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Quantum gene regulatory networks
Cristhian Roman-Vicharra 1,2 and James J. Cai 1,2✉

In this work, we present a quantum circuit model for inferring gene regulatory networks (GRNs) from single-cell transcriptomic data. The
model employs qubit entanglement to simulate interactions between genes, resulting in competitive performance and promising
potential for further exploration. We applied our quantum GRN modeling approach to single-cell transcriptomic data from human
lymphoblastoid cells, focusing on a small set of genes involved in innate immunity regulation. Our quantum circuit model successfully
predicted the presence and absence of regulatory interactions between genes, while also estimating the strength of these interactions.
We argue that the application of quantum computing in biology has the potential to provide a better understanding of single-cell GRNs
by more effectively approaching the relationship between fully interconnected genes compared to conventional statistical methods
such as correlation and regression. Our results encourage further investigation into the creation of quantum algorithms that utilize
single-cell data, paving the way for future research into the intersection of quantum computing and biology.
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INTRODUCTION
A gene regulatory network (GRN) defines the ensemble of regulatory
relationships between genes in a biological system. Inferring GRNs is
a powerful approach for studying transcriptional regulation and the
molecular basis of the regulatory mechanism, to understand the
function of genes in processes of cellular activities1,2. A GRN is often
represented as a graph—which can be signed, directed, and
weighted—to depict relationships between transcription factors or
regulators and their targets whose expression level is regulated.
However, because the regulatory activity inside a cell is difficult to
observe, measurements of static, intracellular gene expression are
often used as a proxy, and the statistical dependencies are used to
infer real regulatory relationships between genes.
Single-cell technologies, which have recently been developed

and improved, open up opportunities for studying biology at
remarkable resolution and scale. Single-cell RNA sequencing
(scRNA-seq), for example, allows us to measure the expression
of thousands of genes in each of thousands of cells3. Computa-
tional methods for constructing GRNs can adopt scRNA-seq data
and leverage the information from the sheer number of cells to
improve the inference power4–6. Thus, the utilization of single-cell
data can lead to the development of more detailed and precise
network models, which will help us gain a better understanding of
the molecular mechanisms involved in cellular activities.
Numerous computational methods have been developed for

constructing GRNs. These methods use statistical approaches to
detect dependencies between expression profiles of genes and
establish potential regulatory relationships between genes. The
typical strategies that have been employed broadly fall into
several categories such as correlation, regression, information
theory, Gaussian graphical model, and Bayesian and Boolean
networks4–12. For a broader perspective on the topic, readers are
referred to several review articles13–16. It is important to note that
each method has its own set of assumptions and limitations that
are not always explicitly stated17–19. More importantly, none of
these conventional methods fully exploits simultaneous, inter-
regulatory connections between all genes. There is still a need for
a general and principled approach to model GRNs.

Quantum computing has become an emerging technology and
an intense field of research constantly seeking applications20.
Researchers have developed quantum algorithms with applica-
tions in areas such as finance, cryptography, machine learning,
drug discovery, chemistry, and material science21–25. A theoretical
speedup is expected in certain types of computation using
quantum algorithms versus classical algorithms because a
quantum computer takes advantage of superposition and
entanglement phenomena during the computation26,27. Given
the potential of quantum computing, conventional strategies for
inferring GRNs might be expanded by taking advantage of the
quantum computing framework.
In this work, we introduce a quantum single-cell GRN (qscGRN)

