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Orbital-optimized pair-correlated electron simulations on
trapped-ion quantum computers
Luning Zhao 1✉, Joshua Goings1, Kyujin Shin 2✉, Woomin Kyoung 2, Johanna I. Fuks 3, June-Koo Kevin Rhee3,4,
Young Min Rhee 5, Kenneth Wright 1, Jason Nguyen1, Jungsang Kim1 and Sonika Johri1

Variational quantum eigensolvers (VQE) are among the most promising approaches for solving electronic structure problems on
near-term quantum computers. A critical challenge for VQE in practice is that one needs to strike a balance between the
expressivity of the VQE ansatz versus the number of quantum gates required to implement the ansatz, given the reality of noisy
quantum operations on near-term quantum computers. In this work, we consider an orbital-optimized pair-correlated
approximation to the unitary coupled cluster with singles and doubles (uCCSD) ansatz and report a highly efficient quantum circuit
implementation for trapped-ion architectures. We show that orbital optimization can recover significant additional electron
correlation energy without sacrificing efficiency through measurements of low-order reduced density matrices (RDMs). In the
dissociation of small molecules, the method gives qualitatively accurate predictions in the strongly-correlated regime when running
on noise-free quantum simulators. On IonQ’s Harmony and Aria trapped-ion quantum computers, we run end-to-end VQE
algorithms with up to 12 qubits and 72 variational parameters—the largest full VQE simulation with a correlated wave function on
quantum hardware. We find that even without error mitigation techniques, the predicted relative energies across different
molecular geometries are in excellent agreement with noise-free simulators.
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INTRODUCTION
Finding accurate solutions to the electronic structure problem is of
great importance to various industries, from modeling pharma-
ceutical drug docking1, to designing new materials for light
harvesting and CO2 reduction2, to elucidating reaction mechan-
isms in novel battery materials3. However, the classical computa-
tional resources needed to solve the electronic structure problem
exactly scales exponentially with the size of systems, which limits
routine or practical application to systems with <20 electrons. To
make the problem tractable on classical computers, various
approximate approaches have been developed, each with
different trade-offs between cost and accuracy. These approaches
include density functional theory (DFT)4, coupled cluster (CC)5

methods, density matrix renormalization group methods (DMRG)6,
and quantum Monte Carlo methods (QMC)7. These methods are
routinely applied toward computational chemistry calculations
both in academia and in industry.
Despite the abundance of different classical approximations,

the electronic structure problem is far from being solved. For
example, systems with strongly correlated electronic structure are
notoriously difficult to solve. These systems are commonly
encountered during bond breaking and formation, as well as
when studying systems such as transition-metal-containing
catalysts, large π-conjugated systems, and high-temperature
superconductors. In these cases, approximate approaches may
either fail completely (such as in single-reference methods like
DFT or CC), or will be prohibitively costly (such as in multi-
reference methods like DMRG or QMC). It is possible that
approximate classical approaches will never reliably solve the
strong correlation problem.

In contrast, quantum computation8 has attracted significant
attention for its potential to solve certain computational problems
more efficiently than with classical computers, especially since IBM
launched the first cloud accessible quantum computer and
Google demonstrated quantum advantage9. One of its most
promising applications is to solve electronic structure problems
efficiently10: to illustrate, consider that for a problem containing N
spin orbitals, the number of classical bits required to represent the
wave function scales combinatorially with N, while on a quantum
computer only N qubits are needed. The exponential advantage
offered by quantum computers has motivated a great deal of
research in developing quantum algorithms to solve the electronic
structure problem.
Of these, the variational quantum eigensolver (VQE) algo-

rithm11–15 is designed specifically for current near-term inter-
mediate scale quantum (NISQ) computers. VQE estimates the
ground state of a system by implementing a shallow parameter-
ized circuit, which is classically optimized to variationally minimize
the energy expectation value. The VQE algorithm allows the user
to select the form of the parameterized circuit. This flexibility
allows one to adjust the circuit depth based on the quantum gate
fidelity, number of qubits, and desired accuracy. This makes VQE
especially suitable for the NISQ era.
There is, however, no free lunch and the ability to run shallower

