear H4 by identifying exact
wave functions with thirteen operators at all geometries (Fig. 2c).
Fixing the ansatz to the ordering identified at equilibrium gives
near-exact energies across the full binding curve (Supplementary
Figure 4), demonstrating that accurate and transferable fixed

Pair swaps

D CAB

Mutations

B C A C

D

Cyclic 
Permutations

CA CB

Basin-Hopping

Fig. 1 DISCO-VQE optimises the continuous coordinates t and the
discrete space of operator orders μ. This generalised basin-
hopping approach identifies the best s-UPS wave function using
cyclic permutations, mutations, and pair swaps of the unitary
operators.
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ansätze can be defined. The operator sequence and optimised
parameters for this fixed ansatz are included in Supplementary
Table 1, providing a high-accuracy quantum circuit for use in
practical VQE experiments. In comparison, random fixed ansätze
are relatively accurate near equilibrium, but exhibit a large energy
variation towards dissociation (Fig. 2c). Furthermore, optimisation
using ADAPT-VQE with the paired operator pool accurately
describes equilibrium and dissociation, but gives appreciable
errors at intermediate geometries, where electron correlation is
most challenging (Fig. 2c).
Global optimisation of the continuous coordinates and discrete

operator ordering is essential for realising the universality of the
s-UPS ansatz. The improved algorithmic optimisation provided by
DISCO-VQE is clear from comparison with ADAPT-VQE calculations
using the same pool of operators. By adding one operator at a
time, ADAPT-VQE performs a local optimisation, which may not
converge to the exact ground-state wave function, as demon-
strated in Fig. 2a–b. DISCO-VQE can escape these local minima
and implements global optimisation for any sequence of
operators.
Stagnation of the ADAPT-VQE optimisation was previously

described in ref. 19 and arises from combining the gradient-based
selection criterion with particular operator pools. The restriction to
paired two-body operators means that the ADAPT-VQE gradient14

no longer coincides with the residual of the Anti-Hermitian

Contracted Schrodinger Equation38 and converged solutions are
not necessarily eigenstates39. A near-exact ADAPT-VQE result for
linear H4 can be obtained by including unpaired two-body
operators (Fig. 2a), although DISCO-VQE is still more accurate with
fewer operators, and truncated wave functions exhibit spin
contamination (Supplementary Figure 3).

Applicability to open-shell molecules
High-spin molecules are an important target for quantum
algorithms because conserving open-shell spin symmetry in
standard methods, such as coupled-cluster theory, introduces
significant computational complexity40. Rubin et al. have recently
shown that ADAPT-VQE using the full unpaired operator pool
struggles to converge to the high-spin triplet ground state of O2

using the restricted open-shell HF (ROHF) reference state, while
starting from a more accurate ROHF-CCSD state introduces spin
contamination20. These issues arise from a plateau in the energy
with respect to the number of operators (Fig. 3a), which causes
the magnitude of the discrete gradient to temporarily fall below
the convergence threshold used in ref. 20 (Fig. 3b: top panel).
Adding more operators eventually causes the energy to decrease,
although 32 operators are ultimately required to reach chemical
accuracy.

Fig. 2 DISCO-VQE produces exact wave functions using global optimisation. The panels illustrate the convergence of DISCO-VQE and
ADAPT-VQE with respect to the number of operators for (a) linear H4, R(H−H)= 0.90 Å, and (b) tetrahedral H4, R(H− H)= 1.98 Å, using the
STO-3G basis set45. (c) DISCO-VQE identifies the exact wave function throughout the linear H4 binding curve, while ADAPT-VQE and random
ordered sets of thirteen operators exhibit a large variation in accuracy. DISCO-VQE surpasses the accuracy of ADAPT-VQE using only six
operators, while chemically accurate binding curves require ten operators (Supplementary Figure 5). Computational details for the DISCO-VQE
and ADAPT-VQE calculations are provided in the Supplementary Discussion.

