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Evidence of Kardar-Parisi-Zhang scaling on a digital quantum
simulator
Nathan Keenan 1,2,3✉, Niall F. Robertson2, Tara Murphy2, Sergiy Zhuk2 and John Goold 1,3,4

Understanding how hydrodynamic behaviour emerges from the unitary evolution of the many-particle Schrödinger equation is a
central goal of non-equilibrium statistical mechanics. In this work we implement a digital simulation of the discrete time quantum
dynamics of a spin-12 XXZ spin chain on a noisy near-term quantum device, and we extract the high temperature transport exponent
at the isotropic point. We simulate the temporal decay of the relevant spin correlation function at high temperature using a
pseudo-random state generated by a random circuit that is specifically tailored to the ibmq-montreal 27 qubit device. The resulting
output is a spin excitation on a homogeneous background on a 21 qubit chain on the device. From the subsequent discrete time
dynamics on the device we are able to extract an anomalous super-diffusive exponent consistent with the conjectured Kardar-
Parisi-Zhang (KPZ) scaling at the isotropic point. Furthermore we simulate the restoration of spin diffusion with the application of
an integrability breaking potential.
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INTRODUCTION
The idea that quantum dynamics of many-body physics is better
simulated by controllable quantum systems was put forward by
Richard Feynman 40 years ago1. This is known as quantum
simulation2,3 and is expected to be one of the most promising
short term goals of near term quantum computing devices4 with
inevitable applications in diverse areas ranging from quantum
chemistry5–7 and material science8 to high energy physics9.
Quantum simulators currently come in two different flavours:
analogue and digital10–12. In an analogue simulator a purpose built
controllable quantum many-body system is prepared in the
laboratory with the ability to mimic a specific model Hamiltonian
of interest. In a digital simulator the quantum dynamics is mapped
to a series of discrete time gates that are used to directly
manipulate the information encoded in the quantum state2.
While analogue simulators are built with a specific model in

mind, digital simulation offers the possibility to programme
different Hamiltonian models so that a wide range of quantum
dynamics is, in principle, accessible on the same device. The
possibility of universal simulation of many-body quantum
dynamics afforded by digital quantum simulation is a tantalising
one. In reality, however, the current devices are still some distance
from this goal with noisy gate operations and readout. Ultimately,
significant progress in error correcting techniques is needed4. In
fact it has been on analogue devices where the most significant
progress has been made in simulating many-body dynamics12.
However, recent progress in error mitigation techniques for digital
devices has brought us closer to getting quantitative results from
noisy simulations13–15.
One dimensional interacting quantum spin systems are perhaps

the simplest non-trivial models used in the field of many-body
physics. Despite the obvious shortcomings on noisy near-term
quantum devices, there have been several interesting digital
simulations16–20 which are restricted to either small systems or
short times. These simulations can be viewed as important

benchmarks of device capability. In this work we show how noisy
near-term quantum devices can be used to shed important light
on a research topic which is at the forefront of research in low-
dimensional quantum spin dynamics. The issue we address
concerns the nature of the emergent high temperature anom-
alous hydrodynamics of the spin-12 XXZ spin chain at the isotropic
point21.
How macroscopic hydrodynamic behaviour emerges from

underlying microscopic physics is a question that has been at
the forefront of physics for 200 years22,23. This research continues
today in quantum many-body dynamics where the finite
temperature transport properties of quantum spin systems is
under significant analytical and numerical scrutiny24–26. A recent
development was the discovery of high-temperature spin super-
diffusion at the isotropic point of the spin-12 XXZ model27 using an
open systems approach. In this work the non-equilibrium steady
state was found to have a current scaling hĴi / 1=

ffiffiffi
L

p
consistent

with a space time scaling x∝ t1/ν with ν= 3/2. A numerical study
of the infinite temperature spin auto correlation functions at the
isotropic point28 has lead to the conjecture that the dynamics is in
the KPZ universality class29 and further numerical work30 has
shown the survival of the associated anomalous scaling of the
spin-spin auto-correlation functions at finite temperatures. There
is still no clear consensus on the exact conditions for the
emergence of this universal behaviour. Integrability is conjectured
to be central in the emergence of this scaling and progress in
incorporating anomalous diffusion in the context of generalised
hydrodynamics21,31,32 has been made. The predicted super-
diffusive exponent has been observed in a recent experimental
study of neutron scattering off KCuF3 which realises an almost
ideal XXZ spin chain33. Furthermore, the scaling was recently
confirmed in two analogue simulations of spin chains in both
ultra-cold atoms34 and in polariton condensates35.
In this work we perform a digital quantum simulation, of the

