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Spectroscopic characterization of the quantum linear-zigzag
transition in trapped ions
J. Zhang 1,2, B. T. Chow 1, S. Ejtemaee 1 and P. C. Haljan 1✉

While engineered quantum systems are a general route to the manipulation of multipartite quantum states, access in a physical
system to a continuous quantum phase transition under sufficient control offers the possibility of an intrinsic source of entangled
states. To this end we realize the quantum version of the linear-zigzag structural transition for arrays of up to five ground state-
cooled ions held in a linear Paul trap and we demonstrate several of the control requirements towards entangled-state
interferometry near the critical point. Using in situ spectroscopy we probe the energy level structure and occupation of the soft
mode associated with the structural transition, and show a stable critical point and majority ground state occupation crossing the
transition. We resolve biases arising from trap electrode asymmetries that change the nature of the transition, show that they can
be suppressed by varying the ion number, and demonstrate control of the transition bias using optical dipole forces.
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INTRODUCTION
By virtue of their Coulomb interactions, laser-cooled trapped
arrays of ions intrinsically present a strongly interacting con-
densed matter system that forms a variety of Wigner ion-crystal
configurations1–5 and at the same time is dilute enough to be
optically manipulated down to single atom resolution. The ion-
crystal configurations are separated by a hierarchy of structural
phase transitions driven by either the confinement geometry or
ion density3,4,6–9. In a linear radio-frequency Paul trap the first such
transition is the 1D linear to 2D zigzag transition6,7, which for small
arrays of ions is the mesoscopic analog of a continuous phase
transition10,11. Prior experiments with the linear-zigzag (LZ)
transition have focused on its classical behavior including both
equilibrium properties6,9,12 and dynamics13–17. Here, using
ground-state cooling we investigate the transition in the quantum
regime, and we assess the feasibility of the system for double-well
interferometry18 and the sensing of ambient electric field noise in
the ion-trap environment. As an important step towards
interferometry, we investigate the near-adiabatic crossing of the
LZ transition in the ground state, which in the ideal scenario
prepares a Schrödinger cat superposition of the symmetry broken
zigzag structures.
The predominant paradigm underlying quantum control of

trapped arrays of ions, including in quantum computing and
quantum simulations, uses the set of vibrational normal modes of
the ion crystal in the linearized small oscillation limit19. Near the LZ
critical point this work explores the opposite limit where the
nonlinearity in the interactions dominates the effective potential
of the relevant zigzag vibrational mode. As a further contrast,
dynamical Schrödinger cat states involving entangled states of
spin and coherent motion20 and generalized Greenberger-Horne-
Zeilinger (GHZ) states of spin21,22 have both been previously
prepared in ion traps. Here, the limit of quantum state preparation
in an ion trap can be explored down to dc excitation frequencies
due to the softening of the zigzag mode at the LZ transition, and
coherent state manipulation on the zigzag side of the transition
would provide a testbed to probe sources of static and fluctuating

bias affecting the double-well zigzag potential18. Unlike prior
quantum dynamics studies near the critical point for a three-ion
rotor mode23, the LZ transition is a system that is readily
extensible to a varied and larger number of ions, and in situ
measurement of near ground-state energies is shown here to be
feasible close to the critical point.
Our experiments are simultaneously motivated by the fact that

the LZ transition at ultracold temperatures is marked by a sharp
spectral signature in the zigzag mode with strong dependence on
the trap potential parameters. This allows for sensitive in situ and
broadband electric field noise measurement, which is of direct
consequence to the performance of trapped ion quantum
computers19,24, and offers advantages over the standard sensing
technique based on the center-of-mass mode of a single trapped
ion25,26. First, the measurement of slow drifts in the strength of the
ion-trap potential can be achieved with more than an order-of-
magnitude improvement in single-shot sensitivity without the
need for high-order motional Fock-state superpositions27. Second,
as a resonant absorptive sensor the zigzag mode near the LZ
transition offers wide frequency tunability from dc to 1 MHz for
only minimal adjustment of the trap voltages (~1 V), which is
advantageous in the characterization of the spectral dependence
of noise to identify its sources26.
The potential energy for N ions in a linear radio-frequency (rf)

Paul trap is expressed in dimensionless form as

Vðr1; ¼ ; rNÞ ¼ PN
i¼1

1
2 αxx2i þ αyy2i þ z2i
� �þPN

i<j

1
jri�rj j

þ PN
i¼1

Vpertðxi ; yi; ziÞ
(1)

where ri= (xi, yi, zi) is the position of the ith ion and the terms, in
order, describe the harmonic rf pseudopotential, Coulomb
interactions and perturbative imperfections Vpert in the trap
potential. The aspect ratio of the harmonic trap is characterized by
the quantities αxðyÞ ¼ ðωxðyÞ=ωzÞ2 in terms of the secular trap
frequencies νℓ=ωℓ/2π, ℓ∈ {x, y, z}. The dimensionless potential is
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expressed in terms of the Coulomb length dz ¼ q2

4πϵ0mω2
z

� �1=3
,

which sets the axial ion spacing, and the corresponding Coulomb
energy q2

4πϵ0dz
. The perturbation potential captures the effect of

deformations of the electrode geometry away from an ideal linear
trap, with select terms in a polynomial expansion leading to
symmetry breaking of the LZ transition.
The LZ transition for an ion crystal with a fixed number of ions is

controlled by the trap aspect ratio. This can be modified by
applying a dc quadrupole potential in the transverse trapping
plane to weaken the transverse confinement along only one of the
principal axes, here assumed to be the y-axis (Fig. 1a). We
therefore restrict our discussion of the LZ transition to the y− z
plane and refer to the relevant control parameter αy hereafter as α.
For strong transverse confinement the ions form a linear string
along the axial z-direction of the linear trap. At a critical point αc
which depends on the number of ions12, the ions undergo a
structural phase transition to a 2D zigzag configuration (Fig. 1a).
The dynamics of the linear ion string restricted to 2D can be
described in terms of its 2N collective vibrational modes. The
transverse-y zigzag mode represents a “soft mode"28 that
classically goes to zero frequency (i.e. softens) at the LZ critical

point according to νzz ¼ νz
ffiffiffiffiffiffiffiffiffiffiffiffiffi
α� αc

p 11. This creates a dynamical
instability that drives the transition12, and below the critical point
the crystal’s equilibrium structure takes on a frozen-in version of
the zigzag mode11,28. Near the transition the zigzag mode
dominates the ion crystal dynamics for slow quenches. A
coupled-mode analysis and adiabatic elimination of the other
modes leads to an effective field theory for the zigzag mode11,18

(see Methods). The associated dimensionless potential as a
function of the zigzag order parameter φ (the normal mode
coordinate) up to fourth order is

UðφÞ ¼ C1φþ 1
2
C2φ

2 þ 1
3
C3φ

3 þ 1
4
C4φ

4 (2)

