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Qubit-controlled directional edge states in waveguide QED
Prasanna Pakkiam 1✉, N. Pradeep Kumar1, Mikhail Pletyukhov 2 and Arkady Fedorov1

We propose an in-situ tunable chiral quantum system, composed of a quantum emitter coupled to a waveguide based on the Rice-
Mele model (where we alternate both the on-site potentials and tunnel couplings between sites in the waveguide array).
Specifically, we show that the chirality of photonic bound state, that emerges in the bandgap of the waveguide, depends only on
the energy of the qubit; a parameter that is easy to tune in many artificial atoms. In contrast to previous proposals that have either
shown imperfect chirality or fixed directionality, our waveguide quantum electrodynamics scheme achieves both perfect chirality
and the capability to switch the directionality on demand with just one tunable element in the device. We also show that our model
is easy to implement in both state-of-the-art superconducting circuit and quantum dot architectures. The results show
technological promise in creating long-range couplers between qubits while maintaining, in principle, zero crosstalk.
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INTRODUCTION
Engineering interactions between distant quantum emitters
mediated by photons travelling in a 1D waveguide is crucial for
building large scale quantum networks1. In particular, realising
chiral light-matter interaction that results in unidirectional
emission and scattering of photons can enable routing of
quantum information between different nodes2 and can also aid
in on-chip integration of non-reciprocal devices such as single-
photon diodes, transistors, circulators and amplifiers3–6. Further-
more, such chiral interactions has far reaching applications in
probing complex many body quantum states7–9. Remarkable
experimental progress has also been made in realizing such
interactions in a variety of waveguide quantum electrodynamics
(wQED) platforms. More specifically, in nanophotonic waveguides
such as nanofibers and photonic crystals, spin-momentum locking
between quantum emitters and the guided modes has led to the
observation of asymmetric spontaneous emission of photons10,11.
Distinctly different chiral quantum phenomenon has also been

demonstrated in superconducting qubits coupled to a 1D lattice
that realizes the photonic analog of the SSH model9,12,13. Here, the
presence of qubit acts as a domain wall and thereby breaks the
chiral symmetry of the chain. When the qubit energy lies in the
bandgap of the waveguide, it induces a photonic bound states
that is akin to an edge state and decays to either ends of the
waveguide depending on the location of the qubit in the unit-cell.
Note that these edge states are static photonic wavefunctions as
opposed to moving currents seen in other edge states such as
those in 2D topological insulators. Several proposals has also been
reported to achieve in−situ tunable chiral photonic states which
would then enable on-demand routing of quantum information in
a network. To this end, a wQED platform based on a giant atom
coupled to Josephson metamaterial has been proposed in ref. 14.
Here, the chiral bound state stems from the interference due to
the non-local interaction induced by the giant atoms at different
location in the waveguide. However, in order to flip the direction
of the photon decay, one has to either tune the coupling between
the qubit and the waveguide or dynamically alternate the
impedance of the waveguide which is cumbersome in an
experimental set-up.

In this work we propose a different chiral quantum system that
utilizes just one frequency tunable qubit to switch the chirality of
the (either photonic or electronic) bound state on-demand. In our
model the waveguide is implemented by periodically modulating
the on-site potentials and the hopping energy between the sites.
Such a waveguide resembles the Rice-Mele model that can
support both uni-directional and bi-directional edge states at
different energies15. Furthermore we show that the directionality
of these edges states can be switched by simply tuning the
transition frequency of an artificial atom coupled to a defect site in
the chain. In contrast to the previous proposal of ref. 14, our model
offers the conditions where the states are perfectly directional
with mathematically zero value of the wave-functions of the
bound states on the ‘wrong’ side of the waveguide. We provide a
detailed analysis by considering realistic experimental conditions
such as finite nature of the device as well coupling to
measurement leads. Moreover, we suggest two possible experi-
mental realization of out wQED model that can be readily
implemented using superconducting quantum circuits and
quantum dot devices.
In addition to directional bounds states, there has been active

research to develop chiral photonic interactions using giant
atoms16,17. The tunable nature of these interactions arises by
utilizing the non-local system topology, the nonlinear nature of
the emitters as well as parametrically modulating the coupling
between the two emitters. These proposals are used to generate
directional emission and absorption of photons in the passband of
the waveguide which can potentially used for transfer of quantum
states, as well as the generation and manipulation of stabilizer
codes for quantum error correction. Our proposal use static bound
states in the stopband which has promise in realising long-range
inter-qubit interactions while minimising crosstalk between
adjacent qubits.