circuits within the VQE comes with two costs. First, the predicted
energy in most cases remains approximate, because the accuracy
depends on the expressivity of the circuit form. Second, one needs
to perform a large number of measurements for VQE. This makes
the choice of the ansatz perhaps the most important building
block in the VQE algorithm. Early demonstrations of VQE on
quantum hardware utilized the physically-motivated unitary
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coupled cluster with singles and doubles (uCCSD) ansatz16–18.
uCCSD is well-known in the quantum chemistry community to be
able to treat strongly correlated systems, while remaining
classically intractable. As such, A. Peruzzo et al.11 used the uCCSD
ansatz in the first VQE demonstration on a photonic quantum
computer to solve for the H2 molecule in a minimal basis. O’Malley
et al.12 performed the same simulations on a superconducting
quantum computer with two qubits. In 2018, Hempel19 et al.
simulated H2 and LiH on a trapped-ion quantum system using
40Ca+ ions. In 2019, McCaskey20 et al. simulated metal hydrides in
a 2-electron, 2-orbital active space using the uCCSD ansatz on
IBM’s superconducting quantum computers with four qubits.
However, going beyond a minimal active space poses difficulties
due to the rapid increase in the number of entangling gates for
the uCCSD ansatz. The number of entangling gates in uCCSD (e.g.,
CNOT) scales as O(N4), where N is the number of qubits. Even the
most efficient implementation of uCCSD circuits contain thou-
sands of entangling gates for small systems21, which makes it
impractical to run on NISQ quantum computers.
Due to the impracticality of the uCCSD ansatz on NISQ quantum

computers, hardware efficient ansatzes (HEA)13,22–25 have
attracted significant attention. Compared to the uCCSD ansatz,
HEAs need significantly shallower circuits. In 2017, researchers
from IBM published the first study13 of using HEAs on super-
conducting quantum computers to simulate H2, LiH, and BeH2

with 2, 4, and 6 qubits. However, noise in the quantum processing
unit (QPU) led to unphysical behavior in the predicted dissociation
curve. In 2019, the same researchers26 use HEAs to demonstrate
quantum error mitigation using the zero-noise extrapolation
technique with 4 qubits. In 2021, researchers27 used HEAs to
study thermally activated delayed fluorescence (TADF) with 2
qubits on superconducting quantum computers. They found that
without using an unscalable error mitigation approach, even a
2-qubit circuit yields qualitatively inaccurate predictions to the
relative energy.
The largest VQE simulation performed on quantum hardware so

far is the Hartree-Fock (HF) study by Google14, in which they used
a superconducting quantum computer to simulate the HF wave
function for hydrogen chains up to 12 qubits and 72 entangling
gates. However, the calculations faced a considerable amount of
hardware noise, necessitating the use of Hartree-Fock specific
error mitigation techniques to achieve sufficiently accurate results,
which does not apply for non-HF wave functions. A more recent
study by Google28 simulated a cyclobutene ring on a super-
conducting quantum computer with up to 10 qubits using pair-
correlated wave functions. Here, the ansatz was classically pre-
optimized on a simulator, leaving the final energy evaluation to be
executed on the quantum device. Despite this, this calculation still
required classical error mitigation techniques to achieve reason-
able results for the final quantum energy evaluation.
Trapped-ion quantum computers have several advantages over

other currently available quantum computing architectures. First,
the gate fidelity for trapped-ion qubits is typically higher than for
superconducting qubits, which enables users to run deeper
circuits. Second, trapped-ion qubits are all-to-all connected. This
means one is able to entangle arbitrary pairs of qubits without

performing expensive SWAP operations to entangle non-adjacent
qubits, which is usually required on systems with interactions that
do not form a complete graph. Although both of these
advantages should lead to higher fidelity when running VQE
circuits, implementations of VQE on trapped-ion quantum
computers are rare, and this is mainly due to comparatively
limited availability of the trapped-ion quantum computing
hardware versus superconducting quantum computers. In this
work, we fill this gap by performing VQE simulations on two
generations of trapped-ion quantum computers constructed by
IonQ, Inc.
We consider an approximate ansatz derived from the uCCSD

ansatz: the unitary pair CCD (upCCD) ansatz, in which only paired
double excitations are retained. This allows us to map the
fermionic representation to electron pairs, known as the hard-core
boson representation. From this, we show that the unitary pCCD
ansatz then requires half the number of qubits to encode the state
vector as compared to the uCCSD ansatz. We then introduce the
optimal circuit for implementing an arbitrary electron pair
excitation in terms of the number of CX gates. The energy
expression for the upCCD ansatz is derived, and we find that at
most 3 circuits are needed to compute the energy expectation
value, regardless of the size of the system. The shallow circuit
structure, along with a constant low number of measurements
required, make the upCCD ansatz a perfect candidate on NISQ
quantum computers.
The accuracy of the upCCD ansatz depends on the choice of the