where the quadratic term is C2= α− αc, and other coefficients are
constant. This derivation ignores spatial variation of the order
parameter and propagation effects along the ion string29,30, which
are not relevant for the small ion strings and slow quenches
considered here. Asymmetries in the non-ideal trap from Vpert give
rise to the linear and cubic bias terms. If C1 and C3 are zero, the
mesoscopic equivalent of a second-order phase transition is
realized for small numbers of ions. The mean order parameter
〈φ〉, obtained from minimization of U, is zero on the linear side
and continuously acquires a non-zero value on the zigzag side of
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Fig. 1 Linear-zigzag transition. a Schematic realization of the 1D linear to 2D zigzag structural transition for a four-ion crystal confined in a
linear rf Paul trap, consisting of four rod electrodes and two endcap needles. Color inset shows a cross-section of the trap superposed with the
transverse quadrupole electric field generated from rod voltages ± Vq and used to weaken the transverse confinement along the y-axis to
induce the transition. b Classical energy-minimum values of the zigzag order parameter, proportional to the transverse zigzag displacement
from the z-axis, as a function of control parameter νy− νyc for a four-ion crystal. νy is the transverse-y secular trap frequency. c Simulated
quantum energy-level spectrum for the first two excited states of the transverse-y zigzag mode of a four-ion crystal, calculated relative to the
ground state. A small linear bias C1= 10−14 is assumed. Color shading of the levels indicates the strength of Raman sideband coupling to the
ground state for a central ion (see sidebar scale). Also shown is the classical small-oscillation prediction and the form of the zigzag potential
on either side of the transition. Simulations in (b) and (c) assume νyc= 740 kHz and νz= 363 kHz corresponding to dz= 5.4 μm. d Experimental
Raman first-sideband spectrum of all transverse vibrational modes, measured relative to the carrier resonance frequency, for a four-ion linear
crystal (νy− νyc= 93 kHz, or α= 5.27). A Raman probe of the center-of-mass mode provides in situ assessment of the control parameter, while
a probe of the zigzag mode provides access to order-parameter properties. Vertical scale is fluorescence counts averaged over 50 iterations.
Second sideband resonances of the zigzag modes are not visible since they are weakly excited. See text for parameter definitions.
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critical point (Fig. 1b). On the zigzag side of the transition there are
two symmetry-broken, and in the ideal case energy-degenerate,
states corresponding to the minima of the quartic double-well
potential that forms across the transition. We define the two
equilibrium configurations as “left" (L) and “right" (R). In the zero
temperature limit, it is relevant to consider the quantum energy
levels for the effective potential across the transition, as shown in
Fig. 1c for the example of four ions. Near the critical point the
frequency splitting between the ground state, 0j i, and first excited
state, 1j i deviates from the equivalent classical small oscillation
frequency. The level splitting remains finite at the critical point
before approaching zero in the zigzag phase as tunnel coupling
between the two sides of the double well, associated with the
states Lj i ¼ 0j i � 1j ið Þ= ffiffiffi

2
p

and Rj i ¼ 0j i þ 1j ið Þ= ffiffiffi
2

p
, is sup-

pressed by the intervening barrier. At the point of optimum
tunneling the two lowest levels are just captured below the
double-well barrier. For νy= 0.75 MHz a tunnel splitting of 3 kHz is
expected at this point and the order parameter’s magnitude is
|〈φ〉|= 0.03− 0.02 or 100–50 nm for 3–5 ions.
Small nonlinearities in the trap potential from the electrode

configuration or from other ambient sources will introduce biases
changing the nature of the phase transition. A small cubic term
will change the transition from second to weak first order31. A
linear bias will act to smooth away the discontinuity in the
transition. From the perspective of double-well interferometry and
entangled state preparation, we seek to realize a sufficiently
symmetric double well such that quantum tunneling is not
suppressed near the critical point. To estimate the relevant level of
bias, we consider the optimum tunneling point for 3–5 ions where
limiting the localization of the ground state to 50% requires a
potential bias of ∣C1∣ ≲ 10−6 or ∣C3∣ ≲ 10−3− 10−2 (see Methods).
At the same time, stability of the potential is required together
with sufficiently low noise to retain coherence.

RESULTS
Experimental system
Our investigations of the LZ transition use 171Yb+ ions held in a
stabilized linear radio-frequency (rf) Paul trap14 (Fig. 1a), which has
typical secular frequencies νx0; νy0; νz0

� �
of 864; 844; 303f g kHz

for five ions starting on the linear side of the transition (see
Methods for details). Near-ground-state cooling of the linear-string
configuration is achieved through 3D Sisyphus cooling of all 3N
vibrational modes to the few-phonon level14 followed by
simultaneous resolved sideband cooling of the transverse-y and
axial modes except the center-of-mass (COM) ones. We estimate a
ground-state occupation ≳ 0.9 for the sideband cooled modes
including the transverse-y zigzag mode of interest32. Following the
cooling process, the approach to and crossing of the LZ transition
is controlled by a ramp of a transverse dc quadrupole potential
applied through the trap rods (Fig. 1b)14 with minimal effect on
the axial confinement (∣Δνz∣/νz < 0.03%). The secular frequency
along the y-axis weakens to 760 kHz near the critical point while
the orthogonal x-axis simultaneously strengthens to 940 kHz such
that the LZ transition is effectively confined to the 2D y− z plane.
While the ramp implementation is expected to be adiabatic for
endpoints near the critical point, we do not optimize the ramp for
endpoints deeper in the zigzag side of the transition. At a given
final ramp value of the dc quadrupole voltage, the vibrational
modes of the ion crystal are probed by driving stimulated two-
photon Raman sideband transitions between the internal
hyperfine states 2 S1=2 F ¼ 0;mF ¼ 0j i � #j i and
2 S1=2 F ¼ 1;mF ¼ 0j i � "j i of the ions, separated by νhf ≈ 12.6
GHz32. Subsequent readout of the transition is obtained by state-
selective fluorescence of the internal state of the ions33. For
individual laser addressing of the ith ion, the Raman coupling

drives the transition #j i
N

N nkj i ! # ¼ "i ¼ #j i n0k
		 


at resonance
νhf þ ðn0k � nkÞνk , involving the vibrational states nkj i and n0k

		 

of

the kth mode of the ion crystal. In practice we use a technically
simpler global illumination of the ions, which gives rise to a
simultaneous Raman coupling of all the ions to the mode of
interest (see Methods). We measure both the carrier (n0k ¼ nk ) and
upper sideband resonances (for example the first sideband
n0k ¼ nk þ 1) and extract the mode frequency from the difference.
The first sidebands of the COM modes are used to measure the
secular frequencies of the trap—the control parameter for the
transition—while the sidebands for the transverse zigzag mode
give access to the spectral properties of the order-parameter
dynamics (Fig. 1d).

Transition spectroscopy
We first consider the properties of the LZ transition in the vicinity
of the critical point for a crystal of five ions. For this study both the
first and second upper sidebands of the zigzag mode are
measured as a function of secular frequency νy. A distinctive
feature from the typical behavior for linear ion strings is the
significant anharmonicity of the zigzag mode near the critical
point due to the nonlinearities in the effective potential. This gives
rise to non-uniform energy level spacings and asymmetric
lineshapes. We avoid significant induced distortion of the
lineshapes by limiting the drive strength of the Raman transition.
Nevertheless, if the zigzag mode is in an initial distribution of Fock
states, for example a thermal distribution, the onset of anharmo-
nicity will lead to a set of unresolved sidebands dispersed into a
combined asymmetric lineshape. In cases of significant asymme-
try, we fit the sideband resonances with an exponentially modified
Gaussian to extract a resonance, width and lineshape asymmetry
factor (see Methods). Assuming an initial motional distribution
with a large ground state occupation, we can associate the first
sideband resonance with the 0–1 energy level spacing and the
second sideband with the 0–2 energy level spacing in the
potential for the zigzag mode.
Figure 2a shows both first and second sideband resonances of

the zigzag mode as a function of Δνy= νy− νyc in a 4–kHz range
around the critical point at νyc= 759.94(2) kHz. The data including
the region close to the transition is fit to the quantum energy level
theory for a biased quartic potential (see Methods) and provides
the value of the critical point used to set the origin of the plot.
Expressed as a trap aspect ratio, the critical value, αc= 6.3007(16),
is shifted upward from the expected pseudopotential value of
6.2374 by δαc/αc= 0.0100(2). The fractional shift is in agreement
with an estimate of 0.01050(3) due to the higher order effect of
the rf micromotion on the vibrational modes of the ions in the
trap (see Methods and ref. 34). Quoted uncertainties include both
statistical error and error associated with calibration of the trap
potential. The quadrupole voltage adjustment for points near the
transition is equivalent to a variation of 50 ppm of the transverse
secular frequency, providing an indirect characterization of the
stability of the trap potential over several hours.
The full dataset taken over a wider range of control parameter is

shown in the left inset of Fig. 2a. The analytical prediction νzz ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2y � ν2yc