discrete time dynamics, at the isotropic point of the XXZ model. It
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was recently discovered that the Trotterised version of the XXZ
model is also integrable36 and the KPZ scaling at the isotropic
point remains28,37. This has the distinct advantage on a near term
device of being able to simulate for longer times without having
to worry about Trotter errors that plague continuous time
simulation. We extract the high temperature correlation function
following a recent proposal by Richter and Pal38,39 that suggests
using specially tailored pseudo-random states which are gener-
ated from a relatively shallow-depth circuit40,41. The discrete time
dynamics of the spin auto-correlation function is then simulated.
We apply a zero noise error mitigation strategy (see Supplemen-
tary Method 2 for a discussion on this) and remarkably show that
the KPZ anomalous exponent can be extracted for over two
decades of time evolution. Furthermore we show that the scaling
is independent of the time period of the Trotter step and observe
the restoration of diffusion, signalled by the emergence of the
exponent ν= 2, when an integrability breaking staggered field
perturbation is applied.

RESULTS
Classical discrete time results
We first demonstrate, using classical simulations42, that the
transport exponents at the isotropic point for both the (a) clean
and (b) staggered field discrete time models are independent of
step size. In Fig. 1, we do a first order trotter decomposition of the
clean and staggered field models with various timesteps. The
power law scaling, in both models, is found to be independent of
the time step for the steps chosen. In the insets we show the
oscillations of the exponent α ¼ d ln CðtÞ

d ln n around the expected
values (2/3 for the clean model and 1/2 for the model with
staggered fields) for each model in the insets, where n is the
number of Trotter steps. We avoid timesteps near π as the
transport behaviour changes drastically due to many-body
resonances42.

Quantum discrete time results
We now come to the key finding of our work: the digital
simulation on a real near term quantum computer. In Fig. 2, we
show our results for the spin auto-correlation function simulated
on ibmq-montreal. We have found that the optimal time-step for
our simulations is τ= 4J−142. In (a), we simulate the clean model,

while in (b) we add the staggered field. The green lines show the
results on the quantum simulator using a first order Trotter
decomposition. Remarkably our results in both the integrable and
non-integrable case track the classical simulation well up to two
decades in time evolution. This timescale is sufficient to see the
emergence of hydrodynamic scaling. The error bars from sampling
noise are negligible here compared to the device error, so we omit
them. This is the main result of our work.
In order to increase the number of data points for our power

law fit we have employed the concept of weaving42. This allows us
to look at more data points in time. The idea is to artificially
increase our time resolution in our study of the the floquet unitary
UðnτÞ42. This is done by adding smaller Uðτ0 < τÞ at the start of the
circuit as a modified initial condition, and then weaving the
evolution of this new initial state (shifted slightly in time) with the
original evolution. We add weaves of 1J−1, 1.5J−1, 2J−1. Further-
more, in obtaining these results, we employ a form of error
mitigation known as ‘zero noise extrapolation’, or zne13. However,
we do not find that it significantly helps at these time scales for
our first order Trotter simulation42.
To extract the power law behaviour of the results from the

quantum simulations, we analyse the intersection of two regimes
in time: (1) Where the power law scaling is present in the classical
results, and 2) where the quantum results have little error
compared to the classical results. We then fit a power law to the
quantum results via least squares. For panel (a) with the clean
model, we get that α ≈− 0.644, and for panel (b) with the
staggered external field we get that α ≈− 0.505. These have
relative errors ~3.40% and ~1.00% compared to the expected
scalings of −2/3 and −1/2, respectively.
IBM’s quantum devices are calibrated regularly. When these

results were collected, the readout error of qubit 0 was 2.26%,
while the average error of all the CNOTs (excluding an outlier at
18.4%) used in the simulation was 1.12%, with a standard
deviation of 0.52%.