underlying orbitals. Previous studies on similar wave functions
have found that it is necessary to optimize the orbitals along with
the cluster amplitudes, especially for strongly correlated systems.
In this work, we find that the orbital optimization effects can be
incorporated through classical post-processing, and only requires
the measurements of one- and two-body reduced density
matrices (RDM) of the upCCD ansatz on the quantum device. In
our experiments, we observe that failure to use orbital optimiza-
tion results in highly non-physical energy predictions in the bond-
dissociation regime, but physical behavior can be fully recovered
by optimizing orbitals together with parameters in the upCCD
ansatz. Due to the symmetry of the upCCD ansatz, the energy
measurements automatically yield the required measurements for
RDMs. This allows us to improve the expressivity of the ansatz,
especially for strongly correlated systems without increasing the
circuit depth on the quantum computer. In Table 1, we list a
collection of techniques used in the study, with inventions in this
work marked in italic. Our result (see Table 2) is the largest full VQE
demonstration on a QPU using a correlated wave function.
The paper is structured as follows. We begin by introducing the

upCCD ansatz, then discuss the mapping from electron pairs to
Pauli matrices, and an efficient quantum circuit implementation of
the ansatz. We then derive the energy expression for the upCCD
ansatz. Having laid out the general formalism, we then introduce
the orbital optimization of upCCD using RDMs and the Newton-
Raphson algorithm. Results are presented on quantum simulators
and IonQ’s Harmony and Aria quantum computers for potential
energy surface predictions of LiH, H2O, and Li2O molecule. All the
VQE experiments on simulator and quantum computers are end-

Table 1. Techniques and their corresponding effects used in the paper.

Technique Effect Previous work

Electron Pair→ Bosons Reduce number of qubits by a factor of 2 15

Givens Rotation with Magic Gate Most efficient Givens rotation implementation in terms of CX gates 50

Hamiltonian Grouping 3 circuits per energy measurements regardless of system size 51

Measurement of RDMs 3 circuits for all 1- and 2-RDMs regardless of system size this work

Orbital Optimization with Newton-Raphson Increase circuit expressivity without increasing depth this work
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to-end VQE runs, which means we perform both parameter
optimizations and final energy evaluations. We conclude with a
summary of our findings and comments on future directions.
Readers are strongly encouraged to read “Methods” section

before “Results” section. In “Methods” section, we describe the
details of the quantum computer hardware used to run VQE and
the specifics of the molecular models used to generate the
quantum simulation circuits. We heavily use the notations defined
in “Methods” section throughout “Results” section.

RESULTS
The VQE algorithm and circuit
The unitary pair Coupled Cluster double (upCCD) ansatz is

ΨupCCD

�� i ¼ eT�Ty HFj i (1)

in which T is the pair-double cluster operator, defined as

T ¼
X
ia

tai a
y
aαa

y
aβaiβaiα (2)

in which i and a are indices for occupied and unoccupied orbitals
in the HF state. aypα (aypβ) and apα (apβ) are the Fermionic creation
and annihilation operators in the pth spin up (down) orbital.
Each exponentiation of the pair-excitation operator can be

efficiently implemented with the following circuit in Fig. 1,
Once the circuit is defined, one needs to measure the energy

expectation value hΨupCCDjHjΨupCCDi for the second-quantized
Hamiltonian H. Originally, there are O(N4) terms in H, in which N is
the number of qubits. However, a majority of them do not

contribute to the energy since they break pair symmetry. After
eliminating these terms, one finds that only 3 measurements are
needed in the X, Y, and Z basis respectively to compute the
energy, regardless of the system size.
The upCCD ansatz defined in Eq. (1) is not invariant to the

choice of underlying orbitals. Previous studies29–32 on similar
wave functions have found that it is necessary to optimize the
orbitals along with the cluster amplitudes, especially for
strongly correlated systems. The orbital optimized upCCD
ansatz is

Ψoo�upCCD

�� i ¼ eKeT�Ty HFj i (3)

in which there are two different sets of parameters: (1) circuit
parameters in the cluster operator T; (2) orbital rotation
parameters in the the orbital rotation operator K, which is defined
as

K ¼
X
p>q

X
σ

Kpqðaypσaqσ � ayqσapσÞ (4)

where K is an anti-Hermitian matrix and σ indexes the spin.

Table 2. Comparison between this work and previous publicly-reported VQE chemistry simulations on QPUs.

Year Ansatz System # Qubits # Parameters 2QGEa Full VQE? Error
Mitigation?