q
for the zigzag frequency on the linear side of the

transition matches the data well at points away from the critical
point. Far from the transition on the zigzag side, the measured
sideband frequencies deviate from the energy-level spectrum for
the zigzag potential (Eqn. 2) since the potential coefficients are
calculated perturbatively near the critical point. Very close to the
transition, within Δνy ~ ± 0.3 kHz as seen in the right inset of Fig.
2a, the data exhibit a distinct deviation from the classical small
oscillation prediction. The dependence measured for five ions
close to the transition approaches that of an unbiased quantum
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LZ transition with the first sideband approaching zero frequency
(compare Fig. 1c). Bias in the double well, which lifts the
degeneracy between the lowest energy levels of the zigzag
mode, can be identified by a non-zero minimum frequency of the
first sideband. However, on the zigzag side of the critical point it
becomes difficult to separate the low-frequency first sideband
from the carrier (Δνy <− 0.2 kHz in right inset of Fig. 2a); as such,
the lowest frequency value that can be reliably measured provides
an upper bound on the bias. Suppression of the line strength of
the first sideband resonance near the critical point additionally
constrains the bias in the double well, and a combined analysis
(discussed in detail below) is used to obtain the fit to quantum
theory with C1= 3.3 × 10−7 shown in Fig. 2a.
In addition to the resonance center, the asymmetry in the

lineshape of the zigzag sidebands provides insight into the zigzag
potential and the motional distribution of the order parameter.
The asymmetry of the fit lineshape is shown in Fig. 2b, where its
sign switches across the critical point due to the change in the
anharmonicity from the single to double well. The anharmonic

energy-level shift in the perturbative limit should scale as
1=ν2zz / 1=Δνy35. The scaling law shows good agreement on the
linear side away from the critical point but only a rough match to
the behavior on the zigzag side. The 6–12 times larger asymmetry
scaling factor inferred on the zigzag side is partly attributed to a
factor-of-2 larger anharmonicity effect, and the remainder we
expect is due to a larger motional excitation out of the ground
state. The onset of increased heating of the zigzag mode across
the LZ transition arises from non-adiabatic transitions due to the
ramp, higher electric field noise density at low frequencies and
enhanced sensitivity to electric field noise as the zigzag structure
forms.
In the region closest to the critical point, the anharmonicity of

the potential is sufficiently large to allow the zigzag sidebands
starting from the lowest vibrational levels to be resolved
(Fig. 2d–g). We take advantage of this to infer the motional
population distribution, P(n), in the n-number states of the zigzag
mode from the measured sideband spectrum of transitions
n→ n+m. The fit model of the line strengths and centers is
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Fig. 2 Spectroscopic characterization of the linear-zigzag transition for five ions. a Frequency of first and second upper Raman sidebands
for the transverse-y zigzag mode as a function of secular trap frequency νy relative to critical value νyc ≈ 760 kHz. Insets show the full range of
data acquisition and a close-in view near the critical point. For points denoted by “?", see “Methods”. Solid lines are quantum energy-level
differences of n= 1 and n= 2 number states with respect to the n= 0 ground state for a quartic potential (Eqn. (2)) with bias ∣C1∣= 3.3 × 10−7.
Line shading corresponds to Raman coupling strength (see side-bar scale). Green dotted line shows the classical small-oscillation prediction
for the full pseudopotential (Eqn. (1)) with equivalent bias. b Asymmetry in the combined Raman lineshape for unresolved second upper
sidebands from multiple initial number states. Inset shows the full range of data acquisition. Blue lines indicate expected scaling of the
asymmetry due to anharmonicity of the quartic potential. Width of the line on the zigzag side shows a factor-of-two range in scaling prefactor.
Vertical gray shaded region indicates where sideband peaks are (partially) resolved, as shown in (d–g). c Sample images of the two symmetry-
broken equilibrium structures of the five-ion crystal far from the critical point. d–g Sample Raman sideband lineshapes near the critical point
(with vertical scale of fluorescence counts averaged over 50 or 100 iterations), and fits (solid red lines) to extract C1 and Fock-state population
distribution P(n) of the zigzag mode. Distributions are shown in adjacent panels along with the shape of the zigzag potential. In (e) line
centers for sidebands from different initial n-levels are indicated. h Summary of measured P(n) across the transition for n ≤ 2. Lines are a
quantum dynamics simulation to indicate onset of non-adiabaticity. Optimum tunneling point lies near νy− νyc=−0.100 kHz. Error bars in all
cases are statistical uncertainties of one standard deviation from fits. See main text and Methods for further details.
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based on the quantum double-well theory including bias, and the
carrier and sidebands are fit to an incoherent sum of lineshapes
which include three separate phase decoherence parameters for
the carrier, first and second sidebands. It is not possible to
constrain independent values for the linear and cubic bias from
the resolved spectra; for simplicity, we assume a null cubic bias
(C3= 0) and take the average of ∣C1∣ fit values across the range of
data in Fig. 2 to obtain a best-fit value of ∣C1∣= 3.3(3) × 10−7. With
this value of C1 we obtain the motional population distributions
shown in Fig. 2d–g and aggregate measurements of motional
populations in Fig. 2h. The motional populations reveal non-
thermal distributions with preferential occupation of even n levels
(for example Fig. 2e and h), which is indicative of non-adiabatic
transitions due to the ramp or parametric heating of the zigzag
mode on the linear side. The ground state is found to remain
majority populated (P(0)≳ 0.6) down to Δνy=−0.2 kHz (Fig. 2h),
including the location of the optimum tunneling point near
−0.100 kHz where the lowest two energy levels in the double-well
model first lie below the barrier. From numerical modeling of the
quantum mechanical dynamics of the ramp, we expect that it
remains adiabatic down to Δνy=−0.17 kHz, which is consistent
with the observed behavior of P(1) as shown in Fig. 2h.
The linewidths of the resolved sidebands give an upper bound

on the coherence time for the zigzag order parameter. We find
that the phase coherence time from the fits for the first sidebands
is 0.3–0.5 ms and 0.3 ms for the second sidebands, both much
shorter than the value of 3–5 ms for the motion-sensitive carrier.
The value of 0.3–0.5 ms is roughly consistent with a preliminary
assessment of the Ramsey coherence time of the first upper
sideband near to the critical point. We observe that the coherence
time decreases as the LZ transition is approached from the linear
side. In part this is due to increased sensitivity of the zigzag mode
to fluctuations in the trap potential, scaling as 1=ν2zz. A more
detailed assessment of decoherence near the critical point is left
to future work.

Ion-number dependence
Extending the results for five ions, we have compared the
transition spectroscopy for ion numbers ranging from three to five
(Fig. 3). The axial confinement, and by extension the axial ion
density, is adjusted to make the critical transverse secular
frequency approximately the same in all cases, within a 6% range.
The critical trap asymmetries αc are found to be {2.4251(4),
4.1967(6), 6.3007(15)} for 3–5 ions, corresponding to a nearly N-
independent fractional shift of {0.0103(2), 0.01012(14), 0.0100(2)}
from the pseudopotential prediction. This is in accord with the
predicted micromotion-induced shift, which in lowest order
depends only on the Mathieu parameters for the ion trap (see
Methods). The main feature in the transition spectroscopy of Fig. 3
is the strong reduction in bias effect going from three to five ions.
This is manifest by the qualitative sharping of the LZ transition and
the reduction in the gap between the n= 0 and n= 1 energy
levels near the critical point. Assuming a dominant linear bias—to
be justified below—we perform fits to the quantum theory for the
three- and four-ion cases, and extract a bias coefficient ∣C1∣ of
3.62(11) × 10−5 and 4.52(17) × 10−6 respectively. The case of four
ions exhibits a complicated spectral structure due to the particular
value of the bias; from the best-fit double-well model, we find that
the line strength of the 0→ 1 sideband vanishes as it approaches
degeneracy with the 0→ 2 sideband, corresponding to a level
crossing between the n= 1 and n= 2 states. For three ions the
bias is strong enough that the lowest energy states are well
localized in a single well across the LZ transition, and thus neither
a suppression of the 0→ 1 sideband from an onset of symmetry
breaking nor a level crossing occur. Finally, we note that we have
also confirmed the general trend in bias for 3–5 ions from

measurements of the asymmetry in statistical outcomes of the
two zigzag configurations after crossing the LZ transition.