Fig. 3 The s-UPS ansatz accurately predicts the high-spin triplet state of O2 (STO-3G) while preserving the h ̂S2i quantum number. Two
core molecular orbitals are frozen and the bond length is R(O-O) = 2.55 Å. a DISCO-VQE optimisation achieves chemical accuracy with only
nine operators from the ROHF reference state, while ADAPT-VQE with the paired operator pool fails to converge to the correct state. b ADAPT-
VQE using the full unpaired operator pool can become spin contaminated and exhibits a plateau in the energy with respect to the number of
operators, which creates a minimum in the magnitude of the ADAPT-VQE discrete gradient. Computational details for DISCO-VQE and ADAPT-
VQE calculations are provided in the Supplementary Discussion.
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In contrast, the s-UPS ansatz provides a chemically accurate
representation of the O2 ground state using only nine operators
from a Hilbert space of 448 configurations. This highly accurate
open-shell s-UPS approximation is achieved despite only including
spin-adapted one-body and paired two-body operators in the
pool, with no modifications to the DISCO-VQE procedure. As for
the H4 results, the importance of global optimisation in the
discrete space is demonstrated by the stagnation of ADAPT-VQE
calculations using the paired operator pool. Furthermore, enfor-
cing spin symmetry at the operator level ensures that every s-UPS
truncation preserves the hŜ2i ¼ 2 property of the ROHF reference
state, guaranteeing a spin-pure representation (Fig. 3b: bottom
panel). Hence, universal wave functions for any spin state can be
achieved using the s-UPS approach.

Accuracy of truncated approximations
Practical quantum computations on large molecules will still
require truncated wave function approximations. Global optimisa-
tion using DISCO-VQE provides the most accurate s-UPS for a
given number of operators, while conserving spin symmetry at

every truncation. For example, DISCO-VQE calculations on linear
H6, with a Hilbert space of 400 configurations, achieve chemical
accuracy with 30 operators (Fig. 4a) while ADAPT-VQE optimisa-
tion stagnates between 14 and 40 operators (Fig. 4a). DISCO-VQE
requires 10 operators to surpass the accuracy of ADAPT-VQE using
the paired operator pool (Fig. 4b) and improves the energy using
fewer parameters compared to previous fermionic operator
methods (Fig. 4c). Hence, DISCO-VQE provides the most accurate
result with a specified number of fermionic operators in linear H6.
Symmetrically stretched H2O and N2 dissociation represent

strongly correlated molecular tests for wave function approxima-
tions, with Hilbert space dimensions of 441 and 400, respectively,
when the four lowest molecular orbitals of N2 are frozen. DISCO-
VQE calculations with a truncated s-UPS ansatz produce highly
accurate energies across the H2O binding curve (Fig. 5a). In
contrast, ADAPT-VQE optimisation using the paired operator pool
fails to identify chemically accurate wave functions at any bond
length (Fig. 5a), while previous studies that include unpaired two-
body operators are much less accurate than our approach41. The
un-Trotterised k-UpCCGSD ansatz required 126 variational para-
meters to reach an accuracy of 0.07 mEh27, while Trotterised

Fig. 4 DISCO-VQE provides the most accurate s-UPS wave function for a given number of operators. a DISCO-VQE with 30 operators
provides chemically accurate energies for the linear H6 binding curve (STO-3G). This number of operators matches the size of the operator
pool. b Comparison of DISCO-VQE errors and the previous state-of-the-art methods across the full binding curve. ADAPT-VQE calculations use
the same paired operator pool. The un-Trotterised 1-UpCCGSD and 2-UpCCGSD results are taken from ref. 12. The non-parallelity error (NPE) is
the difference between the maximum and minimum error in the energy. Boxes illustrate the upper and lower quartiles, and whiskers
represent the maximum and minimum values. c DISCO-VQE produces highly accurate energies at R(H− H)= 2.0 Å with fewer continuous
parameters than previous algorithms. The k-uCJ results are taken from ref. 46. The accuracy of the 2-UpCCGSD12 or 2-uCJ46 approaches is
surpassed with 30 operators, while ADAPT-VQE with the full unpaired operator pool required at least 78 operators to obtain comparable
results14. Computational details for the DISCO-VQE and ADAPT-VQE calculations are provided in the Supplementary Discussion.