Hardware
Vendor

2022 oo-upCCD [this
work]

Li2O 12 72 12 Yes Yes IonQ

2022 upCCD28 Cyclobutene Ring 10 25 25 No Yes Google

2022 uCCSD52 CH�
3 6 4 7 No Yes Quantinuum

2022 YXXX53 oxazine derivatives 4 1 N/Ab Yes (superconducting), No
(trapped-ion)

Yes IBM,
Quantinuum

2022 uCCSD-PBC54 crystalline iron
model

2 1 2 Yes Yes IBM

2022 Entang.
Forging55

H3S
+ 6 8 19 No Yes IBM

2022 Entang.
Forging56

H2O 5 3 11 Yes Yes IBM

2021 HEA3 LiH (dipole
moment)

4 16 9 Yes Yes IBM

2021 HEA27 TADF 2 4 1 Yes Yes IBM

2021 qubit CC34 H10 2 3 1 No Yes IonQ

2021 HEA57 Li2O4 model 2 4 1 Yes Yes IBM

2020 Hartree-Fock14 H12 12 36 72 Yes Yes Google

2020 upCCD15 H2O 3 3 6 Yes No IonQ

2019 HEA26 LiH 4 20 9 Yes Yes IBM

2019 reduced uCC20 NaH, KH, RbH 4 3 8 No Yes IBM, Rigetti

2018 uCCSD19 LiH 3 2 4 Yes No UInn

2018 uCCSD44 H2 (excited states) 2 1 1 Yes No UCB, LBNL

2017 HEA13 BeH2 6 30 5 Yes No IBM

2016 uCCSD12 H2 2 1 2 No (scan) No UCSB

2014 uCCSD11 HeH+ 2 6 1 Yes No Univ. of Bristol

a2QGE: 2-qubit gate equivalents.
bThe authors did not provide this in their paper.

Fig. 1 A quantum circuit that implements the Givens rotation. S
and Sdagger are the phase gate and its inverse. H is the Hadamard
gate. RyðθÞ is the single qubit rotation gate by angle θ around the
axis. Entangling gates are CNOT gates.
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As shown in the Methods section, we find the optimal set of
orbital rotation parameters Kpq with the Newton-Raphson (NR)
algorithm, in which the energy gradient and Hessian are
measured on the quantum computer. Then, the effect of orbital
rotation operators can be fully absorbed into one- and two-
electron integrals through integral transformation, which is done
efficiently on classical computers. Therefore, although doing
orbital optimization increase the number of variational parameters
significantly, it does not increases the complexity of the quantum
experiments since both the circuit depth and the number of
measurements remain the same. However, it has been shown
before29 that optimizing these parameters is not a trivial task for
classical optimizers, so that measuring them accurately on the the
quantum computer will be crucial for a successful optimization.

Experimental examples
All the calculations and experiments were performed using IonQ’s
in-house quantum chemistry library, which facilitates the prepara-
tion and execution of quantum variational algorithms on IonQ’s
cloud simulators and QPUs. We used the PySCF33 software suite to
compute the molecular integrals necessary to define the second-
quantized Hamiltonian, as well as compute the classical FCI
reference energies.
We begin with our bond dissociation results with a simple

example, the LiH molecule. The system has only two valence
electrons. We freeze the Li 1s orbital, and also exclude the
molecular orbitals formed with Li’s 2px and 2py orbitals since they
do not contribute to the correlation energy due to symmetry. By
doing so we only need 3 qubits and the VQE circuits consists of
only 4 CX gates. In Fig. 2, we compare the energy predicted by
FCI, upCCD, and oo-upCCD. As shown in the plot, both upCCD
and oo-upCCD provide accurate energy predictions for the
molecule when the bond distance is less than or equal to the
equilibrium bond length (1.6 Angstrom). We refer to these as
“squeezed” and “equilibrium” geometries. On the other hand,
when we begin to extend the Li-H bond beyond the equilibrium
bond length, what we refer to as the “stretched” geometry, the
energy error not only increases to tens of millihartrees, but it also
exhibits a “hump” in the potential energy surface (PES). Such a
non-physical behavior is primarily due to the break down of the
mean-field picture in bond breaking scenarios. To the contrary,
the oo-upCCD energy prediction matches FCI in both equilibrium
and the stretched regions, which demonstrates the importance of
orbital optimization.