Bias spectroscopy
The transition spectroscopy of Figs. 2 and 3 is insufficient to
distinguish unambiguously between a linear and cubic bias in the
zigzag potential. To differentiate the two forms of bias, we
introduce a technique to measure the splitting in the frequency of
the zigzag mode between the L and R zigzag configurations. The
splitting dependence on C1 and C3, considering a classical
perturbative model derived from Eqn. (2) on the zigzag side of
the LZ transition and for ∣νL− νR∣ ≪ νL,R, is

νL � νR
νz

� �3C1

ffiffiffiffiffiffiffiffi
2C4

p ν2z
ν2R

� C3ffiffiffiffiffiffiffiffi
2C4

p ; α<αc (3)

where the axial secular frequency νz is used to set the scale (see
Methods). The linear bias is characterized by a rapid ν�2

R decay
away from the transition since it cannot affect the local curvature
in the minima of the double well once the wells are deep enough.
To prepare the ion crystal deterministically in either of the

zigzag configurations, we use the optical dipole force from an off-
resonant laser beam focused to the order of the ion spacing and
displaced transversely from a central ion in the string (see Fig. 4c
and “Methods”). This is sufficient to bias the transition globally to
achieve initialization of either configuration with >90% fidelity for
3–5 ions. The same experiment sequence as for the transition
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Fig. 3 Comparison of the linear-zigzag transition for 3–5 ions.
First and second upper sideband frequencies for the transverse-y
zigzag mode are shown as a function of the transverse secular trap
frequency νy referenced to the measured critical value νyc. Main
figure (a) shows a wide region about the critical point while inset (b)
shows a zoomed-in view. Axial confinement is chosen such that the
critical values νyc= {717, 744, 760} kHz for 3–5 ions are close (within
6%) so that the linear-zigzag (LZ) transitions can be directly
compared. Error bars on data points, representing one standard
deviation (s.d.) statistical uncertainties from resonance fits, are
typically smaller than the symbol size shown. Fits (solid lines) to the
quantum energy level structure for a quartic potential are used to
extract νyc and a bias ∣C1∣ of 3.62(11) × 10−5 for three ions and
4.52(17) × 10−6 for four ions (all uncertainties one s.d.). For five ions,
theory is shown for ∣C1∣= 3.3(3) × 10−7, obtained separately from
lineshape fits (see text). Theory lines are shaded according to Raman
coupling for the central ion, similar to Fig. 2a. In both four- and five-
ion cases the 0→ 1 first sideband coupling vanishes below the LZ
transition due to the onset of the symmetry breaking effect on the
wavefunctions. This is precluded for three ions since the symmetry
is already fully broken by the strong bias.
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spectroscopy is used with the addition of the biasing beam
applied as the critical point is traversed (Fig. 4e). The frequency
splitting between the two zigzag configurations is measured as a
function of proximity to the critical point on the zigzag side of the
transition, and the results are plotted self-consistently in terms of
the naturally biased zigzag mode frequency ν0 ≈ νR (Fig. 4a). For
both three and four ions a rapid reduction of the splitting away
from the transition is observed. This is indicative of a dominant
linear bias. We fit the measurements to the unapproximated

version of Eqn. (3) to extract the coefficients C1 and C3 (see Fig. 4
for values). The linear bias decreases in magnitude from three to
four ions in agreement with the transition spectroscopy of Fig. 3.
The value of C1 for three ions, for which the bias is strongest,
agrees with that obtained from transition spectroscopy, and the
value for four ions agrees within a factor of 2. For five ions, data
fluctuations are such that only an upper bound on the small bias
coefficients is possible. While this technique is not as precise as a
fit to transition spectroscopy, it provides clear evidence of a
dominant linear bias for three and four ions, and justifies the
fitting of the transition spectroscopy to C1 alone in these cases.

Connection of bias coefficients to the trap
Moving beyond an interpretation of the data in terms of the
phenomenological effective potential of Eqn. (2), we have explored
theoretically the origin of the zigzag bias in terms of asymmetries
in the ion trap potential (see Methods). The perturbations from an
ideal trap can be expressed as a polynomial expansion,
Vpertðx; y; zÞ ¼

P
ξλξx

ξ1yξ2zξ3 , where ξ= (ξ1, ξ2, ξ3) is a list of the
integer exponents for each term with order no= ξ1+ ξ2+ ξ3 and
coefficient λξ � λξ1ξ2ξ3 . Based on a 2D coupled-mode analysis in
the pseudopotential limit for perturbations up to no= 7 and for ion
crystals up to N= 7, we find that the bias for the LZ transition in
the y− z plane depends on coefficients λ01ξ3 and λ03ξ3 with orders
no ≥ 3 of the same parity as the ion number N. The linear bias,
which will in general dominate close to the transition where
∣〈φ〉∣ ≪ 1, only depends on the λ01ξ3 coefficients. The sensitivity
of the linear bias to the coefficients is strongly suppressed up to
order no < N, which is consistent with the observed rapid
suppression of linear bias from 3 to 5 ions. The cubic bias depends
on both λ01ξ3 and λ03ξ3 coefficients with sensitivities that are
suppressed more weakly with N. Rotations of the trap’s principal
axes and shifts in its minimum in conjunction with nonlinearities in
the potential will induce additional, typically smaller, contributions
to the zigzag bias. The ion trap potential has various nonlinearities
that do not break zigzag symmetry but can also lead to shifts in the
critical point, for example quartic terms arising from the endcaps of
form z4 and y2z2 with polynomial coefficients in our case of order
10−4–10−5.
We use numerical modeling of the trap potential as well as

estimates of mechanical tolerances to identify likely sources of
asymmetry in the trap potential that contribute to the zigzag bias
(see Methods). For our linear trap design (Fig. 1a), the bias for
three ions can arise from a number of different trap asymmetries
including transverse co-displacements of the endcaps or various
displacements of the trap rods of order 10 μm36. We find that the
same deformations are also roughly consistent with the bias
measured for five ions. For four ions, the most likely source of
asymmetry is from transverse counter-displacements of the
endcaps of order 100 μm, which is possible given that the
endcaps are not positionally well constrained in our trap design.
Note that the bias for odd ions is insensitive to counter-
displacements of the endcaps.
The theoretical results imply that a highly symmetric zigzag

transition can be readily achieved for moderate numbers of ions N.
With an improved trap with electrodes constrained to a few
microns and N ≥ 4, the linear bias C1 can be highly suppressed to
below the target 10−7 level, which we already approach for N= 5
in our current setup. For odd N this will still leave cubic biases at a
level of <10−3 that decrease only gradually with number of ions.
However, ion crystals with even N can be used to advantage to
obtain a high degree of double-well symmetry with ∣C3∣ ≲ 10−6,
since their transverse symmetry suppresses the effect of the
lowest order (no= 3) perturbations. For example for N= 6 and in
our existing trap, we expect to achieve biases of C1=−2.5 × 10−8

and C3= 1.6 × 10−5.
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Fig. 4 Spectroscopic characterization of the bias in the linear-
zigzag transition. a Difference in zigzag mode frequency, νR− νL, for
an ion crystal of 3–5 ions initialized into opposite zigzag configura-
tions, defined as left (L) and right (R) sides of the double well. Data
plotted as a function of mode frequency ν0 without any applied
initialization. In all cases, νR ≈ ν0 within 0.7 kHz, which is explained by
the direction of the biases. Error bars are one standard deviation
(s.d.) statistical uncertainties from resonance fits (for example as
shown in (b)) and omit systematic effects including drifts. Solid lines
are fits to classical small-oscillation theory (see text). Bias coefficients
from the fits are C1=− 4.0(3) × 10−5 and C3=− 7(7) × 10−4 for three
ions, and C1=− 9.5(1.7) × 10−6 and C3= 1.7(1.4) × 10−4 for four ions
(all uncertainties one s.d.). Data fluctuations for five ions only allow a
partial constraint on the biases: a fit of all data (solid gray line) gives
C1= 1(4) × 10−5 and C3=− 4(5) × 10−3, while a fit excluding the left-
most data point (dotted line) gives C1=− 6(5) × 10−6 and
C3=− 2(3) × 10−3. The zigzag mode experiences increasing excita-
tion away from the critical point without substantive effect on
results expected. b Sample lineshapes with fits for three ions at
ν0= 80 kHz. The L-case has been shifted vertically to clarify
comparison. Vertical scale is fluorescence counts averaged over 50
iterations. c Illustration of scheme for initialization into either zigzag
structure. Controlled biasing of the transition is achieved with a
repulsive optical dipole potential from an off-resonant beam
focused with near single-ion resolution. d Experiment sequence
showing initial laser cooling, ramp of transverse secular frequency νy
across the transition biased by the optical potential, and Raman
spectroscopy on the zigzag side of the transition to measure νR or νL.
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DISCUSSION
In summary, we have extended previous demonstrations of the LZ
transition in linear ion traps to probe the region close to the
critical point for ion crystals near the quantum ground state.
Stabilized trap potentials, reduced thermal fluctuations and the
use of a spectroscopic probe of the zigzag mode have allowed for
a precision determination of the critical point beyond previous
assessments of the order parameter variation through fluores-
cence images of the ions12,13, and have revealed the effect of
small asymmetries in the trap potential on the nature of the
transition. We have realized a method for measuring the motional
population distribution of the zigzag mode near the critical point
and demonstrated key ingredients towards the goal of double-
well interferometry with this system. A direct extension of this
work is to probe the decoherence of the order parameter near the
LZ critical point using both a Raman Ramsey measurement of T2
relaxation of the zigzag mode and Raman sideband thermometry
to assess the T1 relaxation associated with motional heating. An
estimate of the fundamental decoherence limit of image current
damping on the zigzag dynamics37,38 shows that it is negligible for
our ion-electrode distance in comparison to the measured
decoherence rate of 0.3–0.5 ms−1 near the critical point. Given
that we expect the origin of the decoherence is technical in
nature, improvements are possible by increasing the ion confine-
ment with smaller trap structures to scale up the characteristic
frequencies, and by the reduction of phase noise in the trapping
potentials through optimization of the active trap voltage
stabilization and the use of additional passive measures, including
rf filtering from a higher quality factor rf resonator in a cryogenic
trap system.
Extension of this work to a larger number of ions requires a

