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Experimental signature of initial quantum coherence on
entropy production
Santiago Hernández-Gómez 1,2,3,4,11✉, Stefano Gherardini 1,5,11, Alessio Belenchia 6,7,11, Andrea Trombettoni8,9,10,
Mauro Paternostro 7 and Nicole Fabbri 1,3

We report on the experimental quantification of the contribution to non-equilibrium entropy production stemming from the
quantum coherence content in the initial state of a qubit exposed to both coherent driving and dissipation. Our experimental
demonstration builds on the exquisite experimental control of the spin state of a nitrogen-vacancy defect in diamond and is
underpinned, theoretically, by the formulation of a generalized fluctuation theorem designed to track the effects of quantum
coherence. Our results provide significant evidence of the possibility to pinpoint the genuinely quantum mechanical contributions
to the thermodynamics of non-equilibrium quantum processes in an open quantum systems scenario.
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INTRODUCTION
The irreversible character of most physical processes is, appar-
ently, at odds with the inherent reversibility of the fundamental
laws of physics. The way time-reversible quantum laws, which
governs the interactions of microscopic systems, gives rise to the
irreversible nature of macroscopic phenomena is a very open field
of investigation1. In this regard, a breakthrough has been provided
by the extension of the second law of thermodynamics into the
quantum realm through the so-called fluctuation theorems2–5. A
celebrated instance of this is the integral fluctuation theorem,
which stems from Jarzynski’s identity2 and Crooks’ relation3, and
connects the non-equilibrium energy fluctuation statistics of unital
processes with the corresponding free-energy changes. Opera-
tionally, the standard approach to the quantification of energy
and entropy fluctuations in non-equilibrium contexts is by using
the celebrated two-point measurement (TPM) scheme6, which
requires two projective measurements, at the beginning and at
the end of the dynamical process under scrutiny7,8.
Despite the clear success of the TPM scheme, evidenced by

successful experimental verification in nuclear magnetic reso-
nance9,10, trapped-ion11–13, superconducting-qubit14, nitrogen-
vacancy (NV) centres15,16 and linear optics settings17–19, the
scheme has significant limitations when considering the role
played by quantum features in the statistics of energy fluctuations.
In fact, any quantum coherence in the initial state of the quantum
system, and expressed in the measurement basis, is washed away.
As a result, the system dynamics following the first measurement
is strongly affected. This has motivated recent efforts aimed at
modifying the TPM scheme to take into account the presence of
quantum features, particularly coherence, in non-equilibrium
processes20–33. Ref. 34 introduced an end-point measurement
(EPM) approach, where the initial statistics of energy-change
fluctuations is inferred from the knowledge of the initial state and
the Hamiltonian of the quantum system.

Here, we show the intrinsic operational nature of the EPM
approach by considering both the detailed and the integral form
of the corresponding fluctuation theorem, and using them to
characterise experimentally the entropy production associated to
quantum coherence in the state of an open quantum system. In
particular, we experimentally make use of a qubit encoded in the
spin of an NV centre in diamond, subjected to both a continuous
driving and environmental effects15,16,35. In our experiments, we
observe a significant increase of the irreversibility of the resulting
dissipative map that only originates from the presence of
quantum coherence in the initial state of the NV centre.
Remarkably, we show that measuring such a quantity provides a
tight bound for the average heat exchanged by the system with
the environment.
While being valid in principle for arbitrary dynamics, our results

establish NV centres as valuable platforms for the exploration of
energetics at the quantum level, thus enlarging the already
prominent domain of their applications in quantum
technologies36–39.

RESULTS
EPM-based fluctuation theorem
In order to set the stage for the derivation of a generalized
fluctuation theorem accounting for the effects of quantum
coherence of the initial state, we briefly review the EPM scheme
introduced in ref. 34. The results we provide in what follows hold
for a generic open quantum system, and we thus consider an
arbitrary completely-positive trace preserving (CPTP) map Φ. Let
ρ0 ¼ P þ χ be the initial state of the system, which we have
decomposed in its diagonal part P (expressed in the basis of the
initial Hamiltonian Htin ) and the traceless component χ that
accounts for the quantum coherence. The EPM scheme prescribes
to perform a single energy measurement, at the end of the
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process, and to associate to it the stochastic variables ΔEi;f �
Efinf � Eini that encodes the energy fluctuations during the open
dynamics. Here, EinðfinÞk denotes the eigenvalues of the initial (final)
Hamiltonian. We thus introduce the probability distribution
PEPM(ΔE)= ∑i,f PΓ(i, f)δ(ΔE− ΔEi,f) for the EPM scheme, where δ( ⋅ )
denotes the Dirac delta function and PΓ(i, f) are the joint
probabilities of the energy-change in the forward trajectory Γ,
defined as