modeling method, which is based on a parameterized quantum
circuit and uses the quantum computing framework to infer
biological GRNs from scRNA-seq data. In our qscGRN model, each
gene is represented using a qubit, and the circuit structure is
divided into two types of layers: the encoder layer that translates
the scRNA-seq data into a superposition state, and the regulation
layers that entangle qubits to model gene-gene interactions in the
quantum framework. Our qscGRN model maps binarized gene
expression values onto a large vector space, known as Hilbert
space, making full use of the information in the individual cells.
Thus, the signal from thousands of cells is leveraged to improve the
mapping of regulatory relationships between genes. The para-
meterization of our qscGRN model allows gene-to-gene regulatory
relationships to be inferred all at once by fitting the superposition
state probabilities onto the distribution observed in the scRNA-seq
data. We include a quantum-classical framework for optimizing the
parameters of our qscGRN model for a given scRNA-seq data set.
The classical component of our framework uses the Laplace
smoothing28 and the gradient descent algorithm29 to perform
optimization by minimizing a loss function based on Kullback-
Leibler (KL) divergence30. We apply the quantum-classical frame-
work to real scRNA-seq data sets31,32 to show that gene regulatory
relationships can be modeled using quantum computing, and the
network recovered from the parameter-optimized quantum circuit
is largely consistent with a previously published GRN33,34.
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RESULTS
The qscGRN model and its optimization framework
Our qscGRN model is a quantum circuit consisting of n qubits and
models a biological GRN for n genes in the framework of quantum
computation giving a qubit-gene equivalence (Fig. 1). A complete
quantum-classical framework, which employs the qscGRN model to
infer the corresponding biological GRN, is also introduced (Fig. 2).
The methods section provides a detailed explanation of the model
and its optimization framework.

Applying qscGRN model to scRNA-seq data of lymphoblastoid
cells
This section outlines the practical application of our qscGRN
model in constructing a 6-gene GRN from real scRNA-seq data
sets. The process began by feeding an input expression matrix,
containing the expression values of 6 genes in over 28,000
lymphoblastoid cells, into the framewok. The 6 genes, IRF4, REL,
PAX5, RELA, PRDM1, and AICDA, are members of the NF-κB
signaling pathway. The pobs distribution was used to show the

frequencies of the 26= 64 possible cell states mapped into a
vector space. The pobs is represented in blue in Fig. 3a, in which
only the states with a probability greater than 0.01 are shown. The
qscGRN model schema for the data set was a 6-qubit system and
consisted of an encoder layer and six regulation layers. We
measured the output register of the qscGRN model to recover the
output distribution pout from the quantum framework. Then, we
optimized the parameter θ in the qscGRN model using 1087
iterations to minimizing the loss function L θð Þ. The distribution
p̂out was fitted into p̂obs during the optimization—smoothed
distributions for pout and pobs show the similarity of the two
distributions after optimization. The pout after optimization is also
represented in pink in Fig. 3a. The similarity is quantified using the
loss function and error metrics that reached values of 4.25e− 3
and 3.21e− 4, respectively (Fig. 3b). We validated the optimized
parameter θ running a quantum simulator that uses the Aer
Simulator backend (colored in yellow in Fig. 3a).
The value of the parameter θ after optimization retrieved an

adjacency matrix (Fig. 3c), which was used to construct the
biological GRN. Then, we constructed a weighted network from

