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Peptide conformational sampling using the Quantum
Approximate Optimization Algorithm
Sami Boulebnane 1,2, Xavier Lucas3,4, Agnes Meyder3, Stanislaw Adaszewski5 and Ashley Montanaro 2,5✉

Protein folding has attracted considerable research effort in biochemistry in recent decades. In this work, we explore the potential
of quantum computing to solve a simplified version of protein folding. More precisely, we numerically investigate the performance
of the Quantum Approximate Optimization Algorithm (QAOA) in sampling low-energy conformations of short peptides. We start by
benchmarking the algorithm on an even simpler problem: sampling self-avoiding walks. Motivated by promising results, we then
apply the algorithm to a more complete version of protein folding, including a simplified physical potential. In this case, we find less
promising results: deep quantum circuits are required to achieve accurate results, and the performance of QAOA can be matched
by random sampling up to a small overhead. Overall, these results cast serious doubt on the ability of QAOA to address the protein
folding problem in the near term, even in an extremely simplified setting.
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INTRODUCTION
Protein folding has been a major focus in biochemistry and
computational research in recent decades, motivated by its central
role in protein function and protein homeostasis1,2. From a
computational perspective, protein structure prediction methods
can be broadly classified into knowledge-based and physics-based
approaches, along with more recent deep-learning algorithms3.
Indeed, the field has experienced a revolution with the publication
of AlphaFold2, an AI algorithm capable of predicting the 3D apo
structure of single protein domains and multimeric systems with
experimental accuracy4,5. Nonetheless, further advances in the
field could benefit de novo protein structure design, improve
accurate protein structure prediction for low-homology proteins,
and provide better understanding of intrinsically disordered
protein regions6–8. In this regard, the potential of quantum
computing algorithms to vastly and unbiasedly explore protein
conformational ensembles is currently under investigation by us
and others9.
There exists a significant body of research on applying quantum

algorithms to protein dynamics9–17, see Supplementary Material for
a detailed review. While ref. 14 considers the resource requirements
to run a Monte Carlo simulation of a protein fragment on a
quantum computer and refs. 15,16 introduce hybrid classical-
quantum algorithms to estimate the energy of protein complexes,
the vast majority of these works address the combinatorial
formulation of protein folding. Given a (classical) potential function
expressing the energy of the protein from the positions of all its
atoms, the latter problem consists of predicting the minimum-
energy conformation18. This optimization problem in many
continuous variables may be simplified to a discrete problem:
lattice protein folding, whereby atom or amino acid positions are
restricted to a lattice19. Other approximations include using
simplified potential functions; we refer to ref. 20 for a comprehen-
sive review. Lattice-based methods were convenient approaches to
protein folding in the early age of classical computing, when
resources were too scarce to produce meaningful results with the

original problem formulation. Due to even more restricted
resources on real quantum computers and even on quantum
emulators, lattice models are also the primary focus in the quantum
computing literature18. Lattice-based protein folding is a computa-
tionally hard optimization problem21,22, making it a target of
interest for quantum optimization algorithms.
In this work, similarly to refs. 12,13, we consider applying the

Quantum Approximate Optimization Algorithm (QAOA) to a lattice-
based protein folding problem. Following ref. 9, the protein is
discretized on a tetrahedral lattice to approximate a realistic
geometry with a limited number of qubits. The choice of QAOA is
motivated by its expected scalability based on its good trainability
properties23,24. This distinguishes this study from ref. 9 which uses a
problem-independent ansatz; such variational circuits are known to
pose several challenges, including barren plateaus25 and the
existence of many spurious local minima24, making them less well-
adapted to large-scale problems. Our work also differs from all
earlier contributions in that the protein is modeled at the atomic
level (and not as a sequence of amino acids) and attributed a
physically realistic potential (see “Methods” for details), as done in
classical conformer generators. Such an approach is only viable for a
fault-tolerant quantum computer as it requires costly arithmetic
circuits and generally long-range qubit interactions. Therefore, while
earlier studies focused on resource estimation and optimization with
near-term applicability in view and eschewed the question of the
performance and scalability of the algorithm towards practically
relevant problem instances, we take the opposite stance: assuming
access to a sufficiently powerful quantum computer to compute the
problem’s cost function to arbitrary precision and optimize a
variational circuit with an arbitrary number of layers, we consider the
performance and limitations of QAOA in this idealized setting. This
allows us to better understand the potential performance of QAOA
for instances beyond the capability of classical methods. Finally,
unlike earlier contributions that focused on finding minimum-
energy peptide conformations, we propose to examine the
distribution of solutions sampled from QAOA beyond their expected
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energy. Such an approach may be desirable in future searches for a
quantum advantage via QAOA, since its superiority over classical
optimization algorithms has until now remained elusive, but it
provably (under plausible complexity theory conjectures) achieves
quantum supremacy when used as a sampler26.
First, we consider applying QAOA to a relaxed version of the

protein folding problem. A protein discretized on a lattice can be
thought of as an instance of a self-avoiding walk on the lattice, so
in order to produce a physically realistic configuration, QAOA must
output a self-avoiding walk. Therefore, one can simplify the
protein folding problem and render it more mathematically
tractable by considering the problem of just outputting a self-
avoiding walk on a lattice using QAOA. Although this problem is
trivially solvable using a classical algorithm, it can provide insight
into the expected performance of QAOA for the more realistic
protein folding problem. We numerically show that QAOA can be
efficiently variationally optimized to produce self-avoiding walks
with non-trivial probability; more precisely, for fixed ansatz depth,
the probability of sampling a self-avoiding walk appears to
improve over uniformly random sampling by a factor increasing
exponentially with the problem size. Besides, for the limited-scale
experiments reported here (up to 28 qubits), an ansatz depth
p ~ 10 consistently produces a self-avoiding walk with a prob-
ability at least 10 %, meaning a 104 improvement over random
sampling for the largest walk size considered. Unfortunately,
owing to the limited size of instances accessible to classical
simulation, it remains unclear how the ansatz depth should scale
with the problem size to achieve a constant success probability.
Next, we apply QAOA to a small lattice protein folding