Fig. 5 Wave functions built using DISCO-VQE accurately describe the potential energy surface for strongly correlated molecules. The
number of operators in these DISCO-VQE calculations is chosen to match the size of the operator pool in the STO-3G basis set, with (a) 42
operators for the symmetric stretch of H2O and (b) 30 operators for the dissociation of N2. The four lowest energy molecular orbitals are frozen
in N2. Un-Trotterised k-UpCCGSD results for N2 are taken from ref. 27. Computational details for the DISCO-VQE and ADAPT-VQE calculations
are provided in the Supplementary Discussion.
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calculations with over 250 operators have residual errors of
0.02–200mEh42. Our global optimisation strategy significantly
increases the accuracy with fewer operators than the previous
algorithms.
DISCO-VQE achieves chemical accuracy at nearly every N2 bond

length using 30 operators, giving a very accurate binding curve

(Fig. 5b). In comparison, UPS representations built from randomly
ordered sets that include all two-body operators have errors of
16–64mEh12, demonstrating the importance of global optimisa-
tion that treats both the discrete operator space and the
continuous space of operator amplitudes. The parameter reduc-
tion is highlighted by comparing to the un-Trotterised k-UpCCGSD
results, which require over 180 parameters to obtain a better
mean-average error27 (Supplementary Table 2). In contrast,
ADAPT-VQE optimisation with the paired operator pool does not
produce a smooth binding curve (Fig. 5b), while including
unpaired two-body operators breaks the total spin symmetry for
truncated approximations17. The s-UPS ansatz conserves the initial

hŜ2i value at every truncation, and DISCO-VQE global optimisation
achieves a highly accurate and operator-efficient description of
this strongly correlated electronic system.

Maximising the efficiency of quantum circuits
Applications on near-term quantum devices must balance accuracy
against the number of two-qubit CNOT gates in the quantum circuit,
which contribute the largest source of hardware noise. This
challenge has motivated hardware-efficient ansätze where the
operator pool requires few CNOT gates, such as qubit-ADAPT-
VQE15 and qubit-excitation-based (QEB) ADAPT-VQE18. However,
these methods can break fermionic antisymmetry, particle number,
or spin symmetry, giving unphysical electronic states.
Despite employing fermionic operators, DISCO-VQE achieves

chemical accuracy for linear H6 using less than a third of the CNOT
gates required for hardware-efficient ansätze (Fig. 6). These favour-
able CNOT counts are achieved by removing redundancies from the
quantum circuit using discrete optimisation and through the CNOT
efficiency of paired two-body operators. Therefore, efficient quantum
circuits can be achieved using symmetry-preserving fermionic
operators without relying on a hardware-efficient ansatz.

Balancing weak and strong electron correlation
Balancing weak and strong electron correlation is essential for
quantum chemistry, but has proved difficult to achieve in practice.
Many-body perturbation techniques can be quantitatively accu-
rate for weak correlation, but fail for strong correlation where the
molecular orbital picture breaks down. The accuracy of the DISCO-
VQE results across the H6, H2O, and N2 potential energy surfaces
demonstrate that the s-UPS ansatz can quantitatively describe
both correlation regimes.
The strongly correlated half-filled Hubbard lattice represents a

challenging condensed matter physics problem for many-body
approximations43. The correlation strength is determined by the
balance of the on-site repulsion U and the one-electron adjacent
site hopping term t. DISCO-VQE calculations with a truncated
s-UPS wave function provide excellent accuracy in both the weak
(U≪ t) and strong (U≫ t) correlation limits (Fig. 7a) using a
consistent number of operators and parameters. ADAPT-VQE
optimisation with the paired operator pool provides an accurate
representation of weak correlation, but is less accurate than
DISCO-VQE as the correlation strength increases. The converged
ADAPT-VQE wave functions include significantly more operators
than DISCO-VQE for intermediate correlation (U/t ≈ 10), but are
less accurate (Fig. 7c). We see that global optimisation using
DISCO-VQE is essential for obtaining quantitatively accurate s-UPS
wave functions for both weak and strong correlation with a
consistent quantum circuit cost.
Physical properties beyond the energy are also important for

understanding quantum phase behaviour. The strongly correlated
half-filled Hubbard model is characterised by an antiferromagnetic
phase, where the electrons are unpaired and localised on
individual sites. The double occupancy n̂pn̂p