PΓði; f Þ � pðEini ÞpðEfinf Þ ¼ trðΠin
i ρ0ÞtrðΠfin

f Φðρ0ÞÞ: (1)

Here Π
inðfinÞ
j is the projector on the j-th initial (final) energy

eigenstate. Computing the characteristic function of the prob-
ability distribution PEPM(ΔE) leads immediately to an integral
fluctuation relation. In fact, let us take the diagonal part P of the
initial state ρ0 as the thermal state of the initial Hamiltonian Htin
with inverse temperature β. One can then show that

he�βðΔE�ΔFÞi ¼ d tr ρfinth ΦðρinthÞ
� �þ tr ρfinth ΦðχÞ� �� �

; (2)

where ρ
fin=in
th � e�βHtfin=in =Zfin=in with Zfin=in � trðe�βHtfin=in Þ, and d is

the dimension of the system’s Hilbert space. The second term in
the right-hand-side of Eq. (2) showcases the contribution coming
from the initial quantum coherence, while the first term represents
a classical deviation from the Jarzynski’s equality. Such deviation
would be present also in the absence of initial coherence due to
the non-linearity of the EPM’s probability distribution for convex
combination of states34. Notice that the non-linearity of the
probability distribution stems from enforcing the positivity and
reality of the joint distribution PΓ(i, f) in the case the initial state
and the quantum system Hamiltonian are not commuting31,32.
Consider now an open quantum map Φ that admits a non-

singular fixed point ρ*=Φ(ρ*). Using the results in40, we can
define the corresponding backwards dynamics (cf. Methods –
Derivation of the detailed fluctuation theorem). In this way, one can
compare the joint probabilities PΓði; f Þ ¼ pðEini ÞpðEfinf Þ � pini p

fin
f

and PeΓðf ; iÞ ¼ trðΠfin
f ρinB ÞtrðΠin

i
eΦðρinB ÞÞ � epinf epfini for measuring the

energy of the quantum system in the forward and backward
trajectories, Γ and eΓ respectively. Notice that, in PeΓðf ; iÞ, ρBin denotes
the initial state of eΓ, and eΦ is the corresponding time-
reversed map.
By extending the derivation of the Jarzynski equality2 by means

of the Crooks’ formalism3,40, we consider the case in which (i) the
initial quantum state of the forward dynamics is ρ0 ¼ ρinth þ χ, i.e.,
ρ0 is written as the sum of a thermal state at inverse temperature β
and the traceless component χ encoding the initial coherence in
the energy basis, and (ii) the initial state of the backward quantum
dynamics is the state that is thermal in the final Hamiltonian at the
same inverse temperature β of the forward process, i.e.,
ρinB ¼ Z�1

fin exp½�βHtfin � ¼ ρfinth . These assumptions allow to write
the balance equation

PΓði; f Þ
PeΓðf; iÞ ¼ exp βðΔEi;f � ΔFÞ þ Δσi;f þ ΔΣi;f

� �
; (3)

where

Δσi;f � ln
pfinf ðρinthÞepfini ðρinB Þ

; ΔΣi;f � ln 1þ pfinf ðχÞ
pfinf ðρinthÞ

" #
(4)

and pfinf ðχÞ � trðΠfin
f ΦðχÞÞ (cf. Methods – Derivation of the detailed

fluctuation theorem). Accordingly, averaging Eq. (3) over the
forward probability distribution, one obtains

e�βΔE�ðΔσþΔΣÞ
D E

Γ
¼ e�βΔF : (5)