RESULTS
Directional edge states in Rice-Mele waveguide
Our goal is to create an in-situ tunable directional edge state that
has all its population along one direction of the array while having
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zero population along the other direction. Before we discuss how
to tune the directionality, it is useful to review the chiral edge
states supported by the Su-Schrieffer-Heeger (SSH) model18. As
discussed in Supplementary Note 1, an SSH chain is an array of
sites with alternating tunnel couplings t1 and t2 (with t2 > t1). This
arrangement naturally introduces an energy spectrum that has
two clusters of states with a large band gap in between. If every
site has an adjacent site to which it is strongly tunnel coupled
(that is, t2), then no edge states occur and the band gap remains
with no states. However, if there is a lonely site that is not tunnel
coupled to another site with the stronger t2, an edge state (rooting
from the lonely site) with the desired directionality forms in the
band gap. Many proposals to date have realised the edge states.
However, the shortcomings are either in their sheer complexity
(like giant atoms14 or multiple qubits8) or the inability to switch
the direction of the edge state in-situ13.
Here, we propose a simpler approach that leads to the ability to

switch the direction of the edge state by only varying the on-site
potential of the tunable qubit site rooting the edge state. To
create such a directional edge state, the intuitive approach is to
merge two SSH chains to a central site. To point the edge-state
along a given direction, we need to zero the population on the
adjacent node on one side (to realise no edge-state in that
direction like in Supplementary Fig. 1a) while letting the adjacent
node on the other side have a non-zero population to spawn an
edge-state (like in Supplementary Fig. 1b). However, the SSH
model alone does not have enough degrees of freedom to tune
the direction as there is no physical characteristic to differentiate
both chains with respect to the central site. To circumvent this
problem, we use a more general Rice-Mele model where the on-
site potentials are alternated to break the inversion symmetry
between both directions15.
As shown in Supplementary Note 2, the tunable qubit needs to

be side-coupled to a central site which joins the two Rice-Mele
chains as shown in Fig. 1a. We couple the two Rice-Mele chains to
the central site equally to have the resulting directional edge
states symmetric when pointing leftward and rightward (see
Supplementary Note 5 for more details). Additionally, this
coupling is chosen to be the weaker t1 to maximise the population
away from the centre (qubit). As before, the on-site potentials
must be different to break the inversion symmetry of the structure
to enable directional edge states.
To get insight into operation of this device it is sufficient to

consider just the four central sites highlighted in Fig. 1a via the
Hamiltonian:

Hy�cell ¼

VQ �tQ 0 0

�tQ VC �t1 �t1
0 �t1 �V 0

0 �t1 0 V

0
BBB@

1
CCCA; (1)

where the basis states (for the labelled sites) are Qj i, Cj i, Lj i and
Rj i. This approximation holds (upon an appropriate renormalisa-
tion of the hopping t1) when the qubit state exists within a large
band gap opened by the two Rice-Mele chains as discussed in
Supplementary Note 8. Figure 1b summarises the resulting energy
spectrum observed when sweeping VQ; the derivation of the
features are given in Supplementary Note 4. We can switch
between the leftward and rightward edge-states (sketched in the
inset figures) tQ Lj i � t1 Qj i and tQ Rj i � t1 Qj i by rapidly sweeping
VQ past the anti-crossing at VQ= 0. Note that the sweep rate must
be faster than the anti-crossing gap: 2Vffiffi

2
p � tQt1 with the gap closing

when tQ→ 0 where the qubit is completely decoupled. The other
corresponding states on the anti-crossing are bidirectional and lie
near E= 0 as seen by their finite components in both Lj i and Rj i
(again sketched in the inset). The two states near E ¼ ±

ffiffiffi
2

p
t1 are a

part of the band states whereupon the remaining states of the
Rice-Mele chains begin to appear as shown later in Fig. 1c.

Given the basic operation of the Y-structure, consider the full
Hamiltonian of the Y-structure coupled to both Rice-Mele chains
as described in Fig. 1a is:

Hy ¼ �tQ Mj i Nh j þ VQ
2 Nj i Nh j

� V
2 NLj i NLh j þ V

2 NRj i NRh j � t1
PNR

m¼2p
mj i mþ 1h j

þH1;p
RM þ HMþ1;p

RM þ h:c:

(2)

where the Hermitian conjugate applies to all listed terms. Here the
length of the Rice-Mele chain is 2p. That is, p is the number of pairs
of sites coupled adjacently via t2. The index of the central site is
M= 2N+ 2, with the adjacent site to the left being NL=M− 1, the
adjacent site on the right being NR=M+ 1, while the qubit site is
on N= 4p+ 4 (and incidentally the dimension of this Hamilto-
nian). Note that given p pairs, the dimension of the space spanned
by Hm;p

RM is 2p. The first two lines of the equation represent the
central four sites interlinked via the tunnel couplings t1 and
modulating on-site potentials ± V (the factor of a half is due to the
Hermitian conjugate). The qubit is tunnel-coupled via tQ to the
central site and has an on-site potential of VQ. The Hamiltonians
for the two interlinking Rice-Mele chains connecting to the central
four sites are given via the tridiagonal matrix (when adding the
Hermitian conjugate):

Hn;p
RM ¼ V

2

P2p
l¼1

ð�1Þl nþ l � 1j i nþ l � 1h j

� t2
Pp
l¼1

nþ 2l � 2j i nþ 2l � 1h j

� t1
Pp
l¼1

nþ 2l � 1j i nþ 2lh j:

(3)