consideration of the scaling of the energy gaps, which impact on
diabatic excitation out of the ground state including the formation
of spatial domains39. Relevant to this, a calculation of the quantum
suppression of long range order in the thermodynamic limit for
the case of a homogeneous ion density has been performed29. It
provides an estimate of a quantum critical point for the LZ
transition with a small shift below νyc, of order 0.1–1 Hz for the
central ion density in our trap. A vanishing gap, however, is central
to this critical behavior. The non-zero energy gap for a finite
number of ions allows for adiabatic evolution of the ground state
through the critical point for sufficiently slow quench time39. For
our inhomogeneous case in a harmonic trap and out to N= 50, we
find theoretically that the location of the optimum tunnel point
relative to the critical point νyc and the tunnel splitting energy
remain nearly constant for a fixed central ion density (see
Methods). As well, the closing of the excitation gap to the next
normal mode, which brings with it the possibility of spatial
variation in the order parameter, only becomes relevant for very
long ion strings, outside the typical 100-ion limit in a linear trap.
Measurements of the decoherence in the zigzag mode provide

an assessment of the ambient electric field noise in the trap
environment, which is of general relevance to quantum informa-
tion applications where the ions’ motion is used to engineer
controlled interactions. While the zigzag mode in a linear ion
crystal is less sensitive to fluctuating electric fields than the COM
mode due to the higher-order coupling to gradients, the zigzag
mode has the useful feature near the LZ transition that it can
resolve electric field noise over a wide spectral range from the
transverse secular frequency down to dc with minimal variation of
the dc trap voltages. In particular this can be performed without
change in the rf trap voltage. Furthermore, taking advantage of
the high sensitivity of the LZ critical point to both transverse and
axial secular confinement, we can gain an enhancement in the
measurement of drifts in the trap secular frequencies by using the
zigzag mode over a direct measure of the COM modes at the cost
of a small additional time overhead required to ramp to near the

LZ transition. The single-shot gain over a first-sideband measure-
ment of the transverse COM mode is G ≈ νy/νzz on the linear side
of the transition and reaches a maximum near the critical point
due to the energy level structure. For example, we calculate for
five ions a gain of up to 67.
Finally, we briefly note additional potential applications of this

work. The precise detection of small trap asymmetries with the LZ
transition, either via sideband spectroscopy or ultimately with
double-well interferometry, should be useful to constrain the
effect of trap nonlinearities in quantum computing and quantum
simulation with long ion crystals40 and in linear ion trap mass
spectrometry36. The spectroscopic sensitivity of the transition and
the demonstrated stability of the trap potential open up the
possibility to measure finer shifts in the critical point. For example,
shifts in the critical point due to cross-mode coupling41 in the
dispersive Kerr regime42 are small, up to 3 Hz per phonon
depending on the contributing mode, but are measurable with
the current setup for higher levels of mode excitation. Other
potential applications in the quantum regime that build on the
techniques presented here include entanglement of the internal
spin of the ions and the zigzag mode using a spin-dependent
optical dipole force to modify the critical point43, and quantum
dynamics of topological kink defects seeded into the zigzag
structure and prepared in the ground state44,45.

METHODS
Ion trap system
The ion trap is a linear radio-frequency (rf) Paul trap14 consisting of
four rods and two endcap needles with an ion-to-rod distance of
R= 0.66 mm and two needle endcaps with a tip-to-tip separation
of 2.5 mm (Fig. 1a). The trap operates at a radio frequency Ωrf/
2π= 16.9 MHz, rf voltage amplitude Vrf= 770 V, and endcap
voltage Vec= 67− 155 V depending on ion number. The trap has
typical secular frequencies νℓ=ωℓ/2π of 864 kHz and 844 kHz
along the transverse x and y principal axes and 303 kHz along the
axial z axis for five ions starting in the linear phase. Stabilization of
the trap potential against drifts is implemented through passive
and active techniques that include a servo of the rf amplitude and
provide a stability of <10 ppm over 100 s for the secular
frequencies46. Real-time monitors of the trap rf and endcap
voltages provide an assessment of drifts and are used as inputs to
a calibrated trap potential model for calculating secular trap
frequencies. Excess micromotion is monitored for, but drifts in the
background electric field for the majority of datasets are small
enough that we can avoid compensation adjustments that could
shift the critical point.
We make use of the internal clock states in the 171Yb+ hyperfine

ground state manifold, 2S1=2 F ¼ 0;mF ¼ 0j i � #j i and
2S1=2 F ¼ 1;mF ¼ 0j i � "j i, for ground state cooling and Raman
spectroscopy. The general experimental sequence for all data
consists of laser cooling the ion string to near the ground state on
the linear side well away from the critical point, initialization of the

ions into the internal state #j i
N

N , a ramp of the transverse trap
frequency to the vicinity of the zigzag transition, application of the
Raman sideband spectroscopic probe and finally readout of the
internal state of the ions using state selective fluorescence. The
total fluorescence from all ions is collected simultaneously onto a
single photomultiplier tube using a 400-μs collection time and 50
or 100 experimental iterations per data point.

Ground-state laser cooling
Near ground-state cooling of the ion crystal in the linear-string
configuration is achieved through Doppler pre-cooling, 3D
Sisyphus cooling of all 3N vibrational modes to the few-phonon
level32, and finally interleaved resolved sideband cooling of the
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zigzag mode of interest along the y axis, the x-zigzag mode and all
other modes along the y and z axes except the center-of-mass
(COM) ones. We estimate a ground-state occupation for the
sideband cooled modes to be ≳0.9 based on measured sideband
Rabi oscillations32. Ground-state cooling of modes other than the
zigzag mode of interest aids to suppress heating of the zigzag
mode due to cross-mode coupling resonances that are encoun-
tered during the ramp to the linear-zigzag (LZ) transition.