Eq. (3) and Eq. (5) are the detailed and the integral forms of the
EPM’s fluctuation theorem, respectively.
It is worth noting that, by construction, pfinf ðχÞ can be negative

as it operates on the quantum coherence operator χ, which is
Hermitian but traceless. However, the quantity ΔΣi,f is well-defined,
as the term inside the logarithm is always non-negative. In fact,
pfinf ðρinthÞ þ pfinf ðχÞ ¼ pfinf ðρ0Þ � 0. In addition, thanks to the
assumption (ii), ΔΣi,f depends only on the forward dynamics and
it satisfies a fluctuation theorem by its own (cf. Methods –
Derivation of the integral fluctuation theorem), i.e.,

e�ΔΣ
� �

Γ
¼ 1 : (6)

Resorting to the Jensen’s inequality, one has ΔΣh i � 0. ΔΣ encodes
the entropic contribution of the initial quantum coherence of the
system, and we thus identify it as the coherence-affected irreversible
entropy production for a non-equilibrium dynamical process. At the
same time, the quantity Δσ represents a completely classical
contribution to the entropy production that comes from adopting
the EPM formalism, namely from the extra uncertainty implied by
the factorization condition in Eq. (1) (see also discussion in ref. 34).

The experimental system
We consider the spin qubit associated to a negatively charged NV
centre –a localized impurity in a diamond lattice based on a nitrogen
substitutional atom next to a vacancy– which forms an electronic spin
S= 1 in its orbital ground state41–44. A magnetic bias field aligned
with Sz removes the degeneracy of the spin eigenstates, so as to allow
for the selective coherent manipulation of the transition Sz ¼ 0j i $
Sz ¼ þ1j i. The Hamiltonian H of this effective two-level system is
determined by a continuous nearly resonant microwave field and, in
the frame rotating at the microwave frequency, the Hamiltonian is

H ¼ _ωðcos α ~σz � sin α ~σxÞ=2, where ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 þ δ2

p
and tan α ¼

�Ω=δ; Ω denotes the bare Rabi frequency and δ∈ [0,Ω] is the
microwave detuning. We have used the tilde for the Pauli matrices in
view of the change of basis to the Hamiltonian eigenstates, i.e.,
f 0j i; 1j ig � fcos α

2 Sz ¼ 0j i � sin α
2 Sz ¼ þ1j i; sin α

2 Sz ¼ 0j i þ cos α
2

Sz ¼ þ1j ig with eigenvalues ± ℏω/2. In this new basis, the Hamilto-
nian becomes H=ωσz/2, where ℏ is set to 1 from here on.
The qubit is governed by an alternated sequence of unitary and

non-unitary (controlled-dissipative) dynamics, as follows. The system
is repeatedly subjected to a sequence of pulses, occurring regularly at
time intervals τ. Among two consecutive pulses, the evolution of the
NV centre is unitary and described by the operator U � exp½�iHτ�. As
depicted in Fig. 1, the NV spin also undergoes open dynamics due to

Fig. 1 Scheme of the protocol applied to the NV spin qubit. The dynamics stems from a combination of coherent driving of the qubit (near-
resonance microwave (mw) radiation) and a train of short laser pulses that makes “open” the system (a). Specifically, the coherent drive
couples the states Sz ¼ 0j i and Sz ¼ þ1j i. Instead, the short laser pulses act as a dissipation, by first projecting the system into the Sz
eigenstates and then optically pumping part of the populations towards the Sz ¼ 0j i state (b).
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its interaction with a train of short laser pulses with a duration tL that
is much shorter than the characteristic time-scale of the unitary
dynamics (tL≪ 2π/ω). The short laser pulses trigger cycles of spin
preserving and non-preserving transitions between different orbital
levels15,45,46. This entails non-unitary dynamics that project the state of
the system into the eigenstates of ~σz and partially transfer the spin
population to Sz ¼ 0j i. Such spin amplitude damping along the ~σz

axis, also known as optical pumping, is caused by the spin non-
preserving transitions, and can be modelled as a controlled dissipative
channel toward Sz ¼ 0j i15,35. The overall dynamics takes the NV
centre into an asymptotic fixed point ρ* that we can use to define the
backward dynamics [see Supplementary Note 1 for more details on
the modelling of the NV centre dynamics in the experiment]. In the
experiments shown throughout this work, we set α= π/4 (i.e.,
δ=−Ω), τω≃ (2π)0.9, and τ= 190 ns.