Fig. 1 The qscGRN model consisting of n qubits that models a biological GRN for n genes. The quantum circuit is composed of an encoder
layer Lenc and regulation layers L0, L1, ⋯, Ln-1.
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Fig. 2 The quantum-classical framework using the qscGRN model to infer the corresponding biological GRN. The input matrix X is
binarized into matrix Xb and n genes are selected to be modelled. a Observed distribution pobs and activation ratios actk are computed using
the labels and binarized values, respectively. The ratios actk are used in the initial setup of the parameter θ0 . b The qscGRN is trained to fit the
output distribution pout into pobs by minimizing a loss function based on KL-divergence. c The adjacency and network representation of the
biological GRN using the optimal parameter θ.
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the quantum framework using the non-diagonal elements of θ,
as shown in Fig. 3d. We compared the sign of the element of
each pair of genes with the corresponding regulatory effect in
the previously published network, i.e., the baseline GRN33,34.
Figure 3e shows the evolution of parameters for 10 regulator-
target gene pairs in the qscGRN model during the optimization.
These gene pairs are among the relationships recovered from the
quantum framework, or present in the baseline NF-κB net-
work33,34. Gene pairs IRF4-PRDM1, REL-AICDA, PAX5-PRDM1, REL-
PRDM1 and PAX5-AICDA are correctly recovered, IRF4-AICDA
incorrectly recovered, while IRF4-REL, REL-PAX5, PAX5-RELA and
PRDM1-AICDA are predicted in our workflow. These recovered
relationships are supported by previous studies, for example,
PAX5 plays a role in the B-lineage-specific control of AICDA
transcription as suggested by a previous study35. PRDM1 is a
master regulator that represses PAX5 expression in B cells36.
IRF4-PRDM1’s regulatory relationship might be through a third-
party modulator. Indeed, IRF4 is known to inhibit BCL6
expression, and because BCL6 can repress PRDM1refs. 37,38, it
has been formally speculated that the effects of IRF4 on PRDM1
expression might have been mediated through inhibition of
BCL6 expression39. Although, several relationships are correctly
recovered, IRF4 is known to induce AICDA expression through an
indirect mechanism in the NF-κB signaling cascade40, suggesting
the inference power is still limited.
The qscGRN model predicted four regulatory relationships

between genes that were not present in the published baseline
GRN. These included the gene pair PRDM1 and AICDA, which may
indeed interact as shown that PRDM1 can silence AICDA
expression a dose-dependent manner41. These results indicate
that our qscGRN method has the potential to uncover regulatory
relationships that were previously missed in the baseline model.

DISCUSSION
Finding ways to apply quantum computing in biological research is
an active research area42–46. Many questions in biology can benefit
from quantum computing by exploring many possible parallel
computational paths, but identifying such questions remains
challenging. Especially, understanding how to exploit quantum
computers for progress in solving important biological questions is
crucial. The latest development of scRNA-seq technology has made
it possible to gather transcriptome information from tens of
thousands of individual cells per assay in a high-throughput
manner. These complex data sets with higher detail are driving
the development of new computational and statistical tools that are
revolutionizing our understanding of cellular processes. However,
quantum computation has not yet received enough attention in the
face of this single-cell big data revolution.
Here, we present our qscGRN method for modeling interactions

between genes to derive the quantum computing framework for
constructing GRNs. In the GRN inference, the interaction between
two genes determines the level of production of the target gene
based on the expression of a control gene, whether this
interaction is promotion or repression. Similarly, the parameter
in a c-Ry gate indicates the degree of rotation of a target qubit
based on the state of a control qubit. We took inspiration from the
analogy between these two phenomena to design the quantum
circuit in the quantum algorithm and used probability distribution
to constrain the parameter of the circuit. Below we discuss three
aspects of application issues.
Conventional correlation- or regression-based methods for GRN

construction can handle a large number of genes because, for
these methods, the gene-gene interaction is calculated as a single
summary statistic from the expression profile of genes in
measured cells. In contrast, our quantum approach for GRN
inference can only model a small number of genes due to the

IRF4 REL PAX5 RELA PRDM1 AICDA
IRF4 -0.070 0.166 -0.018
REL -0.070 0.078 -0.129 0.084
PAX5 0.078 0.043 -0.101 0.067
RELA 0.043
PRDM1 0.166 -0.129 -0.101 -0.078
AICDA -0.018 0.084 0.067 -0.078

π/4

0

−π/4

(c)

(a)
(b)