problem in the Lennard–Jones model. Due to the limited number
of qubits, we are not able to encode the positions of all atoms of
the peptide. To address this difficulty, we choose to only
represent heavy atoms from the backbone chain, integrating out
all other atoms. The cost function to minimize, depending only
on the heavy atoms from the backbone chain, is then taken to be
the Lennard–Jones potential, partially minimized over config-
urations of the side chains and light atoms of the backbone
chain. We stress that this partial minimization procedure is a
mere artifact designed to make numerical experiments feasible;
it is a priori not scalable and would not be required to implement
the algorithm on a large enough real quantum computer. We use
numerical simulations on 20 qubits to address an alanine peptide
(see Fig. 1), which is a common benchmark for classical
molecular dynamics simulation algorithms, see ref. 27. We
compare several different initialization methods. We determine
that QAOA seems to find this more realistic (though still highly
simplified) protein folding significantly more challenging. In
order to achieve an expected energy close to the minimum
(within relative error ~10−2) more than 40 ansatz layers are
required. In addition, we analyze the ability of random guessing
to simulate QAOA, in the sense of sampling from those
configurations which QAOA obtains with high probability. We
find that sampling using a QAOA ansatz with p ∈ {2, 3, 8, 62}
layers can be matched by fewer than 6p random guesses.
Despite the mixed nature of these results, we believe that the

present work outlines methods that could in principle be applied

to benchmark QAOA on any other optimization problem. Besides,
while earlier research laid a lot of emphasis on the circuit
implementation of QAOA when addressing protein folding or
other real-world problems, our findings suggest that the major
difficulty with the algorithm may not relate to the quantum circuit
but rather to the expressivity and/or practical trainability of the
ansatz. From a methodological standpoint, this hints that the last
two issues should be clarified first when looking for problems
where QAOA offers advantage.

RESULTS
The quantum approximate optimization algorithm
We start by giving a brief overview of the main quantum
optimization algorithm used in this work—the Quantum Approx-
imate Optimization Algorithm28 (QAOA). QAOA is a variational
quantum algorithm29 designed to (approximately) minimize a
classical cost function H(x) depending on n binary variables
x∈ {0, 1}n.
In its simplest version (see ref. 30 for more sophisticated

approaches designed to handle constraints among other
improvements), QAOA starts with a quantum state Ψ0j i represent-
ing a uniform superposition of all solutions:

Ψ0j i :¼ 1ffiffiffiffiffi
2n
p

X
x2f0;1gn

xj i; (1)

where the jth bit xj of x represents the value of the jth binary
variable. QAOA alternates between evolving Ψ0j i under the
problem Hamiltonian:

HC :¼
X

x2f0;1gn
HðxÞ xj i xh j (2)

and a mixer Hamiltonian:

HB :¼
X
j2½n�

Xj; (3)

where Xj is the Pauli Xmatrix acting on the jth qubit. The evolution
times are hyperparameters to be optimized classically. The
quantum state prepared by level-p QAOA explicitly reads:

ΨQAOAðβ; γÞj i :¼ UBðβp�1ÞUCðγp�1Þ¼UBðβ0ÞUCðγ0Þ þj i�n; (4)

where

UCðθÞ :¼ exp � iθHC

2

� �
; (5)

UBðθÞ :¼ exp � iθHB

2

� �
(6)

are the time evolution operators associated to HC, HB and the
parameters β, γ∈ Rp, commonly referred to as QAOA angles, are
the corresponding evolution times. Once ΨQAOAðβ; γÞj i has been
prepared, it can be measured in the computational basis, yielding
a bitstring x ∈ {0, 1}n with cost H(x); by Born’s rule, the expected
cost of this bitstring is ΨQAOAjHC jΨQAOAh i and the angles are
classically optimized to minimize this expectation. Once optimal
(or good enough) β, γ have been found and provided
ΨQAOAjHC jΨQAOAh i is sufficiently close to min

x2f0;1gn
HðxÞ, good

solutions to the original optimization problem can be obtained
by measuring ΨQAOAðβ; γÞj i in the computational basis. In this
work, variational parameters are always optimized using the
L-BFGS implementation from NLopt31. We allow up to 1000 steps
and other parameters are set to their default values. In particular,
the stopping criterion for the relative variation of the cost
function is ~10−9 and the stopping criterion for the gradient
magnitude is 10−5.

Fig. 1 Alanine tetrapeptide. Blue: backbone chain; green: side
chains.
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Sampling self-avoiding walks with QAOA
A folded peptide, modeled as a ramified chain of atoms or amino
acids, can be regarded as a particular instance of a self-avoiding
walk. Therefore, a classical or quantum conformer sampler should
only generate configurations satisfying this constraint. Unfortu-
nately, it is already non-trivial whether a quantum algorithm can
achieve that with sufficiently high probability. Therefore, in this
section, we include no interaction at all and simply investigate the
capability of QAOA to sample self-avoiding walks. More precisely,
we consider training a QAOA ansatz to sample self-avoiding walks
without any requirement on their distribution, contrary to lattice-
based protein folding where the attractive interaction potential is
to be minimized among valid (self-avoiding) configurations.
Therefore, the performance of QAOA on the former task may
plausibly provide an upper bound on its capabilities when applied
to lattice-based protein folding.
A self-avoiding walk on a lattice (see ref. 32 for a detailed

introduction) is a path on the lattice where each site is visited at
most once. Self-avoiding walks are well-studied in statistical
physics and find applications in polymer physics among others
fields; however, rigorous mathematical results remain scarce. The
theory of self-avoiding walks has occasionally been explicitly
applied to protein folding33.
In this work, we only consider the self-avoiding walk on Z2 (two-

dimensional square lattice). This choice is motivated by the limited
number of lattice directions to encode (4, corresponding to 2
qubits) and the fact that self-avoiding walks are, from numerical
simulations, rarer on a square lattice than on the tetrahedral lattice
used in “Sampling low-energy peptide conformations with QAOA”.
The scarcity of valid walks ensures that the problem is sufficiently
hard and allows to better understand the scaling of the success
probability with the number of layers in the quantum variational
ansatz. In order to further decrease the number of valid walks for a
given walk length, we further enforce the condition that the path
be a loop (the start and endpoints coincide). This constraint can be
physically motivated when modeling an antibody loop for
instance. Illustrations are given in Fig. 2.
A walk on the square lattice is represented by a turn-based

encoding as described in “Methods”. In simple terms, this
encoding describes the walk as a sequence of turns. Since we
consider the two-dimensional square lattice in this section, there
are four possible turns at each step of the walk, or three if one
restricts to non-backtracking walks. We refer to these options as
“backtracking” and “non-backtracking” encoding respectively. The

cost function we attempt to minimize is of the form:

H ¼ number of self crossings þ λ ´ distance between walk endpointsð Þ2;
(7)

where λ > 0 is a penalty term suppressing non-loop walks. In the
construction of the QAOA ansatz, we considered 3 possibilities for
the mixers: the inversion about the mean, the qudit-X and qubit X
mixers. The qubit mixer, acting on n qubits as a product of X

rotations: e
�iβ

2

P
k2½n�

Xk

is the most commonly used28. The qudit-X
mixer is a generalization to qudits and is formally defined in
“Methods”. The inversion-about-the-mean mixer acts indepen-

dently on each qudit as e�
iβ
2 þj i þh jd and is a special case of the

qudit-X mixer. We refer to “Methods” for more detailed definitions.
As an example, we report some results obtained for the 10-step

self-avoiding walk in Tables 1 and 2; more data points are included
in Supplementary Material. The probability PSAW of sampling a
self-avoiding walk from the QAOA state is given against the ansatz
depth for the three possible choices of mixers and two possible
choices of encodings. Besides, QAOA is compared with the simpler

Fig. 2 Walks on a square lattice. a Self crossing walk. b Self-avoiding walk. c Self-avoiding loop.

Table 1. Success probability for backtracking encoding.

Algorithm—depth 0 2 5 10

QAOA—inversion about mean 0.000671 0.0206 0.104 0.403

QAOA—qudit-X mixer 0.000671 0.0207 0.0721 *

QAOA—qubit X mixer 0.000671 0.0160 0.0694 0.202

Amplitude amplification 0.000671 0.0167 0.0791 0.268

An asterisk symbol denotes that data is unavailable for the combination of
parameters.

Table 2. Success probability for non-backtracking encoding.

Algorithm—depth 0 2 5 10

QAOA—inversion about mean 0.00671 0.0527 0.129 0.357

QAOA—qudit-X mixer 0.00671 0.0529 0.130 *

Amplitude amplification 0.00671 0.158 0.615 0.977

An asterisk symbol denotes that data is unavailable for the combination of
parameters.
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quantum amplitude amplification algorithm34. More precisely,
since depth-p QAOA makes p queries to the optimization
problem’s cost function, it can naturally be compared to
amplitude amplification with p queries to the oracle.
One observes that for fixed p= 2, the backtracking encoding

achieves better amplification over random sampling (p= 0) than
the non-backtracking one—by a factor 30 vs. 8. However, both
encodings achieve similar success probabilities in absolute terms
for p= 2 and above. This last observation, combined with the
natural choice of restricting invalid configurations in the encoding,
justifies our use of the non-backtracking encoding for the alanine
tetrapeptide problem in “Sampling low-energy peptide conforma-
tions with QAOA”. Concerning the choice of mixer, the results
suggest that the qudit mixer only marginally outperforms the
“inversion about the mean” one despite being harder to optimize.
The latter is illustrated by the p= 5 results from Table 1, where the
qudit mixer underperforms the “inversion about the mean”, while
the contrary holds for optimal variational parameters (see
description of mixers in “Methods”). This implies that the best
variational parameters found for the qudit mixer after 2000
optimization attempts are still suboptimal. Therefore, the gain in
success probability given by the qudit mixer does not seem to
justify the extra optimization cost. For the 10-step walk example
detailed here, QAOA does not visibly outperform amplitude
amplification. If this proved correct, this would pose a serious
challenge to QAOA as amplitude amplification merely provides a
quadratic speed-up over random guessing34 while self-avoiding
walks are exponentially rare among all lattice walks (see ref. 35 for
an explicit example). We therefore compare the performance of
both algorithms for larger problem instances—up to 16 steps,
corresponding to 28 qubits—fixing the encoding (absolute turn-
based encoding) and the mixer (inversion about the mean). Figure
3 shows the success probability against the ansatz depth p. In all
cases, the probability appears to increase exponentially in p for
small p (contrasting with the quadratic increase of amplitude
amplification) before saturating. In the Supplementary Material,
we provide a more detailed analysis of this success probability for
a 16-step walk. To confirm that QAOA behaves qualitatively
differently from amplitude amplification, we also explicitly
considered the success probability at low fixed depth for
increasing problem size. The results are reported in Fig. 3 and
suggest QAOA improves over the random assignment with a ratio

growing exponentially with the problem size, while this improve-
ment would be constant for amplitude amplification.
Another important question is whether QAOA, when it

succeeds, samples fairly from the set of self-avoiding walks.
Classically, Monte Carlo algorithms (see ref. 36 for a detailed
review) have been known for decades to sample self-avoiding
walks. Although these algorithms are usually heuristic, it seems
possible to derive theoretical guarantees of (almost) fair sampling
at least for restricted cases37. In this study, we quantify the
uniformity of the sampling by considering the collision entropy
and the standard Shannon entropy. Given the probability
distribution pxð Þx2X of a random variable X taking values in a
set X , the collision entropy of X is defined as:

CollisionEntropyðXÞ :¼
X
x2X

p2x : (8)

It is 1
jXj iff. X is uniformly distributed and 1 iff. X is deterministic. The

Shannon entropy is defined as:

HðXÞ :¼ �
X
x2X

px log px (9)

and is log jXj iff. X is uniformly distributed, 0 iff. X is deterministic.
Both quantities are represented in Fig. 4 for the 12-steps self-
avoiding walk. They remain close to their expected values for a
uniform distribution, although the situation degrades with
increasing p. Since by Fig. 3, p is required to increase with the
number of steps to achieve a constant success probability, it is
difficult to infer how this property will persist at larger problem
sizes. However, one can say qualitatively that QAOA is sampling
from a random, but nonuniform, distribution.
We conclude by comparing the random and extrapolation

methods for initializing the ansatz, the details of which are
provided in “Methods”. Figure 5 compares the probability of
sampling a self-avoiding walk for optimal variational parameters
given by each method, using an encoding allowing backtracking
and an “inversion about the mean” mixer. Extrapolation eventually
outperforms random initialization from p= 9, suggesting it should
be preferred for optimizing the ansatz at large p. The validity of
the approach can be justified by examining the optimal QAOA
angles obtained from random initialization, which appear to
organize along a tractable pattern (monotonicity in angle index
for a fixed ansatz depth, continuity in the ansatz depth).

Fig. 3 Probability of QAOA sampling a self-avoiding loop as a function of ansatz depth and problem size. a Probability of self-avoiding
loop for different numbers of steps. For reference, the amplitude amplification result is also represented for the 16-step walk. b Probability of
self-avoiding loop vs. problem size, for different p. For reference, amplitude amplification with 16 queries (comparable to p= 16 QAOA) is also
represented. Asymptotically, the amplitude curve should be parallel to the random one, which can already be observed for the small problem
sizes represented. Exponential fits: y= 10−0.776−0.238x (random), y= 10−0.453−0.151x (p= 1), y= 10−0.642−0.0550x (p= 4), y= 100.270−0.0418x (p= 16).
Correlation coefficients are all >99%.
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Sampling low-energy peptide conformations with QAOA
The results obtained for self-avoiding walks showed that an
efficiently trained, moderate-depth QAOA ansatz is capable of
sampling a self-avoiding walk on a lattice with high probability. In
this section, we turn to the complete peptide folding problem,
where a folded peptide is modeled as a self-avoiding walk with
attractive and repulsive interactions between its sites. We there-
fore investigate the capability of QAOA to sample a low-energy
conformation among valid (self-avoiding) ones. The encoding of
the problem (independent of the optimization algorithm) and the
quantum algorithm used to address it are fully described in
“Methods”. In general terms, the cost function associated to a
conformation consists of Lennard–Jones interactions between all
pairs of atoms and a penalization for each clash (atoms occupying
the same site). We now detail the results obtained for the largest
problem instance considered -an alanine tetrapeptide. All
numerical experiments use the relative turn-based encoding
defined in “Methods”.
The expected energies achieved by the QAOA ansatz after

training with different optimization strategies (random initializa-
tion, annealing schedule, optimization from optimized annealing
schedule) are given on Fig. 6. The energy is expressed in a
dimensionless form, as the distance to the minimum energy
E � Emin, rescaled by the same quantity evaluated at the energy
given by random assignment (formally corresponding to p= 0

QAOA): Erandom � Emin. This dimensionless energy varies from 1 to
0 as E decreases from Erandom to Emin. In the previous expressions,
E is the expected energy of a conformation sampled from the
variational circuit, Erandom is the expected energy of a conforma-
tion sampled uniformly at random and Emin is the lowest possible
energy of a conformation. We distinguish the cases where
expectations are calculated over all conformations or over
conformations without clashes only. In the former case, Erandom
is the expected energy of a uniformly sampled conformation
(possibly with clashes) and E is the expected energy of a
conformation (possibly with clashes) sampled from the QAOA
state; whereas in the latter case, Erandom is the expected energy of
a conformation sampled uniformly from conformations without
clashes and E is the expected energy of a conformation sampled
from the QAOA state given it has no clash.
These results first show that constraining variational parameters

to follow an annealing schedule leads to a highly suboptimal
expected energy, but the latter is considerably improved after
optimizing all angles starting from this annealing schedule.
However, random initialization combined with extrapolation from
a modest p= 5 ultimately seems to outperform these techniques.
Numbers supporting these statements are provided in the
captions of the figures. Around level p= 100, the relative
improvement over random assignment is of order 10−1, meaning
90% of the achievable improvement over random has been

Fig. 5 Comparison of random and extrapolated variational parameters initialization (absolute turn-based encoding, inversion-about-
the-mean mixer). For random initialization, 50 independent initializations were considered. a Success probability of QAOA optimized from
random or extrapolated initialization. b Optimal γ angles. c Optimal β angles.

Fig. 4 Entropy of self-avoiding walk distribution sampled from QAOA for increasing number of layers (12-step walk, inversion-about-the-
mean mixer, absolute turn-based encoding). a Collision entropy. b Shannon entropy.
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achieved. Note that the improvement of the expected total energy
(Lennard–Jones potential and clash penalization) over random
assignment is more important than the improvement of the
expected energy in the absence of clashes (Lennard–Jones
contribution only). We attribute this to the efficiency of the
ansatz at suppressing clashes; this is illustrated by additional
numerical results in the Supplementary Material. Finally, similar to
the self-avoiding walk study, we explicitly illustrate the merit of
variational parameters extrapolation; the numerical results are
reported in the same appendix. As a more concrete representation
of our results, we report in Fig. 7 the most frequent valid or invalid
conformations sampled by the QAOA ansatz. We also show the
lowest-energy conformations and their probabilities of being
sampled; the discretized conformation space has exactly 59,049
conformations.
While the Lennard–Jones potential (with the penalty for

clashes) is the cost function used to build and optimize the
QAOA ansatz, other metrics can be used to evaluate conforma-
tions sampled from the ansatz once trained. A possibility is to
consider the full energy distribution of the sampled conforma-
tions. The latter is represented as a histogram in Fig. 8 for
different ansatz depths p. Several summary metrics may be
extracted from this distribution. We propose a specific figure of
merit that allows for a fair comparison between QAOA and
random guessing. Consider a depth-p trained QAOA ansatz
sampling N possible solutions labeled by an integer x ∈ [N] and
ordered by decreasing order of probability. Denoting by qxð Þx2½N�
the probability distributions of the solutions (qx is decreasing by
definition), let

PrandomðqÞ :¼ 1� 1�
1þmin x 2 ½N� : P

0�y�x
qy � q

( )

N

0
BBBB@

1
CCCCA

p

:

(10)

The above is easily seen to be the probability of obtaining a
solution among the level q quantile after p attempts of random
guessing. On the other hand, the probability of obtaining such a
solution by sampling from the QAOA ansatz is, by definition, q.
The motivation behind this comparison is that p queries (either
classical or quantum) are made to the cost function in both cases.