� �
measures the

probability of simultaneously finding two electrons on the same

0 500 1000 1500 2000 2500

Fig. 6 DISCO-VQE identifies accurate and efficient quantum
circuits with significantly fewer CNOT gates than the previous
state-of-the-art. Calculations correspond to linear H6 at R(H− H)=
1.5 Å. Data for the qubit-ADAPT-VQE and QEB-ADAPT-VQE methods
are taken from ref. 18. CNOT counts are evaluated using the efficient
circuit design introduced in ref. 47.
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Fig. 7 DISCO-VQE captures the correct physics for a strongly
correlated two-dimensional Hubbard lattice (4 × 2) using 56
operators. The corresponding Hilbert space contains 4900 config-
urations, and the number of operators is chosen to match the size of
the operator pool. The DISCO-VQE energy (a) is very accurate in
both the weak correlation (U≪ t) and strong correlation (U≫ t)
regimes. Similarly, DISCO-VQE accurately predicts the double
occupancy (b), which becomes exact in the weak and strong
correlation limits. Analogous ADAPT-VQE calculations using the
paired operator pool require seven times more operators at
intermediate correlation but give less accurate results (c). Computa-
tional details for DISCO-VQE and ADAPT-VQE calculations are
provided in the Supplementary Discussion.
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site, which tends to zero for U/t→∞ and 0.25 for U/t→ 0.
Truncated s-UPS representations identified using DISCO-VQE
accurately predict this change across different U/t values
(Fig. 7b) and exhibit the correct limits. Hence both the wave
function and the energy can be accurately predicted, providing a
physically complete description of strong electron correlation.
Finally, the 1/8-filling fraction is more challenging for standard

quantum Monte Carlo techniques due to the fermionic sign
problem44. DISCO-VQE calculations for the 4 × 2 lattice achieve
exact wave functions using only seven operators (Fig. 8). This
number is significantly lower than the 56 operators used for the
inexact half-filled result, suggesting that the performance of the
s-UPS ansatz for a fixed number of operators is primarily related to
the size of the relevant number- and hŜzi–preserving Hilbert space
sector, which is 64-dimensional in this case. These results provide
further evidence for the applicability of our approach across
various different electron correlation regimes.

DISCUSSION
We have shown that an arbitrary electronic state can be parametrised
with the s-UPS ansatz built from spin-adapted one-body and paired
two-body fermionic operators. This ansatz conserves fermionic
antisymmetry, particle number, and the hŜ2i and hŜzi quantum
numbers without constrained optimisation or spin projection, and can
parametrise any spin state. The flexibility and accuracy of these wave
functions comes from identifying the best sequence of unitary
operators. The DISCO-VQE algorithm can universally address this
challenge by performing a coupled discrete and continuous global
optimisation of the wave function. Numerical simulations demon-
strate that chemically accurate energies can be achieved for weakly
and strongly correlated molecules using significantly fewer operators
and CNOT gates than previous techniques.
The s-UPS ansatz offers key advantages for practical quantum

algorithms: it can parametrise arbitrarily accurate wave functions;
preserves the Hamiltonian spin symmetries at every truncation; and
provides low CNOT counts suitable for noisy quantum hardware.
Conserving physical symmetries is essential for subsequent fault-
tolerant quantum phase estimation, where efficiency depends on the
overlap of the initial and exact states. Furthermore, formulating
generalised fermionic operators as Lie algebra generators for unitary
rotations moves beyond the many-body unitary coupled cluster
framework and embraces the natural capabilities of qubit rotations in
quantum computation, bridging the gap between fermionic
operators and hardware-efficient approaches such as the quantum-
number-preserving ansatz25. These advances enable quantitative,
physically accurate, and gate-efficient quantum circuits for simulating
strongly correlated chemistry using near-term quantum computers.

We have not explicitly considered spatial symmetry in the
present calculations, meaning that the spatial symmetry of the
initial state may not be preserved as the unitary operators are
applied sequentially. For point groups with non-degenerate
irreducible representations, conservation of spatial symmetry can
be trivially enforced by restricting the one-body operators to act
between orbitals with the same spatial symmetry, while paired
two-body operators automatically conserve symmetry. However,
the effect of this restriction on the convergence of DISCO-VQE is
beyond the scope of the current work, and we leave this question
for future investigations.
The success of many proposed quantum algorithms relies on

the accuracy of the initial state, which must be prepared at a
polynomial cost. Whether this accuracy is achievable using current
UPS ansätze remains an open question and depends on: how the
ansatz expressibility grows with the number of operators and
parameters; whether strong correlation can be parametrised with
low circuit depth; and how the number of operators scales with
the system size for a given level accuracy. Definitive answers to
these questions will require further work. Here we have shown
that global optimisation using DISCO-VQE provides reliable lower
bounds on the minimum number of operators and circuit depth
required for a given operator pool, providing insights into ansatz
design. Our results clearly demonstrate how a combination of
theory and numerical simulations can produce high-accuracy
ansätze to treat strong correlation on quantum devices.
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