Ramp across the LZ transition
The approach to and crossing of the LZ transition is controlled by
a hyperbolic-tangent ramp of a transverse dc quadrupole
potential applied through the trap rods (Fig. 1b)14 with minimal
effect on the axial confinement (∣Δωz∣/ωz < 0.03%). In terms of the
quadrupole voltage Vq, the secular frequency along the y-axis
weakens according to ωy ¼ ωy0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Vq=Vq0

p
with Vq > 0 and

Vq0 ≈ 13V, and the orthogonal axis strengths as
ωx ¼ ωx0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Vq=Vq0

p
, such that the LZ transition is effectively

confined to the 2D y− z plane. The quadrupole voltage begins at
0 V and crosses the transition near 2.5 V. For Vq ramp endpoints
close to the critical point or those passing into the zigzag phase, a
two-stage ramp is used with a slower final stage over 1 ms. Using
simulations (see below) we find that this provides sufficient
adiabaticity for ramp endpoints near the critical point, but we do
not optimize the ramps for endpoints further into the zigzag side
of the transition. An example ramp sequence can be seen in
Fig. 4d.
The endpoint of the voltage ramp is converted to a value of

transverse secular trap νy using a calibrated trap potential model.
We plot results in terms of the control parameter νy rather than
the theoretically more natural trap aspect ratio α (αy in Eqn. (1))
since the axial secular frequency changes only minimally during
the quadrupole voltage ramp. The in situ calibration of the trap
potential model is derived from prior separate experiments using
a single ion and is updated using values of COM modes measured
at select points during data collection to correct for daily drifts in
the calibration. The trap potential model is a parameterized
version of a symmetric linear Paul trap potential up to second
order in coordinates and incorporates the next leading order of
the Mathieu expansion for the secular frequencies5. The calibra-
tions achieve < 0.03 kHz error from the fits near the critical point.
As part of the trap calibration model we implicitly infer the
Mathieu a and q parameters5 for all three trap axes.

Raman spectroscopy
We use motion sensitive two-photon Raman transitions to probe
the various vibrational modes in the ion crystal, including the
zigzag mode. Different Raman beam pairs allow access to
motional sidebands in both the axial and transverse directions.
The Raman beams’ large size provides nominal uniform illumina-
tion of the ion crystal, giving rise to global Raman sideband
coupling weighted by the mode participation of each ion47. Since
all N ions are simultaneously illuminated by the Raman beams, up
to N vibrational states can be excited from a given initial state.
While the global coupling complicates the theoretical description
of the Raman transition, in practice we keep the average sideband
excitation to one phonon or less by limiting the Raman pulse time
to simplify the interpretation of measurements. We suppress
sideband resonance shifts due to the ac Stark shift of the Raman
beams (≲0.3 kHz) by measuring the carrier and sidebands at the
same Raman beam power. Near the critical point, reduced Raman
beam power helps to resolve close-in sidebands that lie a few
kilohertz from the carrier.

Bias spectroscopy
The bias spectroscopy uses the force from an off-resonant beam,
focused and offset from a central ion in the linear crystal, to
achieve deterministic initialization into either the L or R zigzag
configuration before the Raman probe of the zigzag mode is
performed. The biasing beam is blue-detuned by 0.7 THz, and its
power (1–9 mW) is adjusted to minimize spontaneous emission
while still achieving a high fidelity of initialization. The application
of the biasing beam is limited to the portion of the quadrupole
ramp close to the LZ transition to further minimize spontaneous
emission heating. For the data for three and five ions, a
controllable temporal amplitude profile has also been implemen-
ted to limit non-adiabatic excitation from the bias beam. The
fidelity of the zigzag initialization is confirmed over the range of
bias spectroscopy data by direct imaging of the zigzag structure
following a fast projection ramp deep into the zigzag region. The
lineshape asymmetries for the L and R configurations are
compared to ensure that the bias beam does not introduce a
differential heating effect, which could incur a systematic shift in
the resonance line centers. The comparison of zigzag sideband
resonances between the L and R configurations is also sensitive to
slow drifts in the trap potential. For example, the five-ion bias
measurements shown in Fig. 4a are limited by anomalous excess
drifts due to electrode contamination.

Transition spectroscopy analysis
To extract the first and second sideband frequencies of the zigzag
mode across the LZ transition, as shown in Figs. 2a and 3, we fit
Raman spectra to a set of incoherently summed peaks without
reference to a specific model for the zigzag potential. We assume
the appropriate Rabi-resonance lineshape48 for the carrier to
account for the coherent sidelobes of significant amplitude, while
for the sidebands we find it is an adequate approximation to use a
Gaussian or exponentially modified Gaussian lineshape depending
on proximity to the critical point. The exponentially modified
Gaussian49, which is a convolution of a Gaussian with an
exponential distribution, is motivated by a model of anharmoni-
city and a thermal-like distribution of number states for the zigzag
mode; however, the functional form is taken as a heuristic function
that is found to work well in practice. It is defined as

gðf ; f 0;w;ΔaÞ ¼ A
ffiffiffi
π

p w
2jΔa j exp � f�f 0

Δa
þ w

2Δa

� �2
� �

´ erfc �sgnðΔaÞ f�f 0
w þ w

2jΔa j
� �

þ b0

(4)

in terms of frequency f, resonance location f0, width w, lineshape
asymmetry Δa, amplitude A and baseline offset b0. The normal-
ization is chosen such that the lineshape area, Aw

ffiffiffi
π

p
, matches

that of a Gaussian A expð�f 2=w2Þ with the same width and
amplitude. If the lineshape asymmetry obtained from a fit is below
a minimum threshhold (Δa/w < 0.5) we revert to a Gaussian
lineshape. This occurs far from the critical point where anharmo-
nicity is negligible and close to the critical point where the
sidebands are sufficiently resolved. Exponentially modified Gaus-
sian lineshapes are relevant in the intermediate region where the
anharmonicity is significant but not large enough to resolve the
sidebands from different initial n-number states of the
zigzag mode.
Identification of the resonances for the first sideband (n→ n+ 1)

and second sideband (n→ n+ 2) is done by considering continuity
of data and by assuming that the initial state is majority populated
in the n= 0 ground state for data close to the critical point. Close
to the critical point on the zigzag side, sideband identification
becomes challenging since below νy− νyc=−0.2 kHz the side-
bands for five ions lie under the carrier lineshape or have vanishing
line strength, and for four ions the 0→ 1 and 0→ 2 resonances
approach degeneracy. In the case of five ions below −0.2 kHz, low-
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frequency peaks extracted from underneath the carrier lineshape
have been included conservatively as the upper first sideband
0→ 1 and identified by the symbol “?" in the right inset of Fig. 2a,
but they may be due to the lower first sideband 1→ 0 or an upper
sideband n→ n+ 1 for n > 0.

LZ transition fit
We fit the sideband frequency dependence of the zigzag mode
across the LZ transition in an iterative fashion to obtain the critical
point νyc and the bias in the zigzag potential. The fitting procedure
is as follows: (i) An initial value of νyc is extracted from a fit of the
first-sideband data to the ideal classical dependence on the linear

side, νzz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2y � ν2yc

q
, for a data range limited to ≳1 kHz above the

critical point. This avoids deviations in the sideband frequency
that manifest near the critical point due to bias and the effect of
the quartic potential on the quantum energy-level dependence of
the zigzag mode. (ii) An initial value for the bias is determined
from a fit to the numerical quantum theory for the zigzag
potential (Eqn. (2)) using νyc from (i). (iii) A refined value of the
critical point is determined from a fit of each sideband to the
quantum theory on the linear side of the transition and the results
are averaged. (iv) A refined value for the bias is determined from a
fit of both sidebands to the quantum model. Refinement of the
critical point is <0.05 kHz for the data presented. Statistical error in
the critical point from fitting and systematic error from
determination of the secular trap frequencies are <0.02 and
<0.03 kHz respectively for νyc= 717− 760 kHz. Critical trap
asymmetries αc are calculated using the measured axial secular
frequency. The data does not allow to distinguish a linear from
cubic bias. Using additional information from bias spectroscopy,
we determine for three and four ions that a linear bias dominates,
and so fits to a linear bias with C3= 0 are presented in Fig. 3. For
five ions the bias is small enough that the sideband frequency
dependence alone can only roughly constrain the bias. An
alternative fitting approach is taken to constrain the bias further
(see discussion below).
For higher data density in spectroscopy plots of the LZ

transition (Figs. 2a and 3 for four and five ions), we take advantage
of the stability of the experiment to combine data sets from two
or more days. Data sets are combined by fitting each set for the
critical point using the above method and then using the fit value
as the reference for the horizontal axis, νy− νyc, to remove small
day-to-day drifts. The critical points quoted in the main text
represent a weighted statistical average over values from all
data sets.