One may then consider the ratio of success probabilities q
PrandomðqÞ; it

is greater than 1 iff. QAOA gives an advantage over random
guessing. This quantity is represented in Fig. 9 for p ∈ {2, 3, 8, 62}.
The figures show that QAOA outperforms random guessing

only for small quantiles q, with a very mild maximum ratio 6.6.
Furthermore, note that our metric does not account for the
queries to the cost function required to train the ansatz. Factoring
these queries in would effectively void the advantage; on the
other hand, the training might be avoided provided one could
guess good enough (not necessarily optimal) variational para-
meters. Finally, all these results ultimately depend on the
parameter optimization protocol; it may be that the variational
parameters we found are highly suboptimal, explaining the
modest performance of QAOA on the problem instances
considered.

DISCUSSION
In this work, we investigated the feasibility of sampling low-
energy lattice-based peptides using a well-studied variational
quantum algorithm: the Quantum Approximate Optimization
Algorithm (QAOA). The choice of this cost-function-dependent
algorithm was motivated by its better trainability compared to
cost-function-agnostic algorithms considered in earlier works. The
performance of QAOA was first evaluated on a highly simplified
version of the peptide folding problem, reduced to sampling a
self-avoiding walk. The algorithm showed promising results in this
setting, though uncertainties remain as to the fairness of the
sampling and the scaling of the success probability for large (not
classically simulatable) problem sizes. In contrast, there is strong
empirical evidence that QAOA can be efficiently trained on this
simple formulation of the problem, addressing an important
practical challenge of the algorithm. QAOA achieved more mixed
results on the full lattice-based peptide folding problem. While it
still produces valid (self-avoiding) conformations with high
probability, it struggles to find low-energy instances among these
even at high depth (~100) and for a very small peptide (four
amino acids). These results may either point to instrinsic
limitations of QAOA (reachability deficit at low depth) or to a
shortcoming of our training protocol. These negative results could
indicate that QAOA should be applied to constraint satisfaction

Fig. 6 Expected conformation energy achieved by QAOA for increasing ansatz depth and different angle optimization strategies. For
random and annealing initializations, large p parameters (random initialization: p ≥15; annealing initialization: p ≥48) were exclusively
obtained by initializing the optimizer with variational angles extrapolated from lower p angles. For random initialization, 50 independent
initializations are considered. For both methods, extrapolation was performed from p= 5 and the best angles were retained between the
extrapolated and non-extrapolated results. a Total energy. b Energy given the absence of clashes.
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problems rather than discretized continuous or mixed optimiza-
tion problems.
The formulation of lattice-based peptide folding used in this

work is limited and could be generalized in several ways. For
instance, it is not strictly necessary for the atoms to lie on a
tetrahedral lattice and one may consider different bond lengths
and angles for consecutive pairs of atoms. One could also increase
the number of degrees of freedom per bond (e.g., more dihedral
angles or variable bond lengths); such generalizations may be
hard to investigate on current quantum emulators (due to higher
qubit requirements) but should be considered when large-scale
fault-tolerant quantum computers are available. Finally, in a
different direction to the quantitative energetic view adopted in
this work, it may be worth applying quantum optimization
algorithms to qualitative peptide scoring functions derived from
knowledge-based approaches.

METHODS
Encoding a conformation in qubits
In the framework considered here, a self-avoiding walk or peptide
conformation is sampled by preparing a quantum state and
measuring it in a computational basis; the measured bitstring
encodes a specific protein conformation. Several approaches exist
to encode a protein conformation in a bitstring, see ref. 10 for a
review. Here, we use the turn-based encoding, introduced in this
previous study and used in many subsequent works on quantum
algorithms for protein folding9,11–13,38.
The turn-based encoding represents each chain (backbone and

side chains) of the peptide as a sequence of turns. Precisely, each
atom of the chain is described by its relative position with respect
to the previous atom in the chain; for a lattice-based protein
model, the allowed relative positions are finite and correspond to
the basis vectors of the lattice. Each turn can then be digitally

Fig. 7 Sample conformations generated by the algorithm (reported energies simply account for the simple Lennard–Jones potential
used in this work and may differ from predictions by more sophisticated methods). Clashes refer to atoms (including H) from either the
backbone or side chains occupying the same tetrahedral lattice site as detailed in “Methods”. a Most frequent conformations. b Most frequent
invalid conformations. c Lowest-energy conformations sampled by the algorithm.
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encoded into a finite number of bits, and the sequence of these
turns (for all chains) is therefore represented as a bitstring.
In this work, we consider the lattice protein model described in

ref. 9, where atoms lie on a regular tetrahedral lattice. As
discussed by the authors, such a choice may be justified by the
interbond and dihedral angles commonly observed in physical
conformations. However, we note that due to limited resources
on quantum hardware or simulators, the previous work
eventually modeled the protein as a sequence of amino acids
and not at the finer-grained atomic level. Now, while the choice
of a tetrahedral lattice favors realistic geometries when modeling
the protein atom by atom, it is not obvious that this property
persists when coarse-graining the protein at the amino acid level.
In contrast, in this work, the conformation of the protein is
described by the positions of all heavy atoms from the backbone
chain. This has the advantage of facilitating comparison between
the conformations generated by the quantum algorithms and
the ones produced by classical methods such as molecular

Fig. 8 Energy distribution of conformations sampled from QAOA ansatz for p∈ {0, 8, 62} (p= 0 corresponds to a uniformly random
conformation); Emin ¼ �36:69kcal:mol�1 is a lower bound for the Lennard–Jones potential obtained by minimizing all pairwise
interactions independently (in particular, all physical conformations have strictly higher energy). Random initialization strategy for
variational parameters. For p= 0, example conformations from different areas of the histogram are represented. a p= 0 (random assignment).
b p= 8. c p= 62.