We then move from simulators to quantum hardware. In Figs. 3
and 4, we show the results obtained from IonQ’s Harmony
quantum computer. The system has 11 all-to-all connected qubits,
and the averaged single and two-qubit gate fidelities are 99% and
98%. It has been used in numerous applications, including
quantum chemistry15,34, quantum machine learning35,36, and
finance37,38. Due to the limited machine time, instead of scanning
the entire PES, we selected a few points from squeezed,
equilibrium, and stretched geometries. As shown in the plot, the
energy measured on noisy quantum hardware is much higher
than the simulation results. However, we also find that the amount
of error is consistent along the PES. Based on such an observation,
we shifted all the measured energies by a constant (−0.0762
Hartree). By doing so, the shifted energies matches well with the
exact energy. This is notable especially with the stretched
geometry R= 3.0 Angstrom, in which the shifted energy falls on
the simulated PES of oo-upCCD, demonstrating that the orbital
optimization effects are successfully captured by the quantum

Fig. 2 Dissociation of LiH in STO-3G basis set comparing upCCD,
oo-upCCD, and FCI. VQE results are obtained from a noise-free
quantum simulator. The error bars correspond to finite sampling
error of ±1σ.

Fig. 3 Dissociation of LiH in STO-3G basis set comparing oo-
upCCD VQE results obtained from the IonQ Harmony and Aria
quantum computer and FCI. The error bars correspond to finite
sampling error of ±1σ.

Fig. 4 Energy difference with respect to FCI for the dissociation of
LiH in STO-3G basis set. The top (a) shows the raw energy
difference from FCI, while the bottom (b) shows the energy
difference from FCI when shifted by an empirical constant scalar.
VQE results are obtained from the IonQ Harmony and the IonQ Aria
quantum computer. The error bars correspond to finite sampling
error of ±1σ.
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hardware. Although the shifted energies can be considered a form
of error mitigation, we note that the exact shift requires the
availability of noiseless simulation results, which is generally not
the case for circuits that are not classically simulatable. Therefore,
one should think of the shift as merely a way to demonstrate that
the relative energies—which are of more utility in practice—are
still accurate despite the presence of noise.
Lastly, we ran the same simulation on IonQ Aria: IonQ’s latest

generation quantum computer and the results are shown in Figs.
3 and 4. IonQ Aria offers both more qubits and improved gate
fidelities over IonQ Harmony. We find that the improved gate
fidelities reduces the amount of error in energy by 38%. Once
shifted (by −0.047 Hartree), the relative energy also matches the
exact energy within statistical uncertainty. The improvements
from Harmony to Aria are not very large in this case due to the
simplicity of the circuit, which contains only 4 CX gates. For the LiH
calculations conducted on Harmony and Aria, the average
deviations from the ideal oo-pUCCD simulations are found to be
7.6 ± 4.6 millihartrees for Harmony, and 2.6 ± 7.5 millihartrees
for Aria.
Our next example is the symmetric double dissociation of H2O,

as shown in Supplementary Fig. 4 for results obtained on the
simulator. We only freeze the O 1s core orbital and keep all other
orbitals in the active space. The total number of qubits required is
6 and there are 16 CX gates in the circuit. Again, oo-upCCD
produces highly accurate energies compared with FCI. However,
unlike LiH, in which oo-upCCD matches FCI exactly, in H2O we find
the predicted energy error for oo-upCCD is about 20 millihartrees,
especially when we are in the stretched geometry. The error is due
to the omission of the un-paired excitations in the oo-upCCD
ansatz. However, we also note that without orbital optimization,
the upCCD ansatz using the HF orbitals yields more than 200
millihartrees of error in energy, again emphasizing the importance
of orbital optimization. For the H2O calculations conducted on
Aria, the average deviation from the ideal oo-pUCCD simulations is
found to be 5.6 ± 10.8 millihartrees.
Before running the circuit on quantum hardware, we first

remove redundant parameters from the ansatz. The redundant
parameters are the circuit parameters that do not contribute to
the energy, and their amplitudes stay zero during the optimization
process. For the H2O molecule, an example of redundant
parameters are the amplitudes that correspond to pair excitations
from the non-bonding orbital. In this study, we identify redundant
parameters by tracking the evolutions of parameter amplitudes on
a noise-free simulator, with all parameters started from zero.
Parameters whose amplitudes stay at zero during the entire
optimization process are identified as redundant parameters. It is
worth noting that such an approach does not scale as the system
size, and the running time on simulator becomes prohibitively
expensive. Fortunately, there exist scalable approaches for
identifying and simulating only non-redundant parameters, such
as the gradient based selection used for the ADAPT-VQE17

method.
Upon removal of redundant parameters, we are able to reduce

the circuit to contain 4 circuit parameters and 8 CX gates. We then
performed the oo-upCCD simulation on IonQ’s Aria quantum
computer, and the results are shown in Fig. 5. The simulation is
done on two geometry points: one at the equilibrium geometry
and the other one at the stretched geometry. We find that the Aria
quantum computer successfully finds the optimal parameters and
captures the orbital optimization effects. Similar to LiH, the noise
on the hardware introduce a systematic, positive bias to the
measured absolute energy, but such a bias is constant at different
geometry points. Once we shift the absolute energies by a
constant, the energies match the ones measured on a noise-free
simulator, which demonstrates that the hardware noise is
consistent enough so that the predicted relative energies are
accurate.