Motional state and bias assessment from line centers and
strengths
For the five-ion Raman spectra close to the critical point where the
sideband peaks from different initial number states of the zigzag
mode are resolved or partially resolved, we use the relative peak
heights and center frequencies of the sidebands to extract both
the motional population distribution of the number states and the
bias in the zigzag potential. To do so, we perform dedicated fits of
the spectra including the carrier, multiple upper sidebands and
the first lower sideband as an incoherent sum of lineshapes.
Refined models of the lineshapes are incorporated into the fit:
both the carrier and sidebands are modeled as modified Rabi-
resonance lineshapes including pure phase damping. The line-
shapes are obtained from numerical solution of the optical Bloch
equations48, and in practice lie between the limits of Rabi-
resonance and Lorentzian forms. The value of the sideband Rabi
couplings are calculated using (i) wavefunctions obtained for a
given zigzag potential, (ii) a global Raman interaction arising from
uniform laser illumination of the ions, and (iii) no assumption of
the Lamb-Dicke approximation47. For a resolved sideband from an

initial n-number state, the Raman transition with global coupling

simplifies to that for a two-level system, #j i
N

N nj i $ *effj i mj i
where *effj i is a superposition of single-excitation spin states. The
effective Rabi frequency is

Ωnm ¼ Ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
j¼1

jMnm;jj2
vuut (5)

where the matrix element Mnm,j for the jth ion is

Mnm;j ¼ nh jeðikeff;j dzφÞ mj i (6)

in terms of zigzag number states nj i, scaled zigzag normal mode
coordinate φ, Coulomb length scale dz, and effective wavenumber

keff;j ¼ kL � D̂j
zz, which captures the projection of the Raman

wavevector kL onto the direction D̂
j
zz of the jth ion’s displacement

in the zigzag mode. Wavefunctions Ψn(φ) for evaluating Eq. (6) are
obtained from numerical solution of the time-independent
Schrödinger equation for the zigzag potential (see below). An
approximate linear model for the axial components of the zigzag
mode vector is used on the zigzag side of the transition. The
model works well out to a zigzag mode frequency of 60 kHz on
the zigzag side, which is adequate for the data range of interest.
Fit parameters for a measured carrier and sideband spectrum

include a baseline offset, offset from the critical point νy− νyc,
potential parameters C1 and C3, a carrier Rabi frequency Ω0 that
sets the overall coupling scale, a carrier phase damping rate γcar
and carrier amplitude correction factor near unity, first and second
sideband phase damping rates γ1 and γ2 and an overall relative
amplitude correction to the carrier, and finally motional popula-
tions P(n) for the number states of the zigzag mode. Fit
parameters and uncertainties are obtained from unweighted fits
using χ2 minimization.
We find that C1 and C3 values from the fits are strongly

correlated, but the motional populations P(n) are insensitive to the
choice. Without additional constraining information, we choose
C3= 0 and determine an average value of C1= 3.3(3) × 10−7 from
the resulting fits to the data. We use this value to obtain final fit
values for the motional distributions P(n) as shown in Fig. 2. The
fits could be improved by including a set of lower sideband
measurements but at the expense of longer data collection times.

Classical small-oscillation analysis
Small-oscillation analysis is performed for an N-ion crystal in the
2D pseudo-potential (Eqn. (1) reduced to the 2D y− z plane with
α≡ αy) to extract the equilibrium crystal structure and normal
modes. The critical value α

ð0Þ
c for the LZ transition in the

pseudopotential approximation is extracted from the eigenvalue
spectrum of the normal modes12. Values for 3–5 ions in an ideal
linear trap are α

ð0Þ
c ¼ f2:4000; 4:1542; 6:2374g. The frequency of

the zigzag mode experiences a shift from the pseudo-potential
value due to micromotion effects in the ion trap34,50, which in turn
leads to a shift in the critical point at the percent level. We apply
approximate Mathieu equations for the normal modes of a linear
ion string34 to derive the micromotion-corrected frequency for the
zigzag mode and the micromotion-shifted critical point

αc � αð0Þc 1þ q2y
2

1þ 3
8
q2y þ

5ω2
z

2Ω2
rf

αð0Þc

� �" #
(7)

in terms of the Mathieu parameter qy along the relevant
transverse y-axis. For this result we assume q2y � 1, neglect small
corrections due to Mathieu parameter ay, and neglect weak ωy

dependence by setting ω2
y � ω2

zα
ð0Þ
c . Since the lowest order effect

on the zigzag mode for linear or nearly linear ion crystals is a
frequency shift, we use the pseudopotential result for the small-
oscillation curve shown in Fig. 2a. Far from the critical point on the
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zigzag side of the transition, the micromotion-corrected frequency
of the zigzag mode needs to be determined numerically from the
crystal structure and normal mode vector34,50, but this is not
necessary for this work.
The small-oscillation curve shown in Fig. 2a also includes a

matching linear bias effect for direct comparison to the quantum
model shown. The bias is added through a potential perturbation
yz4 with the coefficient λ014=− 2.2 × 10−7 adjusted to match the
effective linear bias coefficient C1=− 3.3 × 10−7 from 5-ion
measurements. Other choices of perturbation are possible, in
particular the λ012 term; however, using this perturbation instead
makes negligible difference to the curve shown in Fig. 2a.

Zigzag potential
To derive the effective potential for the zigzag mode near the
critical point we perform a classical, perturbative, coupled-mode
analysis11,18 and adiabatically eliminate modes other than the soft
zigzag mode. Using this semi-analytical method, we also obtain
the sensitivity of the potential coefficients C1 through C4 (Eqn. (2))
to the polynomial terms in a Cartesian expansion of the trap
perturbations, Vpertðx; y; zÞ ¼

P
ξλξx

ξ1yξ2zξ3 , where ξ= (ξ1, ξ2, ξ3) is
a list of the integer exponents for each term with order
n0= ∣ξ∣= ξ1+ ξ2+ ξ3. We briefly summarize the method with
further details to be presented elsewhere. We Taylor-expand the
2D pseudo-potential (Eqn. (1) reduced to the y− z plane) to order
no= 5 or larger in the ions’ displacements and express the result
in terms of the mode coordinates φk of the linear crystal’s 2N
normal modes, which are re-diagonalized at lowest order of
coupling to account for the trap perturbations Vpert. Working from
the nonlinear coupled oscillator equations near the critical point,
we assume that all other modes adiabatically follow the soft
zigzag mode and so adiabatically eliminate them to arrive at an
effective force for the zigzag mode in terms of the zigzag order
parameter, φ≡ φzz, alone. Integration of the force provides the
effective zigzag potential, which is limited to 4th order. We retain
up to 1st order in the polynomial coefficients λξ, which give rise to
bias coefficients C1 and C3, shifts in the critical point and
modifications to C4. The value of C4 also includes the effect of
axial collapse of the ion crystal as the zigzag structure grows,
which is encoded in the coupling between the zigzag and axial
breathing modes. The effect is significant (order unity) and its
inclusion extends the double-well calculation performed in ref. 18.
The effects of axial confinement, trans-axial mode coupling and in
particular bias extend the calculation of the zigzag potential for a
uniform linear ion chain in11. Values of C4 in an ideal linear trap are
{0.9307, 2.1906, 4.5409} for 3–5 ions. N-scaling is discussed more
generally in a separate section below. We ignore in our fits to data
the small effects of the trap perturbations on C2 (i.e. on the critical
point) and on C4. Also in our calculation the coupling to the zigzag
mode is limited to the effect of the mean order parameter for the
non-zigzag modes, 〈φk≠zz〉, and excludes the effect of fluctua-
tions arising from terms hφ2

ki—for example due to thermal
fluctuations—that induce a shift in the critical point. We expect
these effects to be small given the near-ground-state initial
cooling of the relevant modes.

Quantum theory
We assume the quartic form of the effective zigzag potential U(φ)
as defined in Eqn. (2) as the starting point for quantum mechanical
calculations of the zigzag mode. This implicitly ignores axial spatial
variation of the zigzag order parameter φ29, which applies for the
small ion crystals being considered. The effective zigzag potential,
derived from the classical coupled mode theory, also ignores the
effect of quantum fluctuations from the other modes, which is
reasonable given their high frequency. The values of αc and C4 in
the potential are obtained from the classical theory in the absence
of trap imperfections, and the bias coefficients C1 and C3 are

treated as adjustable model parameters obtained from fits. The
quantized energy levels and zigzag wavefunctions Ψ(φ), used in
the preparation of Figs. 1–3, are obtained as a function of α from a
numerical solution of the 1D time-independent Schrödinger
equation for the potential U(φ). The wavefunctions are used to
calculate Raman sideband couplings, as discussed above. Adiaba-
ticity of the ramp across the transition (Fig. 2h) is assessed from
numerical solution of the 1D time-dependent Schrödinger
equation in which the applied quadrupole voltage ramp
introduces a time varying trap aspect ratio α(t) to the zigzag
potential. Initial conditions for the simulation shown in Fig. 2h are
matched to the average of P(n) measurements on the linear side
of the transition. The form of the quartic zigzag potential derived
perturbatively near the critical point begins to break down
significantly for ≳100-kHz mode frequency on the zigzag side,
which provides sufficient range for comparison to experiment.