Coherence-affected entropy production
We now show the results obtained with the NV qubit subjected to
the dissipative dynamics introduced above. Here, our aim is to
characterize the thermodynamic role of initial quantum coherence
in terms of the coherence-affected entropy production. We have
thus performed a series of experiments to determine both the
EPM probability distribution of energy-change fluctuations as well
as the usual TPM one.
At the beginning of each experimental realization, the electronic

spin is initialized into the Sz ¼ 0j i eigenstate of the spin operator Sz
via optical spin pumping under long laser excitation. Then, the
system is brought in each of the four different pure states that
correspond to the eigenvectors of σz and σy, by applying rotation
gates (on-resonant microwave pulse) to the state Sz ¼ 0j i. After n
short laser pulses, with n∈ [0, N], we measure the energy of the
system in the Hamiltonian basis σz. To achieve this, we optically
readout the intensity of the NV photo-luminescence (PL). The PL
intensity (averaged over ~ 106 repetitions of the experiment)
determines the probability for the system to be in the energy
eigenstate 1j i (see Methods for a more detailed description of the
readout process). This approach allows us to achieve an

experimental estimate of pfinf¼1ðρÞ ¼ trðΠfin
f¼1ΦðρÞÞ, where ρ is one

of the eigenstates of either σz or σy. From this, we obtain the
probability for f= 0 as 1� pfinf¼1ðρÞ. As we collect data from several
experiments (in which the system is initialized in one of the four
pure qubit-states f 0j i; 1j i; þj iy ; �j iyg), it is a matter of data
processing to compute the EPM and TPM statistics for every
classical mixture of such states (for more details see Supplementary
Note 2). In particular, looking at a Bloch sphere representation for
the qubit, this implies that we are able to obtain the statistics of the
quantum process for any initial state included in the y− z
equatorial plane of the Bloch sphere, i.e. any initial state expressed
as a convex combination of the states 0j i; 1j i; þj iy ; �j iy . Specifi-
cally, in the following we show experimental results corresponding
to the initial states (expressed in the Hamiltonian basis)

ρ0 ¼
1
2

1þ p � ð1� pÞi
ð1� pÞi 1� p

	 

(7)

with p ∈ [0,1], such that ρ0 is the convex mixture of 1j i 1h j and
þj iy þh j with probability p and 1− p, respectively. We also need
to consider data associated to the state ρinB ¼ 1

2 ð1þ pσzÞ. Notice
that in ref. 15 we reported similar experimental results, but only
considering diagonal states ρinB . While the working point defined
by the choice of experimental parameters (δ, Ω, τ, tL) is unique of
the experiments reported here, our investigation goes significantly
beyond the context set in ref. 15 in light of the fact that we have
addressed the case of coherent (non-diagonal) states.
The first quantity we are interested in characterizing experi-

mentally is the coherence-affected entropy production encoded in
the average of ΔΣ as given in Eq. (4). Notice that this average is
defined solely in terms of the forward trajectory probability; thus,
we can fully characterize it by resorting to the experimental data
acquired during the forward dynamics. The results of our
experiments are shown in Fig. 2: in panel (a) we present the
experimental values of the stochastic quantum entropy produc-
tion ΔΣi,f, and in panel (b) we show the experimental verification
of the fluctuation theorem in Eq. (6). Instead, in panel (c), the
behaviour of 〈ΔΣ〉 is plotted as a function of the number of laser

Fig. 2 Coherence-affected entropy production. a Comparison between experimental (markers with error bars) and numerical values (lines)
of the coherence-affected irreversible entropy production ΔΣi,f. Black squares and dashed line: ΔΣ1,1=ΔΣ0,1; orange bullets and dotted line:
ΔΣ1,0=ΔΣ0,0. Note that these equalities stem from the fact that, given the chosen initial state of the backward quantum dynamics, ΔΣi,f

depends only on the index f [Eq. (4)]. b Experimental verification of the fluctuation theorem e�ΔΣ
� �

Γ
¼ 1 [Eq. (6)] as a function of the number N

of pulses. Error-bars are comparable to the size of the bullets. Inset: e�ΔΣ
� �

Γ
in the range [0.97, 1.03]. c Experimental average coherence-

affected entropy production as a function of N (blue circles). In all the panels, the experimental data and the numerical simulations are
obtained by taking þj iy ¼ ð 0j i þ i 1j iÞ= ffiffiffi