DISCUSSION
We have provided strong evidence that KPZ scaling and the
restoration of diffusion through explicit integrability breaking can
be simulated digitally on a near term device. Our work is inspired
by the proposal of Richter and Pal38 which exploits a pseudo-
random state as a starting point for the simulation (see

Fig. 1 Classical simulations of scaling dependence on Trotter step. a Classical trotter simulations of the spin autocorrelation function on site 0
in the discrete time model for various different timesteps. The inset shows αðnÞ ¼ d ln CðtÞ

d lnn for the same timesteps, with the black line indicating the
expected super-diffusive value −2/3. The measured value of α converges towards the expected value of −2/3. b Classical trotter simulations for
the correlator in the discrete time isotropic XXZ model with a staggered field for various time steps. The inset shows α(n) for the same timesteps,
with the black line indicating the expected diffusive exponent of− 1/2. The measured value of α converges towards− 1/2.
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Supplementary Discussion 2 for a comparison to other methods).
It is remarkable that our digital quantum simulation is able to
follow closely the classical simulation to over two decades in time
evolution. There are several features of this simulation which are
worth pointing out. First of all the nature of the initial state
appears to be extremely useful for the extraction of infinite
temperature transport exponents on current quantum hardware.
The precise interplay between noise channels and such pseudo-
typical states merits future detailed investigations. Since these
states are locally equivalent to the identity, it is plausible that they
offer a special resilience to unital channels such as dephasing. We
have confirmed, on hardware, the suggestion38 that the hydro-
dynamic scaling is accessible despite inevitable device noise.
Secondly and most importantly, the key feature of our simulations
is that we work with the discrete time model and this allows us to
simulate long times without Trotter error28,36. To our knowledge
this is the first extraction of transport exponents of an interacting
quantum system on a digital quantum device. Our findings are
consistent with recent experiments in a variety of physical

platforms33–35,43. As hardware improves further and the number
of good device qubits increase, we hope that our work will inspire
further work on high temperature transport of non-integrable and
integrable quantum many-body models in regimes not accessible
to classical numerics.

METHODS
Initial state preparation
All the quantum simulations in this paper were performed on the
ibmq montreal 27 qubit device based on coupled transmons. This
machine was recently benchmarked to have a quantum volume of
128. The connectivity of the device is shown in Fig. 3a and we will
use the 21 qubits which are shown in orange for our dynamical
simulations. Our first task, following the suggestion of Richter and
Pal38 is to generate a pseudo-random state state on the device
leaving all but one qubit untouched (q0).
The randomisation procedure is split up into two sub-routines;

the single qubit gate routine, and the entangling routine. A layer

Fig. 2 Comparing the results from the IBM device to the classical simulations. a The spin autocorrelation function on site 0 in the discrete
time XXZ model at the isotropic point. The trotter step is taken to be 4J−1, with added weavings from 1J−1, 1.5J−1, and 2J−1. b Results for the
correlator in the discrete time isotropic XXZ model with a staggered field. The trotter step is taken to be 4J−1, with added weavings from 1J−1,
1.5J−1, and 2J−1.

Fig. 3 Mapping our system onto the IBM device, and some properties of the initial state. a The ibmq montreal qubit connectivity, with a
1-dimensional XXZmodel (OBC) mapped onto a 21-qubit chain in the device (we label them qj). Site q0 is mapped to the encircled qubit, and is
untouched by the randomisation procedure. b Red (blue) is CNOT pattern A (B) used in the random state preparation. These are alternated at
each layer of the iterated random circuit. c The bipartite von Neumann entanglement entropy of the 20 qubit chain as a function of the
number of layers in the random circuit. These results are from a clean simulation with connectivity matching that of ibmq montreal. The
dashed line represents the Page value44. d The spin density profile of the final state of one sampling of the random circuit.
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of the procedure is made up of a single qubit step, followed by an
entangling step. The single qubit gate routine is as follows:

1. At layer 1, for each qubit qj, apply Gj
1, which is chosen

randomly from the set of gates {X1/2, Y1/2, T}
2. At layer n > 1, for each qubit qj apply Gj

n, which is chosen
randomly from the set fX1=2; Y1=2; TgnGj

n�1

Between each single qubit step, we carry out an entangling
step. This consists of applying one of two patterns of CX gates
across the device. The choice of pattern in alternated between
patterns ‘A’ and ‘B’ (shown in Fig. 3b) at each step. The
randomisation procedure is performed over multiple layers until
the state is deemed sufficiently random. The number of layers that
are needed is estimated from a classical simulation of the time
evolution of the bi-partite entanglement of the random circuit.
The results of the classical simulation are shown in Fig. 3c, where
we show the half chain von Neumann entropy as a function of the
number of layers in our preparation step. We see that already a
modest number of layers is enough to saturate the Page value44.
Figure 3d shows the spin density profile of the final state, on the
actual hardware following one sampling of the random circuit. The
data was extracted by performing 30,000 shots after one sampling
of the circuit.
In this work, we will be interested in performing dynamical

quantum simulation of spin spin autocorrelation functions, which
take the form

CjkðtÞ ¼ Tr Szj S
z
kðtÞ

� �
=2L (1)

where the trace is over the entire Hilbert space. Following the
proposal of Richter and Pal38,39, we will use the output of our state
preparation circuit in the evaluation of this object. Let us assume
for a moment that the output state of the entire register would be
ψR;0