Our final example is the symmetric dissociation of the Li2O
molecule. Li2O is one of the secondary reaction products in
lithium-air batteries, which is believed to be a candidate for next-
generation lithium battery due to its high energy density. We
freeze the 1s orbital for Li and O, resulting in a circuit with 12
qubits and 64 CX gates. The results on an ideal simulator are
shown in Supplementary Fig. 5. The difference in energy
between oo-upCCD and FCI becomes more noticeable than in
LiH and H2O. Such a difference is expected since the size of the
Hilbert of Li2O is much larger than that of LiH and H2O, which
means that there are a lot more electronic configurations that
break electron pairs in Li2O, and these configurations will
contribute to the correlation energy. Due to the pair-
approximation made by oo-upCCD, these configurations are
neglected, which then leads to a much larger amount of error
v.s. FCI. Again, we find that orbital optimization does not make
any noticeable amount of difference in equilibrium geometry,
but becomes crucial in stretched geometries.
We then performed the oo-upCCD simulation on the Aria

quantum computer. Analogous to H2O, we first identify and
remove redundant parameters. In this example we find that only 6
out of the 32 circuit parameters are non-redundant. Therefore, we
only implement and optimize these 6 circuit parameters (12 CX
gates) on the quantum hardware, with an additional 66 orbital
rotation parameters, for 72 variational parameters total. The
results are shown in Fig. 6 at two geometry points: one at the
equilibrium geometry and another one at the stretched geometry.
For the Li2O calculations conducted on Aria, the average deviation
from the ideal oo-pUCCD simulations is found to be 4.0 ± 9.7
millihartrees. Similar to the case of H2O, we find that despite
hardware noise, the predicted relative energy matches the
simulator’s prediction, and the orbital optimization effects are
successfully captured by Aria.

DISCUSSION
Quantum computers are expected to be able to efficiently solve
the electronic structure problem. In principle, the electronic
energy can be exactly computed in polynomial time using
quantum phase estimation (QPE)39 or its iterative variant40. In
contrast, the best equivalent classical algorithm (full configuration
interaction, or FCI) scales exponentially. In QPE, one implements
the time propagator U ¼ expð�iHtÞ on the quantum computer
and operates it on an efficiently prepared trial state. Assuming the

Fig. 5 Dissociation of H2O in STO-3G basis set comparing oo-
upCCD VQE results obtained from the IonQ Aria quantum
computer and a noise-free simulator. The error bars correspond
to finite sampling error of ±1σ.
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trial state has sufficient overlap with the exact eigenstate Ψij i, the
exact eigenstate’s energy is encoded in the phase of the wave
function since U Ψij i ¼ expð�iEitÞ Ψij i. The phase can be extracted
using the quantum Fourier transform (QFT).
While the QPE algorithm can compute the energy levels of

molecules exactly, it is impractical on current NISQ computers. In
the NISQ era, quantum gates are noisy, and entangling gates are
typically an order of magnitude lower in fidelity compared to
single qubit gates. This means that one can only perform a limited
number of quantum operations to ensure that the results are
distinguishable from noise. This poses a significant difficulty for
the QPE algorithm, as the implementation of the time propagator
is very expensive and yields deep quantum circuits. QPE
algorithms without using the time propagator, such as qubitiza-
tion41–43 have also been developed with improved scaling, but the
fact remains that neither algorithm results in circuits that are
shallow enough to run on quantum computers without error-
corrected qubits.
We therefore focus on VQE, an algorithm expressly designed for

NISQ computers. Here, we have developed an efficient VQE
algorithm that is able to run on near-term quantum computers
with high accuracy. The algorithm employs a chemically-inspired
ansatz based on the unitary pair coupled cluster doubles (upCCD)
wave function. The upCCD ansatz is obtained from the general
unitary-CCSD ansatz by retaining only paired double excitations.
This allows us to condense electron pairs to the hard-core boson
representation and develop an efficient quantum circuit imple-
mentation that only requires 2 CX gates to implement one
excitation. Since the accuracy of the upCCD ansatz depends on
the underlying orbital choice, we developed an orbital optimiza-
tion algorithm that finds the variationally optimal set of orbitals
automatically. We find that orbital optimization can be imple-
mented efficiently by measuring one- and two-body RDMs on a
quantum computer and computing integral transformations on a
classical computer.
We tested the oo-upCCD VQE approach on the bond