2
p

(i.e., ρ0 with p= 0) as the initial quantum state. For such an initial state, the coherence-affected
entropy production is nearly extremal. Error bars correspond to propagated standard deviation of the normalized PL.
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pulses. While the error bars are quite large, it can be observed how
the corresponding experimental points nicely follow the theore-
tical predictions and how the experimental data show a positive
coherence-affected entropy production.
Another quantity that can be investigated directly from the

available data on the forward dynamics is the average of the
energy-change fluctuations ΔE. In this regard, it is worth noting
that this quantity is identified with the average work when
considering time-dependent unitary processes like in the Jarzyns-
ki’s original work2. In our case, as the Hamiltonian is time-
independent, we can unambiguously interpret this quantity as the
average heat that the system exchanges with its environment, by
means of the open dynamics to which the NV centre is subjected.
The average of the stochastic variable ΔEi,f= Ef− Ei in the EPM
approach is related to the TPM scheme via the following relation:

hΔEiEPM ¼ hΔEiTPM þ
X
f

trðΠfin
f ΦðχÞÞEf : (8)

The second term on the right-hand side of Eq. (8) represents a
contribution to the average heat ascribable to the quantum
coherence of the initial state, which is not deleted by a first energy
measurement over ρ0. Figure 3 displays the three quantities
entering in Eq. (8), by comparing theoretical expectations with the
experimental results. It is shown that the experimental data are
able to discern the coherence contribution to the heat exchanged
between the system and the environment due to the pulsed
dynamics. Among the protocols that allows to account for
quantum features in energy fluctuations20–23,27–29,31,34, the EPM
scheme requires only a final energy measurement at the time t
and does not require any knowledge of the quantum map Φ that
models the forward dynamics. This makes the method particularly
suitable for application in open quantum systems.
Finally, we have also verified the validity of the full EPM

fluctuation theorem in Eq. (5) as well as its consequences for the
expectation values of the involved thermodynamic quantities. In
principle, this requires having access to the backward trajectories
of the system, so as to characterize Δσi,f in Eq. (4). This can be
problematic when the system dynamics is non-unitary: while the
backward trajectories can be easily simulated numerically,
implementing them at the experimental level is not currently
possible with our set-up. However, for the range of experimental
parameters, the choice of the initial state of the backward process
and the form eΦ obtained from40 thanks to the existence of a non-
singular fixed point of the dynamics, the backward dynamics are
such that epfinj ðρinB Þ ¼ pfinj ðρinthÞ. Therefore, by assuming that this
property holds and thus that we can estimate 〈Δσ〉 from the sole
data of the forward trajectories, in Fig. 3b we show the

experimental verification of the integral form of the EPM
fluctuation theorem in Eq. (5).
The application of the Jensen inequality to Eqs. (2) and (5) leads

to

βhΔEi � � lnðGEPMÞ;
�ðhΔσi þ hΔΣiÞ

�
(9)

with GEPM ¼ 2tr ρfinthΦðρinth þ χÞ� �
denoting the EPM characteristic

function34. In Fig. 4, the theoretical expectations of these
quantities are compared with the corresponding experimental
results. For the initial state ρ0 considered for this figure (i.e., the
state in Eq. (7) with p= 0.38), the results obtained by using the
characteristic function of the EPM approach are quite distinct from
the ones coming from the integral fluctuation theorem (5).
Specifically, for N∈ [0, 10] and for the initial states accessible from
the experimental data, the bound on 〈ΔE〉 derived from the
integral fluctuation theorem is tighter than the one resulting from
GEPM. In addition, we can also see in Fig. 4 that the inequality in Eq.
(9) is almost saturated, meaning that the average heat exchange
from the EPM method offers even a good estimate of the sum
〈ΔΣ+ Δσ〉 in the regime experimentally analyzed.