(d) (e)
Fig. 3 Application of the qscGRN modeling with real scRNA-seq data from human lymphoblastoid cells. a The observed, output, and
simulated frequency distributions (pobs, pout and pqiskit) of cell activation states, colored in blue, pink and yellow respectively. b Loss function
changes during training until optimization. c The adjacency matrix of the biological GRN. The heatmap shows the strength of gene-gene
interactions. The diagonal elements are colored in black due to these parameters are not trained. d A weighted representation of the
biological GRN recovered from the quantum circuit, where the thickness is proportional to the corresponding adjacency matrix. e Evolution of
parameters in the qscGRN model recovered from the quantum framework during the optimization.
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vector space size—which is equal to the number of basis states—
increases exponentially with the number of genes. In other words,
cells in binarized scRNA-seq matrix may only be mapped to a
moderate number of basis states such that each basis state is
occupied by at least one cell. For example, a 15-qubit qscGRN
model offers 215= 32,768 basis states, while a scRNA-seq data set
with 20,000 cells can take at most 61% of activations states in the
best case. Thus, our qscGRN model may retrieve an observed
distribution with no biological information mapped to many basis
states. Insufficient mapping may happen even though the latest
scRNA-seq technology has the capacity to allow the transcriptome
of millions of cells to be measured. To obtain enough cells, we can
merge multiple scRNA-seq data sets as long as they are from the
same cell types or similar biological sources and the batch effect
can be corrected47. On the other hand, we can select most
biologically informative genes such as highly variable genes48 to
be included in the analysis, reducing the burden of a large number
of genes in the model while maintaining the biological relevance.
To simulate the regulatory relationship between two genes, we use

a c-Ry gate to create a link between each pair of qubits in the
regulation layers. The rotation angle of the c-Ry gate indicates the
strength of interaction between the control gene and the target
gene. The rotation angles of c-Ry gates are parameterized and
mapped to the adjacency matrix after optimization to form the GRN.
Throughout the paper, we assume that the rotation angle reflects the
interaction strength—this is, the greater the angle, the stronger the
interaction. However, we discovered that this is not always the case.
We provide a simple example in Fig. 4 to illustrate the problem.
Figure 4a shows the basic unit circuit, initialized in |00〉 state, that
consists of a control qubit (1st qubit, rotated using an Ry gate with an
angle ϕ1), a target qubit (2nd qubit, rotated using an Ry gate with an
angle ϕ2) and a c-Ry gate with rotation angle θ. Figure 4b–f show the
effect of rotation θ in the c-Ry gate on the amplitude of |1〉 of the 2nd
qubit, µ, under different settings with various combinations of ϕ1 and
ϕ2. When considering µ as a function of θ, we can see in most cases,
µ increases with increasing θ or vice versa which is consistent with
our assumption in gene regulation simulation. However, in some
cases with specific combinations of ϕ1 and ϕ2 (as indicated with red
triangles in Fig. 4e, f, the pattern is opposite—µ increases with

decreasing θ or vice versa. The opposite pattern becomes evident
when ϕ1 approaches π. We regard this phenomenon “boundary
effect”, which may influence the interpretation of our modelling
results. However, it should not have a great impact on our analysis.
This is because: First, the boundary effect happens when the absolute
value of rotation angle θ of c-Ry gate approaches π=2. In our real-data
study, as shown in Fig. 3e, we found the values of θ for all genes are
in the range between �π=4 and π=4, in which the boundary effect is
neglectable. Second, the boundary effect only happens in limited
areas in the regions with specific combinations of states of control
and target qubits. The phenomenon becomes pronounced when the
rotation angle of Ry gate for the control qubit, i.e. ϕ1, is greater than
0:75π, which means the gene is being activated in more than 85% of
cells. In the case of the rotation angle is π, the corresponding gene is
always activated in all cells. In single-cell biology, a fully activated
gene is most likely to happen for so called “house-keeping” genes,
which are consistently expressed in a high level. These genes are
essential for cell survival but are less likely to play any important
regulatory role. Our previous study48 provides evidence that highly
variable genes such as those expressed in 50% of cells and
inactivated in the other 50% of cells are most functionally important
for any given cell type. Taken together, we acknowledge the potential
impact of the boundary effect in our model but argue that, as the
impact is likely to be limited, the interpretability of the c-Ry rotation
angle as a measure of interacting strength remains largely intact.
Correlation- and regression-based are the most widely used