dissociation pathways for LiH, H2O, and Li2O molecule on both
quantum simulators and IonQ’s Harmony and Aria quantum
computers. We find that on quantum simulators, oo-upCCD gives
qualitatively accurate predictions to energy both in the weakly
correlated and strongly correlated regime. However, upCCD
without orbital optimization produces unphysical behavior in
the strongly correlated regime. On quantum hardware, we
observed that noisy quantum gate operations yield a consistent

positive bias for the energy. Such a consistent bias has also been
observed before28. In order to understand this, we have
performed simulations with both coherent and incoherent noise
models on quantum simulators. We find that if the error rate is low
enough (below 1%), both error models produce a constant
additive error for different molecular geometries, which aligns
with the error rate of the Harmony and Aria quantum computers.
The simulation results can be found in the Supplementary Note 8.
Therefore, although the measured absolute energies can be
higher than simulator results by hundreds of millihartrees, the
relative energies measured are accurate due to the consistency of
errors across the PES (i.e., low non-parallelity error).
As with other seniority zero approaches, oo-upCCD proves

effective for describing some strong electron correlations but is
unable to deliver quantitative accuracy, a difficulty that may in
future be addressed in two different ways. First, one may consider
implementing the full unitary-CCSD ansatz with quantum circuits,
and pay the price of ending up with very deep circuits that are not
practical to run on NISQ devices, even with the most efficient
compilation techniques. A more practical way is to trade-off circuit
depths with measurements and employ approaches such as the
quantum subspace expansion (QSE)44,45. QSE will be able to solve
two problems at the same time: (1) account for correlations
contributed from non-bosonic excitations. and (2) account for
correlations contributed from orbitals that are outside of the
active space. QSE is able to achieve these two goals without
increasing circuit depth, by just performing more measurements
to compute higher order RDMs.
In order to achieve quantitative accuracy on a noisy quantum

computer using VQE, one would inevitably perform some form of
error mitigation. Over the past few years, various error mitigation
methods have been developed, such as noise extrapolation26,
density matrix purification14,20, symmetry verification46, rando-
mized compiling47, and noise-estimation48. We believe that an
efficient VQE approach combined with measurement based post-
processing and noise estimation is a very promising route that
harvests the most performance out of near-term quantum
computers. Together with continued improvements in quantum
hardware, both in terms of qubit number and qubit quality, we
will soon see quantum simulation of molecules and materials that
surpasses the best classical supercomputers.

METHODS
Trapped-Ion quantum computer
The experimental demonstration was performed on two gen-
erations of quantum processing units (QPU) from IonQ: Harmony
and Aria. Both QPUs utilize trapped Ytterbium ions where two
states in the ground hyperfine manifold are used as qubit states.
These states are manipulated by illuminating individual ions with
pulses of 355 nm light that drive Raman transitions between the
ground states defining the qubit. By configuring these pulses,
arbitrary single qubit gates and Mølmer-Sørenson type two-
qubit gates can both be realized. The IonQ Aria QPU features not
only an order of magnitude better performance in terms of
fidelity but also is considerably more robust compared to the
IonQ Harmony QPU49.

upCCD circuit design
From the electron pair excitation operators, we can define the pair
creation and annihilation operators

dya ¼ ayaαa
y
aβ

di ¼ aiβaiα
(5)

in which ai and ayi are the fermionic annihilation and creation
operators on orbital i. α and β indicate spin up and spin down.

Fig. 6 Dissociation of Li2O in STO-3G basis set comparing oo-
upCCD VQE results obtained from the IonQ Aria quantum
computer and a noise-free simulator. The error bars correspond
to finite sampling error of ±1σ.
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They follow bosonic symmetries

½dya; di� ¼ 0

½di; dj � ¼ ½dya; dyb� ¼ 0
(6)

By performing the Jordan-Wigner Transformation (JWT) to map
molecular orbitals to qubits, the pair creation and annihilation
operators becomes

dya ! 1
2 Xa � iYað Þ

di ! 1
2 Xi þ iYið Þ (7)

The pair-excitation operator becomes

dyadi !
1
4

XaXi þ iXaYi � iYaXi þ YaYið Þ (8)

As one can see from the above equation, after JWT, the pair
excitation operator does not have the Pauli-Z strings that occur in
general double excitations, due to its bosonic nature.
The exponential of the pair-excitation operator, subtracted by

its complex conjugate, becomes

exp tai ðdyadi � dyi daÞ
� �

¼ exp itai
2 ðXaYi � YaXiÞ

� �
: (9)

One can then show that this is the Givens rotation matrix

1 0 0 0

0 cos tai
2

� �
� sin tai

2

� �
0

0 sin tai
2

� �
cos tai

2

� �
0

0 0 0 1

0
BBBBB@

1
CCCCCA

(10)

As has been shown before50, the Givens rotation matrix belongs
to the SO(4) group, which can be implemented in 12 elementary
(i.e., Ry, Rz) gates and 2 CX gates using the magic gate basis shown
in Fig. 7.
The efficient Givens rotation implementation with angle θ is

then given at Fig. 1, in which only two CX gates are required.