DISCUSSION
We have used the end-point measurement (EPM) approach for the
characterization of energy-change fluctuations arising from a non-
equilibrium process, with the aim to quantify the contribution to
the entropy production that is originated by the presence of
quantum coherence in the initial density matrix of the quantum
system under scrutiny.
The results obtained from the EPM scheme have to be

compared with the ones arising from the two-point measurement
(TPM) scheme. While in the TPM an initial projective measurement
cancels out any effect of the quantum coherence of the initial
state in the basis of the measured observable, the EPM preserves
such coherence. In order to compare these two schemes, in this
work we followed the standard set-up of the TPM scheme while
allowing for initial coherence in the energy basis applying the EPM
approach. As a general remark, notice that the coherence of an
initial quantum state crucially influences the system evolution, and
consequently the physical quantities associated with the system
dynamics, such as the quantum entropy production.
Our formalism gives a physical characterization of the entropy

production associated with an arbitrary preparation of the system.
Besides the quantum entropy originated during the dynamics, our
results clearly single-out the presence of a change of entropy
production due to the absence of the first measurement, and of
an entropy production solely depending on the quantum

Fig. 3 Average energy-change and integral fluctuation theorem. a Shows the three quantities in Eq. (8). The dashed orange curve stands for
〈ΔE〉EPM, the dot-dashed black one for 〈ΔE〉TPM, and the solid blue line shows the contribution of quantum coherence to the exchanged heatP

f trðΠfin
f ΦðχÞÞEf . The curves are obtained for an initial state parameterized as in Eq. (7) with p= 0.2. This choice guarantees a good visibility of

all the contributions. b Experimental verification of the integral form of the EPM fluctuation theorem in Eq. (5). In this panel, we have taken Eq.
(7) with p= 0.38. Inset: Integral fluctuation theorem in the range [0.95, 1.05]. Error bars correspond to propagated standard deviation of the
normalized PL.
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coherence of the initial state. By focusing the attention on the
latter contribution, we have shown that the EPM formalism
provides –quite naturally– the fluctuation theorem for the
quantum entropy production linked to the quantum coherence
of the initial state.
The operational nature of our approach has enabled a

successful experimental assessment of such coherence-affected
entropy production in a solid state platform, at room-temperature
and inherently dissipative, where an NV spin qubit is addressed by
a sequence of laser pulses so that it undergoes a controlled
dissipative dynamics.
Our study grounds the EPM approach as a powerful framework

to assess the role of quantum coherence in the energetics of
quantum systems and devices47. Specifically, our findings add a
crucial ingredient for the analysis of the thermodynamic role of
quantum coherence and allow the characterization of the
introduced entropy production due to quantum coherence. It
seems natural to associate the entropy production heralded by
quantum coherence in the initial state, to the system dissipation.
While our work has provided robust empirical and experimental
evidence for this connection, further investigations are required to
formalise and establish it definitively.

METHODS
Here we report a detailed derivation of the detailed and integral
fluctuation theorems analyzed in the section Results.

Derivation of the detailed fluctuation theorem
Let us consider a CPTP map, written in Kraus representation as
Φð�Þ ¼PαKα�Ky

α with {Kα} the set of Kraus operators, that allows a
non-singular fixed point ρ* such that ρ*=Φ(ρ*). As ρ* is non-
singular, following Crooks’ formalism40 we can define the time-
reversed map aseΦð�Þ ¼X

α

½ðρ�Þ1=2Ky
αðρ�Þ�1=2��½ðρ�Þ�1=2Kαðρ�Þ1=2�; (10)

where eKα � ðρ�Þ1=2Ky
αðρ�Þ�1=2.

Then, in accordance with the EPM formalism34, we can
introduce the expression of the joint probabilities PΓðEini ; Efinf Þ �
PΓði; f Þ and PeΓðEfinℓ ; Eink Þ � PeΓðℓ; kÞ, respectively, for the quantum

trajectories Γ and eΓ of the forward and backward process,
respectively. Let us observe that the latter is obtained by reversing
the arrow of time by means of a transformation that obeys the
time-reversal symmetry. Specifically, one has

PΓði; f Þ ¼ tr Πin
i ρ0

� �
tr Πfin

f ρfin
� � � pini p

fin
f (11)

and

PeΓðℓ; kÞ ¼ tr Πfin
ℓ ρinB

� �
tr Πin

k ρ
fin
B

� � � epinℓ epfink (12)

where, we recall, ρfin≡Φ[ρ0] and ρfinB � eΦ½ρinB � with ρinB denoting
the initial state of the backward process and, without loss of
generality, we have assumed that each projector on the energy
eigenstates is invariant to the application of the time-reversal
transformation. As a result, the expression of the detailed balance
equation for the trajectories Γ and eΓ is formally equal to