Scaling of zigzag potential parameters
We summarize methods used to assess scaling of the properties of
the effective zigzag potential with respect to ion number N and trap
size R. It is convenient to consider first the quantum double well in
quartic-scaled units (C4→ 1)51, from which we obtain universal values
for the optimum tunnel point and the threshold biases for allowable
ground-state asymmetry at the optimum point. These results are then
evaluated for arbitrary N given knowledge of C4 and αc. The critical
trap aspect ratio has previously been shown to scale as
αc= 0.347N1.77 determined numerically up to N= 10012. In axial
Coulomb units with frequency scale ω ¼ ωz and corresponding

Coulomb length scale dz ¼ d � ðQ=4πϵ0mω2Þ1=3, which is com-
monly used in the literature and which we consider in the main text,
we find C4= 0.077N2.64 determined numerically up to N= 50 (and
C4= 0.049N2.83 for N≤ 10). Alternatively, the zigzag potential can be
expressed in transverse Coulomb units with ω ¼ ωyc and d ¼ dyc,
which is convenient to assess scaling of the double-well properties
with ion number N. This is in close parallel to our experiment where
we keep ωyc, and so the central ion spacing, constant. In these units
the coefficients for the zigzag potential are related to the axial ones as
CðtÞ
n ¼ Cnα

�ðnþ1Þ=3
c . The quartic term, CðtÞ

4 / N�0:31, scales weakly with
ion number. This weak scaling extends to the optimum tunnel point,
CðtÞ
2 ¼ 2Δωy=ωyc / N�0:21, tunnel splitting, Δ E10/ℏ∝N−0.10, and the

threshold biases, maxfCðtÞ
1 g / N�0:15 and maxfCðtÞ

1 g / N�0:26. The
dependencies are even weaker for N≤10. The threshold biases are
determined from a threshold value of the right-well projection
probability PR(0)= ∣〈R∣0〉∣2= 0.75, equivalent to the localization
∣2PR(0)− 1∣= 0.5, where Rj i is defined as the maximally right-
localized superposition of the lowest two energy eigenstates of the
biased double well. Threshold values quoted in the main text are
converted to axial units.
The N-scaling of the actual biases in a trap with a fixed set of

electrode perturbations is more complicated since variation in
the axial confinement to keep ωyc constant can alter the trap
asymmetries, and the polynomial order and bias strength of
the dominant asymmetries vary with N. We write the zigzag
bias coefficient in transverse Coulomb units, CðtÞ

n for n ∈ {1, 3},
as

CðtÞ
n ¼

X
ξ

1
2
αðjξj�nÞ=3
c

dCn

dλξ

dyc
R

� �jξj�2 Aξ
A020

(8)

summed over polynomial exponent lists ξ of order no= ∣ξ∣ as
defined above. The sensitivities, dCn

dλξ
, are expressed in axial units

and are obtained as described above from the zigzag potential.
The coefficients, Aξ, are obtained from the trap pseudo-potential
expressed in dimension-full units, Φðx; y; zÞ ¼ P

ξAξ
xξ1 yξ2 zξ3

Rjξj
, with

Aξ in volts and distances in meters. A020 corresponds to {ξ1= 0,
ξ2= 2, ξ3= 0}. The coefficients Aξ, while proportional to λξ, exclude
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the axial scaling dependence. We have explored the effect of trap
perturbations on zigzag bias numerically in the range N= 3− 7
and no≤ 7 as detailed in the main text. For the linear bias
coefficient, CðtÞ

1 , the sensitivity exhibits strong N-dependence and
for a given N is strongly suppressed up to order no= N, where
perturbation terms arise with unit sensitivity. The bias from these
terms, however, is highly suppressed with N due to the other
dependencies such that we expect the residual sensitivities to
low-order perturbations (no∈ {3, 4}) to be relevant in our trap,
including for 5 ions. For the cubic bias coefficient, CðtÞ

3 , we expect
the low-order perturbations to dominate since the sensitivities are
suppressed more weakly with N.
The last two contributions in the summand of Eqn. (8)

determine the scaling of the bias with trap size R and confinement
strength ωyc for a characteristic electrode perturbation of size dpert
due to mechanical tolerance. For example, if we can assume fixed
transverse Mathieu q-parameter and rf voltage over a limited
reduction range of R, we have ωyc∝ R−1, which results in a bias
enhancement of R�ðno�2Þ=3 dpert

R with decreasing R at relevant order
no. While this represents a challenge to reducing trap size, we
expect that a factor-of-4 increase in ωyc relative to our current
setup is feasible.

Bias splitting model
The bias-induced splitting in the frequency of the zigzag mode
between the L and R zigzag configurations (Eqn. (3)) is obtained as
follows using classical small oscillation analysis. Beginning with
the zigzag potential U(φ) in axial scaled units (Eqn. (2)) on the
zigzag side of transition (α < αc), we determine the local mode
frequency for each side of the double well from ω2

LðRÞ=ω
2
z ¼

d2U=dφ2 evaluated at the two minima defined by dU/dφ= 0. The
full dependence of the splitting, ωR−ωL, on C1 and C3, which we
include in our analysis, is complicated; however, for a pure cubic
bias and in the perturbative limit one obtains the simple relation

ω2
R � ω2

L

ω2
z

� �2C3

ffiffiffiffiffiffiffiffiffi�C2

C4

r
; C1 ¼ 0: (9)

Similarly for a pure, perturbative linear bias one obtains

ω2
R � ω2

L

ω2
z

� �6C1

ffiffiffiffiffiffiffiffiffi
C4

�C2

r
; C3 ¼ 0: (10)

In the perturbative limit, using ω2
R � ω2

L � 2ðωR � ωLÞωR and
ω2
R � �2C2 for the zigzag side of the transition, we combine the

above two contributions to arrive at the main text’s Eqn. (3), which is
expressed in terms of νL(R)=ωL(R)/2π and νz=ωz/2π. The above
model is limited away from the critical point by the approximations
used to derive U(φ) and deviates from a quantum calculation of the
splitting between the lowest energies levels close to the critical point.

Trap potential simulation
To understand the role of the trap electrode imperfections in
generating zigzag bias, we simulate the electric potentials from
the trap electrodes using commercial Charged Particle Optics
(CPO) software52. For a given trap electrode configuration, the
potentials are least-squares fit to a set of solid harmonics, which
are subsequently used to obtain the 3-D Cartesian coefficients
λξ ¼ λξ1ξ2ξ3 for the polynomial expansion of the trap potential in
the pseudopotential approximation (see above). The Cartesian
coefficients are expressed in a coordinate basis with origin defined
by ideal micromotion compensation and with axes defined by the
principal axes of the pseudopotential. In conjunction with the
sensitivities of the zigzag biases C1 and C3 to the λξ coefficients
(determined as above from the zigzag potential), we assess the
role and magnitude of various electrode deformations in
generating bias in the zigzag potential. Assuming that the

lowest-order asymmetry is the dominant contribution, the linear
bias coefficient for three ions is C1 ≈−0.95 λ012. This can arise from
a number of different rod and endcap deformations of order
10 μm. The same deformations make contributions to C3 of order
10−3–10−4. They are also reasonably consistent with the linear
bias measured for five ions, where C1 ≈−7.6 × 10−4λ012+ 1.50λ014.
For four ions, the linear bias at lowest order of perturbation is
C1 ≈−1.14 λ013, which is likely due to transverse counter-
displacements of the endcaps. Shifts and rotations of the trap
potential will induce additional bias at next order of approxima-
tion in conjunction with nonlinear terms in the potential.
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