Fig. 9 Comparison of QAOA and random guessing for sampling a
conformation in the q quantile of the QAOA distribution. The
represented metric is essentially the ratio between the number of
random guessing attempts and the number of QAOA sampling
attempts to obtain a conformation pertaining to a given quantile of
the QAOA distribution.
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dynamics and metadynamics. On the flip side, this choice
requires more encoded turns, hence more qubits, restricting us
to smaller proteins than in ref. 9. Besides, even for the trivial
peptide size (2-4 residues) considered in this work, the limited
number of qubits available on classical simulators of quantum
computers restricts us to modeling heavy atoms from the
backbone chain, factoring out lighter atoms (H) and all side
chains (see “Problem Hamiltonian” for details).
We now precisely describe the turn-based encoding used in

this work. Our proposal is a slight modification from the one in
ref. 9, where the non-backtracking constraint is automatically
enforced.
In this previous work, each turn on the tetrahedral lattice is

represented by an integer k∈ {0, 1, 2, 3}, which can be encoded
using 2 (binary encoding) or 4 (unary encoding) bits. In this work,
we retain the binary encoding to limit the number of required
qubits; therefore, each turn is encoded in a ququart (consisting of
two qubits). The interpretation of the integer as a turn direction
depends on the parity of the turn index (Fig. 10). More precisely,
for an even turn index, integer k∈ {0, 1, 2, 3} encodes a turn
direction opposite to the direction it encodes for an odd turn
index; following ref. 9, the former and latter directions are
respectively denoted by k and k on the figure. A chain is then
represented by a sequence of integers k∈ {0, 1, 2, 3} and the non-
backtracking condition amounts to requiring that consecutive
integers in the sequence be distinct. Besides, note, as discussed in
ref. 9, that one may without loss of generality fix the values of the
first two turns thanks to the rotational symmetry of the tetrahedral
lattice. We call this encoding backtracking encoding as it a priori
allows the chain to backtrack on itself, so that non-backtracking
must be enforced by soft, penalty-based constraints.
Here, we propose a slightly more economical encoding (as

measured by the dimension of the space of encoded configura-
tions), whereby each turn is encoded by an integer k0 2 f0; 1; 2g.
Given the value of the previous turn and the non-backtracking
constraint, k0 indexes the allowed values for the current turn. We
will say that k0 encodes the turn in a relative way, whereas in the
encoding described in the previous paragraph, k encoded
absolute turns. The explicit mapping between the relative and
absolute encoding of the turns is given in the Supplementary
Material. We call this different turn-based encoding non-
backtracking. It has the advantage of automatically enforcing
the non-backtracking condition, removing the need for a penalty
term softly imposing this constraint in the Hamiltonian.

Sampling self-avoiding walks with QAOA
We describe here the implementation of a self-avoiding walk
sampler using QAOA.
A walk on the square lattice is represented by a turn-based

encoding as described in the relevant section of “Methods”. We
considered both the absolute (four directions) and the relative
(three directions) encodings.
Concerning the choice of classical Hamiltonian to be

minimized via QAOA, one requires a function which is easily

implementable as a quantum circuit and minimal iff. the
configuration is a self-avoiding loop. We propose to use the
Hamiltonian (in a schematic form)

H ¼ number of self crossingsþ λ ´ distance between walk endpointsð Þ2;
(11)

where λ > 0 is a penalty coefficient. It is easily seen that the second
term can be implemented using O n2ð Þ two-qubit Z rotations
R̂zzðθÞ :¼ e

iθ
2ZiZj and depth OðnÞ. More precisely, we can encode

each turn in two qubits, where the first qubit represents the
horizontal direction and the second qubit the vertical one. The
variation of horizontal and vertical coordinates between the
endpoints of the walk can then each be expressed as a sum of Zi.
Therefore, the distance squared between the endpoints will be a
sum of terms ZiZj. The first term is more challenging and can for
instance be implemented by computing the pairwise distances
between all sites of the walk. This can be done with O n2ð Þ gates
and depth O n log nð Þ using efficient quantum arithmetic39. In
both cases, the depth grows slower than the number of sites
Ω n2ð Þ as operations can be parallelized between all pairs (i, j); this
is achieved by graph edge coloring, whereby a coloring with n
colors can be efficiently computed classically40.
Alternatively, one may have chosen a boolean function taking

value 0 iff. the walk is a self-avoiding walk and 1 otherwise.
However, arguments similar to the optimality proof of Grover’s
unstructured search algorithm41 show that in this case, this basic
quantum algorithm is guaranteed to perform at least as well as
QAOA. In fact, QAOA will even have a strictly higher runtime as it
requires a classical optimization of the ansatz parameters, which
Grover does not. In contrast, the optimality proof of Grover’s
algorithm does not carry over to Hamiltonians with more than two
energies and therefore leaves open the possibility of sampling
good configurations with high probability by applying QAOA to
Hamiltonian (11), including in constant depth.
While restricting to the Hamiltonian defined in (11), we

considered several candidates for the QAOA mixer (see “The
quantum approximate optimization algorithm”): the standard