PΓði; f Þ
PeΓðℓ; kÞ ¼

pini p
fin
fepinℓ epfink : (13)

Before proceeding, it is worth observing that if (i) we apply the
EPM scheme for characterising energy-change fluctuations and (ii)
we choose the initial state of the backward process as the time-
reversal of the final state of the forward process, then epinℓ ¼ pfinf for
ℓ= f. As a matter of fact,epinℓ ¼ tr ρinB Π

fin
ℓ

� � ¼ tr ΘρfinΘyΘΠfin
ℓ Θy� � ¼ tr ρfinΠfin

ℓ

� � ¼ pfinℓ (14)

where fð�Þ � Θð�ÞΘy with Θ denoting the time-reversal operator.
The latter, by construction, is anti-unitary, i.e., it is an anti-linear
operator and satisfies the relations ΘyΘ ¼ ΘΘy ¼ I. In this context,
we obtain the fluctuation relation

PΓ
PeΓ ði; f Þ ¼ e�Δσ

in
i (15)

where we have identified

Δσin
i ¼ � ln

tr ρ0Π
in
i

� �
tr eΦðρinB ÞΠin

i

�  : (16)

This relation encodes information only on the initial stochastic
quantum entropy production due to the open system dynamics.
In fact, for the special case in which the dynamics is unitary, and
under the assumption of micro-reversibility, i.e., ΘUðλÞΘy ¼ UyðeλÞ
with λ(t) generic time-dependent transformation such that the
system Hamiltonian is invariant under time-reversal, one finds that
e�Δσini ¼ 1 8i, i.e.,
PΓði; f Þ ¼ PeΓðf ; iÞ : (17)

Notice also that, in determining the integral form of Eq. (15), one
gets heΔσiniΓ ¼ 1 with

Δσin
� �

Γ
¼
X
i

pini ln
epfini
pini

¼ �SðpjjepÞ; (18)

where, we recall, pini and epfini are the probabilities to measure the
i-th energy value of the system, respectively, at the initial and final
time instants of the forward and backward process. Here, S(q∣∣p) is
the classical relative entropy between the two probability
distributions q and p, and thus it naturally corresponds to a
measure of how far is the final state of the inverse quantum
dynamics from the initial quantum state.
Coming back to the derivation of Eq. (3) in the main text, let us

assume that (i) the initial quantum state ρ0 of the forward
dynamics has thermal populations but also non-zero coherence
terms (in the energy basis of the system), and (ii) the initial
quantum state ρinB of the backward quantum dynamics has
thermal populations (with respect to the final Hamiltonian) and

Fig. 4 Jensen inequality at work: a tight bound for the averaged
heat exchange. The dashed orange curve corresponds to the
average heat exchange β〈ΔE〉 from the EPM method. The dot-
dashed grey and solid blue curves show the behaviour of the right-
hand-sides of the inequalities in Eq. (9). The initial state is taken as in
Eq. (7) with p= 0.38.
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once again non-vanishing off-diagonal elements. In other terms,

ρ0 ¼ ρinth þ χ in � e�βHtin

Z in
þ χ in (19)

ρinB ¼ ρfinth þ χfin � e�βHtfin

Zfin
þ χfin ; (20)

where trðχ inÞ ¼ trðχfinÞ ¼ 0, Zfin=in � trðexp½�βHtfin=in �Þ and the
system Hamiltonian H is not necessarily assumed as a time-
independent operator. Thus, by substituting Eqs. (19) and (20) into
(13) with k= i and ℓ= f, one finds

PΓði; f Þ
PeΓðf ; iÞ ¼ exp βðΔEi;f � ΔFÞ þ σfin

f ρinth
� �þ Σfinf χin

� �� eσfini ρfinth
� �� eΣfini χfin

� �h i
;

(21)

where

σfin
f ρinth
� � � ln pfinf ρinth

� �
(22)

Σfinf χ in
� � � ln 1þ pfinf ðχ inÞ

pfinf ρinth
� � !