methods for GRN inference, owing to in part their computational
efficiency. These methods typically compute correlation or regres-
sion coefficients for gene pairs using the total number of cells in the
data. The issue with these methods is that they deal with gene pairs
across cells, not fully exploiting complex expression patterns by
incorporating another degree of information. The relationship
between any two genes is measured using a single value of
summary statistics such as correlation or regression coefficient. Once
computed, the coefficient becomes independent of the total
number of cells. Increasing the number of cells would have little
influence on correlation or regression coefficient. The other issue is
that the coefficient is computed only between the two genes,
regardless of the expression values of other genes in the same
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Fig. 4 The impact of rotation angle θ of a c-Ry gate on the amplitude, μ, of the j1i state of the target qubit in a quatum circuit. a The
circuit configuration consists of a control quit (the 1st qubit) and a target qubit (the 2nd qubit), each rotated by an Ry gate with angles ϕ1 and
ϕ2, respectively. b–f The heatmap panels display various combinatios of ϕ1 (0, 0.25π, 0.5π, 0.75π and 1.0π) and ϕ2 (0–1.0π) settings. The
heatmap colors indicate the amplitude of |1〉 state of the target qubit with respect to θ. In general, the amplitude of |1〉 state of the target
qubit increases or decreases monotonically with respect of θ. In regions marked by red trangles in (e and f), the pattern is reversed.
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biological system. Not considering other genes in the computation
may result in a biased coefficient, which does not represent the true
behavior of underlying interactions. There are methods such as
partial correlation7, principal component regression5, and LASSO49

that may correct this. But, the correcting effect is limited given that
all-to-all interactions cannot be easily modeled.

METHODS
The implementation of our package QuantumGRN is achieved
using NumPy, Pandas, Matplotlib, iGraph and Qiskit—an open-
source library for working with quantum computer simulators. Our
package uses the Aer Simulator backend for a noisy circuit
simulator. More details about code implementation and dataset
can be found in data and code availability sections.

Quantum computation theory
In this section, we introduce broad-audience background of
quantum computation. In classical computation, a bit is the unit of
information being |0〉 or |1〉 in Dirac notation, defined as (1 0) T

and (0 1) T respectively50–52. In quantum computation, a qubit is
the unit of information being |ψ〉= c0 | 0〉 + c1 | 1〉 in super-
position, where |ψ〉 is the quantum state, c0 and c1 are complex
numbers, and |c0 | 2+ |c1 | 2= 1. The measurement of |ψ〉 results in
0 with a probability to be observed of |c0 | 2 and 1 of |c1 | 2.
The Hadamard gate H is a single-qubit gate frequently used in

quantum algorithms and is defined as 1ffiffi
2

p 1 1
1 �1

� �
, creating

superpositions of the basis states (i.e.,

H 0j i ¼ 1ffiffi
2

p 1 1
1 �1

� �
1
0

� �
¼ 0j iþj1iffiffi

2
p ). Furthermore, the rotation gate

Ry is also a single-qubit gate that uses a rotation parameter θ and is

defined as Ry θð Þ ¼ cosθ=2 �sinθ=2
sinθ=2 cosθ=2

� �
. In addition, a controlled

gate is a 2-qubit gate that performs an operation on a target qubit
when the control qubit is in state |1〉, where the operation is
typically a single-qubit gate. For example, Table 1 shows the
mapping of basis states when using a controlled-Ry gate that has
the first qubit as control and the second qubit as target. The Ry
operation is performed in basis states |10〉 and |11〉 because the
control qubit is 1, no operation is performed otherwise.
In classical computation, a circuit is a model composed of a

sequence of gates (NOT, AND, OR operations) having input bits that
flow though such a sequence eventually computing the output bits
for a given task53. Similarly, a quantum circuit is a model consisting
of a sequence of quantum gates that perform operations on input
qubits54. In a quantum algorithm, the input qubits are usually
initialized to |0〉n, meaning a string of n bits of zeros. Then, the
register flows through the sequence of gates, computing an output
register that is measured and decoded to interpret the result.