QAOA mixer on n qubits e
�iβ

2

P
k2½n�Xk , the qudit QAOA mixer

introduced in ref. 42 and described in “Sampling low-energy

peptide conformations with QAOA”
P

j2½d�e
�iβðjÞ

2 Zj
d þj i þh j Zj

d

� �y
and an “inversion about the mean” mixer e�

iβ
2 þj i þh j. Since the

qudit mixer is a generalization of the “inversion about the mean”
one, the former should always outperform the latter; however, it
also requires to optimize more parameters per layer.
Note that the standard qubit QAOA mixer is only applicable

when the number of encoded turns is a power of two, excluding
the relative turn-based encoding (three encoded turns). The mixer
e�

iβ
2 þj i þh j ¼ 1þ ðe�iβ

2 � 1Þ þj i þh j, which is similar to an inversion-
about-the-mean operator 12n � 2 þj in þh jn, is exactly equivalent to
the mixer based on SWAP operators proposed in ref. 12. More
precisely12, uses a unary encoding of the turns while this work
uses a binary encoding. The SWAP mixer from ref. 12 acts on the
unary encoding in the same way as the inversion-about-the-mean
mixer does on the binary encoding.
Unfortunately, these choices of unitaries mix between valid and

invalid (non-self-avoiding) configurations. It would be interesting
future work to consider alternative mixers that would better
preserve the constrained search space. However, the explicit
construction of such objects is a computationally hard problem in
general, even in the case of linear constraints43.
The variational parameters of the QAOA ansatz were optimized

for the two choices (relative vs. absolute) of configuration
encoding and three choices of mixers (standard qubit mixer,
qudit mixer, “inversion about the mean” mixer). We considered
walks up to 10 steps (encoded on 16 qubits).

Fig. 10 Turn encoding on a tetrahedral lattice. a Even turns. b Odd
turns. c Walk on a tetrahedral lattice.

S. Boulebnane et al.

9

Published in partnership with The University of New South Wales npj Quantum Information (2023)    70 



The penalty coefficient λ in the problem Hamiltonian (11) was
tuned so as to maximize the probability of sampling a valid
configuration for variational parameters minimizing the energy.
More precisely, we optimized QAOA at levels p ∈ {1, 2, 3} for
different values of λ and selected the λ maximizing the
probability of a valid configuration for optimal QAOA angles;
we then used this fixed penalty coefficient for optimization with
further layers. The procedure is illustrated in the Supplementary
Material for a 6-step and 10-step walk; it suggests an optimal
value of 0.2− 0.3 for the penalty coefficient. To facilitate the
parameter search, the γ QAOA angles were rescaled so that the
expected energy achieved by QAOA varied according to the
same length scale in β and γ: the adequate rescaling was
determined from the level-p= 1 optimization landscape and
assumed to carry over to higher depth.
After fixing the penalty coefficient to λ= 0.2, the QAOA ansatz

for the resulting Hamiltonian was optimized at levels 1 ≤ p ≤ 10,
starting in each case from 2000 angles β, γ angles drawn uniformly
from [−2π, 2π]p, [−10π, 10π]p respectively (it is sufficient to restrict
to these intervals given the energies are multiple of λ= 0.2).
Concurrently to this simple random initialization method for the
ansatz, we considered initializing variational parameters at depth
p from extrapolating optimal parameters found at previous levels,
as proposed in ref. 44. In this work, we simply used a linear
extrapolation and applied the method from p= 5. Precisely, this
means that for optimal level-p parameters β*(p), γ*(p), level-(p+ 1)
parameters β(p+1), γ(p+1) are initialized as:

β
ðpþ1Þ
j  β

�ðpÞ
j 0 � j < p

γ
ðpþ1Þ
j  γ

�ðpÞ
j 0 � j < p

βðpþ1Þp  2β�ðpÞp�1 � β
�ðpÞ
p�2

γ
ðpþ1Þ
p  2γ�ðpÞp�1 � γ

�ðpÞ
p�2

8>>>>>><
>>>>>>:

: (12)

Sampling low-energy peptide conformations with QAOA
Mixer layer. The relative turn-based encoding described above
encodes the backbone of the protein into a sequence of registers
taking three possible values. These registers may then be
regarded as qutrits. This suggests to use the mixer for QAOA on
qudits proposed in ref. 42. Applied to qutrits, this mixer depends
on two angles β0, β1 and its action on n− 3 qutrits can be written
as:

UB β0; β1ð Þ :¼ e�
iβ0
2 þj i þh j þ e�

iβ1
2 Z3 þj i þh jZy3 þ Z2

3 þj i þh j Z2
3

� �y� ��ðn�3Þ
(13)

¼ e�
iβ0
2 þj i þh j�

iβ1
2 Z3 þj i þh jZy3

� ��ðn�3Þ
; (14)

where

þj i ¼ 0j i þ 1j i þ 2j iffiffiffi
3
p (15)

Z3 :¼
1 0 0

0 ω 0

0 0 ω2

0
B@

1
CA (16)

ω :¼ e
2πi
3 (17)

In fact, it is often empirically sufficient (see “Sampling self-avoiding
walks with QAOA”) to let β1= 0 in the formula above, with β1 ≠ 0
achieving at best a marginal improvement while making the
variational optimization considerably more difficult. In this case,

the mixer reduces to:

UBðβ0; 0Þ ¼ e�
iβ0
2 þj i þh j

� ��ðn�3Þ
(18)

¼ 13 ´ 3 þ e�
iβ0
2 � 1

� �
þj i þh j

n o�ðn�3Þ
: (19)

The case β0= 2π corresponds to applying an inversion-about-the-
mean operator 13 ´ 3 � 2 þj i þh j to each qutrit; therefore, we will
occasionally refer to this mixer as an “inversion about the mean”
mixer. Note that this differs from the Grover mixers introduced in
ref. 45, where the inversion about the mean acts on all qubits and
not independently on each qudit as here.

Problem Hamiltonian. Having described the problem’s encoding
and the corresponding choice of mixer, it remains to specify the
problem’s cost function. In molecular dynamics, a potential energy
function describing the energy of a molecule is called a force field.
A common choice is the CHARMM force field and its variants46–48.
This empirically fitted potential depends on many degrees of
freedom, including the bond lengths, interbond angles and
dihedral angles and can be calculated on a quantum computer
using quantum arithmetic. Detailed estimates of the needed
quantum resources were derived in ref. 14 based on the systematic
analysis of quantum arithmetic circuits39. The authors calculated
that for an N-atom protein, each of which has Cartesian coordinates
encoded on b qubits, either 19b ancillary qubits and a Toffoli depth
52NðN�1Þ

2 , or 19bN
2 ancillary qubits and a Toffoli depth 51(N− 1) were

required to evaluate the most costly contribution of the force field.
In this work, the highly constrained geometry of discretized

protein conformations does not justify using the complex force field
just described. We therefore focus on the computationally most
expensive part of the force field: the Lennard–Jones potential.
Specifically, we resort to an economically parametrized
Lennard–Jones potential as proposed in ref. 49. The Lennard–Jones
potential can be expressed as a sum of two-body interactions
between all pairs of atoms:

HLennard�Jones :¼
X

atompairsfi;jg
HLennard�Jones;fi;jg; (20)

HLennard�Jones;fi;jg ¼ ffiffiffiffiffiffiffi
εiεj
p r1=2;i þ r1=2;j

ri � rj
		 		

 !12

� 2
r1=2;i þ r1=2;j

ri � rj
		 		

 !6 !