�� � ¼ 0j i ψRj i with ψRj i ¼ P
ncn nj i, where the expansion is over

the entire computational basis. If cn are Gaussian random numbers
with zero mean (i.e the state is drawn randomly from the unitarity
invariant Haar measure) then one can approximate the correlation
functions by (for details, see ref. 38)

CjkðtÞ ¼ 1
2

ψR;k

� ��Szj ðtÞ ψR;k

�� �þOð2�L
2Þ: (2)

This typicality approach is routinely used to evaluate the time
evolution of observables in classical simulations24,40,45–48. Pseudo-
random states can be now generated on noisy near-term
quantum devices with relatively shallow circuits41. The state
preparation procedure leads to deviations from a Haar random
state. However, as argued in refs. 38,40 the exact distribution of the
coefficients of the states can deviate from Gaussian and still the
same result holds40. A key finding of ref. 38 is that the state which
is output after the initial randomisation phase is robust to
modelled device noise. The main purpose of this paper is to use
this protocol in order to extract the decay of the spin auto-
correlation function on a current quantum hardware.

Discrete time dynamics
The spin-12 XXZ Hamiltonian which will be the central focus of our
simulation is

HXXZ ¼ J
XL�1

ℓ¼0

SxℓS
x
ℓþ1 þ SyℓS

y
ℓþ1 þ ΔSzℓS

z
ℓþ1

� 	
; (3)

where Sαℓ ¼ σα
ℓ=2 is the spin operator acting on site ℓ and L is the

number of sites. We use open boundary conditions, and focus on
the isotropic point (Δ= 1). We define hℓ;ℓþ1 ¼
J SxℓS

x
ℓþ1 þ SyℓS

y
ℓþ1 þ ΔSzℓS

z
ℓþ1

� 	
and group all of these two-site

operators into two sums: H1= ∑ℓ odd hℓ,ℓ+1, H2= ∑ℓ even hℓ,ℓ+1.
Note that the two-site operators in a given sum all act on disjoint
pairs of sites. Therefore all operators commute with all other

operators in their respective sums. We now look at the discrete
time dynamics given by a Trotter step τ:

UðnτÞ ¼ UoddðτÞUevenðτÞ½ �n

¼ QL=2�1

j¼0
U2j;2jþ1ðτÞ

QL=2�1

k¼1
U2k�1;2kðτÞ

" #n
(4)

where UjkðτÞ ¼ e�ihjkτ . The implementation of Ujk(τ) in a quantum
circuit is given by Fig. 449.
Note that if we keep nτ fixed and take the limit τ→ 0, we get

that UðnτÞ ! e�iHXXZnτ . However, we are less interested in this
trotterized unitary as an approximation of the continuous time
unitary for the XXZ model, but instead as a floquet system with
kicking period τ. This model has Hamiltonian given by:

HðτÞ
XXZðtÞ ¼ H1 þ τH2

X
n2Z

δðt � nτÞ: (5)

This Hamiltonian has been shown to also give rise to KPZ like
scaling in discrete time28,37 and is particularly appealing due to
the fact that there is no Trotter error. This was recently
exploited in a digital simulation of the spin-12 XXZ chain in the
gapped (Δ > 1) phase on the ibm kawasaki 27-qubit machine in
order to study the effect of noise on conserved charges50. In
our simulations we will also be interested in explicitly breaking
the integrability of this model by the application of a staggered
field which, at high temperatures, is expected to restore
diffusion at the isotropic point. To implement this integrability
breaking term, we continue like in the previous case, except as
well as H1 and H2 we add the term H3 ¼ J

2

PL�1
ℓ¼0 �1ð ÞℓSzℓ . The

unitary for the discrete time evolution with the staggered field
is given by:

UðnτÞ ¼ UevenðτÞU3ðτÞUoddðτÞ½ �n; (6)

where U3ðτÞ ¼
Q

je
�iσzj θj is implemented as a collection of single

qubit rotations. The effective Hamiltonian is now given by

HðτÞ
staggðtÞ ¼ HðτÞ

XXZðtÞ þ lim
ϵ!0þ

τH3

X
n2Z

δðt � nτ þ ϵÞ; (7)

where ϵ is a dummy variable used to ensure we apply the
resulting unitaries in the correct order.
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