The qscGRN model: a parameterized quantum circuit
Here, we introduce the quantum single-cell gene regulatory
network (qscGRN) model that is a quantum circuit consisting of n
qubits and models a biological GRN for n genes in the framework
of quantum computation giving a qubit-gene equivalence (Fig. 1,
Algorithm 1). The sequence of gates is grouped into 2 types of

layers: The encoder layer Lenc consists of a Ry gate in each qubit
and translates biological information (i.e., the frequency of gene
actively expressed among cells) onto a superposition state. The
regulation layer Lk consists of a sequence of c-Ry gates that have
the kth qubit as control and a corresponding target such that the
kth qubit is fully connected to other qubits. In the Lk layer, a c-Ry
gate—that has the kth qubit as control and the pth qubit as the
target—models the regulation interaction in the corresponding
gene-gene pair. In particular, the parameter of the c-Ry gate
quantifies the strength of the gene-gene interaction.
In this work, we used the notation θk;k for the parameter of the Ry

gate on the kth qubit in the Lenc layer, and θk;p for the c-Ry,n gate
with the kth qubit as control and the pth qubit as target, in the layer
Lk of a n-qubit system. Thus, two layers were defined respectively as

Lenc ¼ Ry θn�1;n�1
� �� � � � � Ry θ1;1

� �� Ry θ0;0
� �

; (1)

where the ⊗ operator is the tensor product, and

Lk ¼
Yn�1

i¼0;i≠k

c-Ry;n θk;i
� � ¼ c-Ry;n θk;n�1

� � � � � c-Ry;n θk;1
� �

c-Ry;n θk;0
� �

: (2)

The computation of Lenc and Lk is noncommutative due to the
needed operations are matrix multiplication and tensor product.
The qscGRN model was initialized to |0〉n and put into a

superposition state using the Lenc layer. Then, the gene-gene
interactions were modeled using regulation layers L0, L1, ⋯, Ln-1.
Thus, the qscGRN model is a quantum circuit that has n2 quantum
gate parameters given by a matrix representation θ for the set of
parameters θk;p in the quantum gates:

θ ¼

θ0;0 θ0;1 ¼ θ0;n�1

θ1;0 θ1;1 ¼ θ1;n�1

..

. ..
. . .

. ..
.

θn�1;0 θn�1;1 ¼ θn�1;n�1

2
66664

3
77775
; (3)

where the diagonal elements belong to the Ry gates in the Lenc
layer, and the non-diagonal elements to the c-Ry,n gates in the
regulation layers L0, L1, ⋯, Ln-1. We recognized the matrix θ as the
adjacency matrix of the biological GRN.
Therefore, the output register jψouti of the qscGRN model

encodes the gene-gene interactions in superposition as a function
of the matrix θ and was defined as

jψouti ¼
Yn�1

k¼0

Lk

 !
Lencj0in ¼ Ln�1 � � � L1L0Lencj0in: (4)

Algorithm 1. Construction of qscGRN model
Require: Number of qubits n, Parameter θ
1: Create n-qubit quantum circuit qscGRN
2: for k ¼ 0; 1; � � � ; n� 1 do
3: Create and append Ry θk;k

� �
gate in qubit k

4: end for
5: for k ¼ 0; 1; � � � ; n� 1 do
6: for p ¼ 0; 1; � � � ; n� 1 do
7: if k ≠ p then
8: Create and append c-Ry;n θk;p

� �
gate having k as

control and p as target
9: end if

10: end for
11: end for
12: return qscGRN

Quantum-classical framework for optimization of the qscGRN
model
In this section, we introduce the complete quantum-classical
framework using the qscGRN model to infer the corresponding
biological GRN (Fig. 2).

Table 1. Mapping basis states using a c-Ry gate.