(23)

eσfin
i ρfinth
� � � lnepfini ρfinth

� �
(24)

eΣfini χfin
� � � ln 1þ epfini ðχfinÞepfini ρfinth

� � !
; (25)

pfinf ðAÞ � tr Πfin
f ΦðAÞ� �

, and epfini ðAÞ � tr Πfin
i
eΦðAÞ

� 
with A a

generic linear operator. It is worth noting that pfinf ðAÞ andepfini ðAÞ denote the probability to measure the f-th and i-th final
energy values of the quantum system in the forward and
backward process, respectively, conditioned to have evolved the
thermal contribution of the initial state (without coherence terms
in the energy eigenbasis). Finally, Eq. (21) can be simplified as

PΓði; f Þ
PeΓðf ; iÞ ¼ exp βðΔEi;f � ΔFÞ þ Δσi;f þ ΔΣi;f

� �
; (26)

by introducing the quantities

Δσi;f � σfin
f ρinth
� �� eσfin

i ρfinth
� �

and ΔΣi;f � Σfinf χ in
� �� eΣfini χfin

� �
:

(27)

Let us observe that, if no quantum coherence is present neither in
ρ0 nor in ρinB (i.e., χin= χfin= 0), then ΔΣi,f= 0. Thus, ΔΣi,f can be
considered as a correction, due to initial coherence in the energy
basis of the system, to the entropy difference Δσi,f obtained by
propagating initial thermal states in the forward and backward
process, respectively.
The form of the detailed fluctuation theorem used in the main

text is a particular case of Eq. (26) where χfin is assumed to be
vanishing. This choice is motivated by our aim to consider the
minimal modification to the “Jarzynski set-up”, respect to which
only coherence in the initial state of the forward dynamics
is added.

Derivation of the integral fluctuation theorem for ΔΣ
From Eq. (26) the integral fluctuation theorem of Eq. (5) can be
easily obtained.
Instead, for what concerns the integral fluctuation theorem

involving the sole coherence induced entropy production, let us
consider the case in which χfin= 0. Upon substitution, one has

exp �ΔΣ½ � ¼ pfinf ρinth
� �

pfinf ρinth
� �þ pfinf ðχ inÞ : (28)

Thus, taking the average over the EPM probability distribution of
the forward process Γ, we can conclude that

exp �ΔΣ½ �h iΓ ¼
X
f

pfinf ρinth
� � ¼ 1 ; (29)

where we have used the fact that pfinf ðρinthÞ is itself a probability
distribution normalized to 1.

Description of the readout process
As described in the main text, at the end of the protocol we want to
measure the probability pfinf¼1ðρÞ � trðΠfin

f¼1ΦðρÞÞ, where ρ is one of
the four different pure states corresponding to the eigenvectors of σz
and σy, and Φ is the map associated to a train of n short laser pulses
(n∈ [0,N]) with a unitary evolution U between consecutive pulses.
First, the electronic spin is prepared in the desired state ρ by means of
a rotation gate (on-resonant microwave pulse) to the state Sz ¼ 0j i.
After n short laser pulses, we apply another rotation gate (on-resonant
microwave pulse) such that ~σz ! σz . Finally, we measure the photo-
luminescence (PL), where the photon counts are averaged over ~ 106

repetitions of the experiment. Then, this PL intensity is normalized with
respect to the reference PL intensity of the eigenstates Sz ¼ 0j i and
Sz ¼ þ1j i (also measured after each repetition of the experiment).
Let us name PL0 and PL1 the reference PL intensity values for the

states Sz ¼ 0j i and Sz ¼ þ1j i, respectively. Thus, the normalized
signal s we obtain from our experiments corresponds to s= (PL−
PL0)/(PL1− PL0), which is the probability to find the system in the
state Sz ¼ þ1j i. Hence, s ¼ 1

2 ð1þ h~σziÞ ¼ Sz ¼ þ1h j~ρfin Sz ¼ þ1j i,
where ~ρfin is the state of the spin qubit at the very end of the
protocol. Notice though that the final rotation gate needs the change
of basis ~σz ! σz . This rotation is described by the unitary operator
RyðαÞ � exp½�iσyα=2�. Therefore, s ¼ Sz ¼ þ1h jRyðαÞρfinRyð�αÞj
Sz ¼ þ1i ¼ 1h jρfin 1j i, where we have used that Ryð�αÞ Sz ¼ þ1j i ¼
1j i and ρfin=Φ(ρ) is the state of the system before the final rotation.
As a result, the probability that we want to measure is provided by
the normalized signal s ¼ TrðΦðρÞ 1j i 1h jÞ ¼ pfinf¼1ðρÞ.
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