(21)

where ri is the position of atom i and the r1/2,i, εi are parameters
specific to each atom. In the simplest model described in ref. 49:
the HCON model adopted here, r1/2,i and εi only depend on the
nature of atom i (hydrogen, carbon, oxygen, nitrogen). Despite its
simplicity, this model is reported49 to yield quantitatively accurate
molecular dynamics simulations.
In this study, we apply the Lennard–Jones model to short

sequences of alanine amino acids, which are a common bench-
mark for molecular dynamics simulations (see ref. 50); the alanine
tetrapeptide considered in the rest of this section is shown in
Fig. 1 for reference. More precisely, the total energy attributed to a
conformation comprises a Lennard–Jones contribution and a
penalization of clashes (atoms occupying the same sites):

H ¼ HLennard�Jones þ λ ´ number of clashesð Þ; (22)

where λ > 0 is a tunable penalty coefficient. In the equation above,
it is implicitly understood that the HLennard-Jones,{i, j}= 0 for a pair
{i, j} of overlapping atoms. The difficulty is that the potential (22)
must be computed accounting for all atoms from the backbone
and side chains, while the limited number of qubits available on
classical simulators of quantum computers restricts us to encoding
the positions of the heavy atoms (C, N, O) from the backbone
chain. We address this problem by resorting to a partial
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minimization: to each encoded configuration of the heavy atoms
from the backbone chain, we associate the full configuration with
the compatible backbone chain of lowest energy; we then
attribute this energy to the encoded conformation. In optimizing
over positions of atoms side chain atoms, we restricted these to
live on the lattice, though this is not strictly necessary. Finally,
atomic bond distances were always fixed to 1.5Å. This corre-
sponds in order of magnitude to the bond distances observed in
the alanine amino acid of the simple benchmark pentapeptide
introduced in ref. 51. We underline that the sole purpose of this
definition is to make the study of quantum optimization
algorithms tractable with a limited number of qubits (for instance,
a tetrapeptide can be encoded using 20 qubits, a number where
variational optimization of quantum circuits with many layers
remains feasible in classical emulation). In particular, this approach
does not scale up, since the number of discrete variables on which
the partial minimization is carried out (degrees of freedom of side
chains) grows linearly with the number of amino acids; this
implies, a priori, an exponential scaling of the depth of a quantum
circuit realizing this partial minimization. Besides, it is theoretically
unclear, both in general and in this particular case, whether partial
minimization of the cost function degrades or improves the
performance of QAOA.
Finally, we stress that the Lennard–Jones Hamiltonian, either in its

original or partially minimized form, cannot be written as a low-
degree polynomial in qubit variables unlike constraint satisfaction
problems most commonly solved with QAOA. However, it can be
digitally computed using quantum arithmetic (see ref. 14 for more
precise description and resource estimates), and subsequently applied
as a phase oracle. The requirement for complex quantum arithmetic
likely makes the implementation challenging for NISQ devices.

Optimization of variational parameters. Optimizing the variational
parameters of the QAOA ansatz is known to be a hard problem
both computationally52 and in practice44 and has been the subject
of various theoretical53–55 and numerical31,44,56–60 studies. In
particular, finding good parameter initialization strategies is crucial
for optimizing the ansatz, without which a number of optimization
attempts exponential in the number of layers may be required to
reach the global minimum44.
In this study, three parameter initialization strategies were

compared:

● Random initialization: all angles βj, γj are drawn uniformly at
random.

● Quantum annealing schedule: inspired by ref. 57, this method
initializes angles β, γ according to a linear schedule mimicking
a first-order Trotterization of quantum annealing for a time Δt:
βj :¼ � p�j

p Δt, γj :¼ jþ1
p Δt for j∈ [p]. The single parameter Δt is

optimized to minimize the expected energy.
● Quantum annealing initialization: inspired by ref. 57, this

technique uses the linear schedule previously described as the
starting point of unconstrained optimization.

All three methods can be combined with variational parameters
extrapolation as described in the case of the self-avoiding walk
above. To facilitate the classical optimization of variational
parameters β, γ by gradient descent, the latters were rescaled so
that the cost function assumes comparable gradients along all
directions. This was practically done by visual inspection of the
optimization landscape of the p= 1 QAOA; besides the rescaling,
the angles were restricted to encompass the local minimum of the
QAOA energy closest to (β0, γ0)= (0, 0). Note there is no guarantee
that this is the global minimum —in fact, we conjecture it is not.
An illustration is given in the Supplementary Material. This scaling
and domain restriction are then generalized to higher QAOA levels
p. Generalizing the rescaling is justified if one assumes optimal
QAOA angles at level p (in the restricted domain) to be dominated
by optimal angles at level p− 1 (in the restricted domain), as

verified in the case of the self-avoiding walk problem in “Sampling
self-avoiding walks with QAOA” (Fig. 5).
Whenever random initial parameters are required (2p angles for

random initialization or single annealing time Δt for optimizing
the annealing schedule), 50 initialization attempts were made to
select the best result. Besides, the penalty coefficient λ in Eq. (22)
was set to 1000; this is, in order of magnitude, the value beyond
which the expected energy achieved by QAOA conditioned on the
absence of clash (see “Sampling low-energy peptide conforma-
tions with QAOA” and particularly Fig. 6) starts to degrade.
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