Basis state |x〉 c-Ry(θ) | x〉

|00〉 |00〉

|01〉 |01〉

|10〉 cosθ2 10j i þ sinθ2j11i
|11〉 �sinθ2 10j i þ cosθ2j11i
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Gene selection. The input data of the workflow was a scRNA-seq
expression data matrix X that contains expression values of N
genes in m cells. The data matrix X was normalized using Pearson
residuals55. Then, n out of N genes were selected to be analyzed in
the next step.

Binarization. The normalized expression matrix X was binarized
by applying the expression threshold of 0, which means that
expression values greater than 0 are set to 1, and 0 otherwise56,57.
The outcome of the binarization was saved to Xb, which is a matrix
of dimension n × m.

Labeling. Labels were assigned for each cell in Xb, such that the
label is a string vector composed of the binarized expression of
the n genes in a cell. Thus, a label is the activation state of a gene
in the corresponding cells.

Activation ratios. Activation ratios were computed for each gene
as the percentage of cells expressing that gene in Xb. Then, the n
rows in Xb were ordered decreasingly by the activation ratio and
were labeled as g0, g1, ⋯, gn−1.

Observed distribution. We computed the percentage of occur-
rences of each label within the m cells to obtain the observed
distribution pobs. The percentage of label j0n in pobs was set to 0,
and the rest of the distribution was rescaled to sum to 1. The
rationale for setting the j0in probability to 0 is that only cells with
expression values for at least one of n genes are informative.
Sparsity is a common characteristic of scRNA-seq data because of
the dropout event that occurs during the sequencing process.
Figure 2a shows the steps just described in the workflow of the
quantum-classical framework.

Initialization of the parameter θ. The non-diagonal elements θk;p
corresponding to c-Ry gates were initialized to 0. The diagonal
elements θk;k corresponding to Ry gates were initialized to
2 � sin�1 ffiffiffiffiffiffiffiffi

actk
p

, where actk is the activation ratio for the kth gene.
The rationale for the formula is that, independently on each qubit,
the probability of observing 1 is the activation ratio of the
corresponding gene after the Lenc layer. Algorithm 2 illustrates the
initial setup of the workflow.

Algorithm 2. Initial setup of the workflow
Require: Normalized scRNA-seq matrix X
1: Select n gene from X
2: Xb= Binarized matrix X for the selected n genes
3: Label each cell in Xb of dimension n × m
4: for k ¼ 0; 1; � � � ; n� 1 then
5: actk ¼ #cellsk=m, where #cellsk is the number of cells

expressing the k gene
6: end for
7: for each label x 2 0; 1f gn then
8: pobsx ¼ #cellsx=m, where #cellsx is the number of cells

having x as label
9: end for

10: Rescale pobs

11: θ= Create an n × n matrix of all elements 0
12: for k ¼ 0; 1; � � � ; n� 1 then
13: for p ¼ 0; 1; � � � ; n� 1 then
14: if k ¼ p then
15: θk;k ¼ 2 � sin�1 ffiffiffiffiffiffiffiffi

actk
p

16: end if
17: end for
18: end for
19: return initial parameter θ, pobs

Measuring the output register of the qscGRN model. We measured
the output register jψouti to obtain the output distribution pout of
observing the basis states. The probability of the state j0in in pout

was set to 0, and the rest of the distribution was rescaled to sum to 1.

Smoothing pobs and pout. Laplace smoothing was used to reshape
pobs and pout to distributions p̂obs and p̂out respectively. These
smoothed distributions were computed as p̂i ¼ #ocuiþα

mþ2n�α , where
i 2 out; obsf g, α is the smoothing parameter being typically 1 and
#ocui is the number of occurrences in the distribution pi . In other
words, pi ¼ #ocui

m is the original distribution.