Hamiltonian and energy measurements
Since the upCCD ansatz conserves electron pairs, the terms in the
ab initio Hamiltonian that break electron pairs do not contribute
to energy. After removing these terms, the Hamiltonian can be
written as

H ¼ H1ðnpÞ þ H2ðdypdqÞ (11)

in which the first term only depends on the number operator

np ¼ aypap !
1
2
ð1� ZpÞ; (12)

and so it can be measured in the computational basis.
The second term only depends on the pair excitation operator

defined in Eq. (8). Furthermore, we note that the two middle terms
in it are associated with purely imaginary coefficients, which do
not contribute to energy, so that this term can be measured with
all qubits in either the X or Y basis. In summary, only 3 circuits are
needed to be run in order to measure the energy expectation
value for the upCCD ansatz, compared with a number of
measurements that scales as O(N4) (where N is the number of

orbitals) if no symmetry is exploited, independent of the size of
the system. This makes the upCCD ansatz extremely efficient in
terms of number of measurements.

Orbital optimization based on measurements
The orbital optimization effects can be performed classically with
integral transformation. Consider the energy expectation value of
the oo-upCCD ansatz.

E ¼ hΨupCCDje�KHeK jΨupCCDi (13)

where K is an anti-Hermitian operator defined in Eq. (4). We first
organize the elements of the lower triangle of K into the length-d
vector κ, where

d ¼ ðno þ nvÞðno þ nv � 1Þ=2 (14)

Starting from initial orbitals (κ= 0), we expand the energy out to
second order in κ to obtain

EðκÞ � Eð0Þ þ κTωþ 1
2
κTQκ (15)

where the length-d energy gradient ω and the d × d energy
Hessian Q are given by

ωx ¼ ∂EðκÞ
∂κx

Qxy ¼ ∂2EðκÞ
∂κx∂κy

(16)

which in turn are functions of the spinless one- and two-electron
reduced density matrices (RDM)

γpq ¼ hΨjaypαaqα þ aypβaqβjΨi
Γqspr ¼ hΨj 12 aypαaqαayrαasα þ 1

2 a
y
pβaqβa

y
rβasβ þ aypαaqαa

y
rβasβjΨi

(17)

Since the spinless RDMs are in the form of expectation values,
they can be measured on the quantum computer, and since we
only need 1- and 2-RDMs, the cost for measuring them is the same
as measuring the energy. Using ω and Q, we can choose a κ that
reduces the energy using the Newton-Raphson (NR) method,

κ ¼ �Q�1ω (18)

At this point, κ becomes nonzero, and the energy expectation
value of the oo-upCCD ansatz is written in Eq. (13). There are two
ways to compute it. The first one is to implement eK ΨupCCD

�� i with
a quantum circuit. However, one could see that doing so would
dramatically increase the circuit depth due to the additional
unitary operator eK. The second way is what we take in this study.
Instead of implementing eK ΨupCCD

�� i, we first compute

~H ¼ e�KHeK (19)

since K is anti-Hermitian only contains one-body operators, such a
transformation could be computed efficiently on classical
computers through standard integral transformation. The detailed
expression of ~H could be found in the Supplementary Note 4.
With ~H, the energy expectation value becomes

hΨupCCDj~HjΨupCCDi. As one could see, now κ becomes zero again
since its effects have been absorbed into the Hamiltonian. At this
point, another NR step can be taken, and the method can be
iterated to convergence. In this way, since κ is always zero, we do
not need to implement it with quantum circuits. The VQE
algorithm is shown in Algorithm 1, and the detailed expressions
for the orbital gradients and Hessians in terms of 1- and 2-RDMs,
as well as an example of VQE convergence with respect to
optimization iterations, can be found in the Supplementary Note 4
and 7.

Fig. 7 A quantum circuit that implements the transformation to
the Magic gate basis. S and Sdagger are the phase gate and its
inverse. H is the Hadamard gate. CNOT Entangling gatesare gates.
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Algorithm 1. VQE Algorithm for oo-upCCD
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