Loss function. The loss function consists of KL and constrain
terms, named as LKL and Lcons, were defined as

LKL θð Þ ¼
X

x2 0;1f gn
p̂outx log

p̂outx

p̂obsx

 !
; (5)

Lcons θð Þ ¼
X
θi2θ

1

θ4i � π
2

� �4h i2 ; (6)

where θ is the parameter in the qscGRN model and 0; 1f gn is the n
Cartesian power of the set 0; 1f g. Thus, the loss function was
defined as

L θð Þ ¼ LKL θð Þ þ λ � Lcons θð Þ; (7)

where λ is a dynamic coefficient that rescales Lcons to the same order
of magnitude than LKL. In summary, the LKL term fits the output
distribution pout in the observed distribution pobs. Meanwhile, the
Lcons constraints any parameter in θ to not get close to π=2.

Optimization of the parameter θ. The optimization was achieved
by minimizing iteratively the loss function to a threshold value of
2n × 1e− 4 using a modified-gradient descent algorithm with a
learning rate lr of 0.05. Otherwise, the optimization was performed
for a pre-defined iterations t. Then, the parameter θ in the
iteration sþ 1 was defined as

θsþ1 ¼ θs � lr � ∇L θsð Þ þ ∇TL θsð Þ
2

; (8)

where ∇T is the transpose of the gradient of loss function,
allowing to keep the parameter θ as a symmetric matrix. The
diagonal parameters θk;k were not trained during optimization
under the assumption that these parameters encode the binarized
scRNA-seq matrix given as an input to the quantum framework.
Algorithm 3 illustrates the optimization of parameter θ and Fig. 2b
shows details of the optimization in the workflow. Our work is also
integrated to Qiskit—an open source library for working with
quantum computers—that simulates a noisy quantum circuit
using Aer Simulator backend with default parameters.

Algorithm 3. Optimization of parameter θ
Require: Initial parameter θ0, pobs

1: p̂obs ¼ smoothðpobsÞ
2: for s ¼ 0; 1; � � � ; t � 1 then
3: qscGRN= Constructed quantum circuit using θs
4: Measure output register and obtain pout

5: p̂out ¼ smoothðpoutÞ
6: loss ¼ L θsð Þ
7: if loss < loss_threshold then
8: return θs
9: end if

10: Compute gradient ∇L θsð Þ
11: θsþ1 ¼ θs � lr � ∇L θsð Þþ∇TL θsð Þ

2
12: end for
13: return θt
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Recovery of gene regulatory network. We removed non-diagonal
parameters in θ that had an absolute value less than π

180 � 2 because
no significant rotation was performed by the corresponding c-Ry
gate. Next, we used the remaining parameter in θ to construct the
adjacency matrix of the biological GRN, which is a weighted
symmetric network. Figure 2c shows this last step in the workflow
of the quantum-classical framework.

Single-cell transcriptomic data
The scRNA-seq data used in this study was generated from
lymphoblastoid cell lines (LCLs), which are widely used cell line
systems derived from human primary B cells. The single cell
sequencing libraries were prepared using the 10x Genomics
platform. Information about the experimental procedure and the
acquisition of sequence data is provided in reference to our
original study31. The data set has been deposited to the Gene
Expression Omnibus (GEO) database and can be accessed with
accession number GSE126321. To increase the number of cells in
this study, we merged our data set with another LCL scRNA-seq
data set downloaded from the GEO database with accession
number GSE158275 ref. 32. The data matrices were pre-processed
using scGEAToolbox58 and combined to produce the final matrix,
which contains expression counts of 9,905 genes of 28,208 cells.
The matrix was then normalized using the Pearson residuals
method55. Normalized expression values of six genes: IRF4, REL,
PAX5, RELA, PRDM1, and AICDA in the NF-κB signaling pathway,
were extracted. The 6-gene expression matrix with dimensions of
6 × 28,208 was binarized and used as the input of our qscGRN
analysis. The biological regulatory relationships between these
genes, called the baseline model of GRN, were obtained from the
previously established B-cell differentiation circuit model33,34.

DATA AVAILABILITY
The scRNA-seq data analyzed in the current study is available in the NCBI GEO
database under accession numbers GSE126321 and GSE158275.

CODE AVAILABILITY
The processed data and the source code implementation of the qscGRN package are
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