Here, the first line represents the modulating on-site potentials,
while the last two lines represent the modulating tunnel
couplings.
A numeric simulation of the Hamiltonian given in Eq. (2) is

shown in Fig. 1c with 10-cell Rice-Mele chains. The eigenspectrum
shows the band-gap along with the two expected gap states.
When switching between VQ= ± V, the edge-state flips direction
as seen by observing the corresponding eigenstates in Fig. 1d.
Note that the edge-states are unidirectional with exactly zero
probability on one side. The edge-state only has non-zero
probability from the qubit-site onwards as expected from the
4-site model. This is in contrast to the tunable chiral quantum
system proposed in ref. 14 where the chirality is not perfect and
there is a finite probability of finding the photon on both the
directions. Finally Fig. 1e shows how we can exploit the switchable
edge states to have adjacent either qubits interact when the edge
states face each other like the two on the left13. Similarly, adjacent
qubits can have zero crosstalk when their edge states face away
from one another like the two on the right.

Influence of measurement ports
The previous section introduced a Y-configuration that enables
complete directional toggling of population along either side of
the Rice-Mele chain. When running experiments to verify the
presence of the edge states, the typical measurement will involve
coupling the two edges of the chain to measurement ports. The
influence of the ports on the resulting edge-states must be
properly understood and thus, we apply the Green’s function
transport formalism19,20. First one has to write down the
Hamiltonian for the Y-configuration with some finite Rice-Mele
chains and then to add the non-hermitian self-energy terms Σn to
the on-diagonal terms on sites n to account for the influence of
the measurement ports. To see this explicitly, consider Hy with
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ports attached to the left most side 1 and the right most site N:

H0
y ¼ Hy � iΓð 1j i 1h j þ Nj i Nh jÞ; (4)

where we take the couplings Γ to be equal on both ports. The
corresponding Green’s function as a function of the energy ℏω is:

GðωÞ ¼ ðωIN � H0Þ�1
; (5)

where IN is the identity matrix. Taking Gab to be the matrix
component (a, b) in G(ω), we can write down the ports’ transport
transmission and reflection coefficients via the Fisher-Lee
relations19,21:

Sab ¼ δab � 2iΓGab; (6)

where we opt to use the reverse sign convention for clarity.
Noting that the physical S-parameters (that is, measured ratio
of RF signals or DC currents entering or leaving the ports19) are
given as jSabj2 argðSabÞ, we can numerically calculate the
physical scattering parameters via the above relations. None-
theless, by exploiting symmetries, we provide exact analytic
solutions for this Hamiltonian in Supplementary Note 8. As the
solutions are algebraically cumbersome, we shall focus on the

edge-states that occur at ω= VQ when VQ = ± V. In this case,
the transmission SN1 = 0. The reflectances when the edge-state
faces port 1 are:

S11 ¼ �1; VQ ¼ �V (7)

SNN ¼ � 1þ i 2V
Γwf

1� i 2V
Γwf

; VQ ¼ �V ; (8)

while the reflectances with the edge-state facing port N are:

S11 ¼ � 1þ i 2V
Γwf

1� i 2V
Γwf

; VQ ¼ V (9)

SNN ¼ �1; VQ ¼ V (10)

That is, the reflectance undergoes a relative π phase shift and
reflects completely when probing an edge-state directed towards
the measured port. Note that in the isolated regime where Γ→ 0,
the reflectance of the opposite port is measured to remain at 1,
which is the expected value given that there is no population near
this port. However, we see that as Γ→∞, the opposite port also

Fig. 1 Proposed Rice-Mele Y-coupler for qubits. The switching of the edge state is done by simply tuning the on-site potential of the qubit
site. a Layout of the Rice-Mele coupler where a central site (in white) couples two Rice-Mele chains which have a modulating on-site potential
(orange and blue for+ V and− V) and modulating tunnel coupling (t1 and t2 with t2 > t1). The qubit separately couples to the central site via
tunnel coupling tQ with itself having a tunable on-site potential VQ. We term each strongly coupled pair of sites a ‘unit cell’ and the Rice-Mele
chains each have p unit cells. The sites for the effective 4-site model in Eq. (1) are labelled Q, C, L and R. b Energy spectrum of the proposed
Rice-Mele Y-model, shown in a with V= VR=− VL. The eigenstates producing the leftward and rightward edge-states are tQ Lj i � t1 Qj i and
tQ Rj i � t1 Qj i and occur at VQ=− V and VQ= V respectively (shown by the blue and orange circles) as highlighted by sketched population on
the two inset diagrams (with white for finite population while black for zero population). The remaining two eigenstates produce a
bidirectional population spread as shown in the top-left and bottom-right inset diagrams. c Numeric simulation of the eigenvalues produced
by the full coupler design described in Eq. (2). The simulation takes V= 37.5 MHz, t1= 120MHz, t2= 150MHz and tQ= 62.5 MHz. There are
p= 10 unit cells on both Rice-Mele chains. The spectra are plotted for both VQ= ± V. The non-shaded region indicates the band-gap which
contains two gap states. The encircled edge states correspond to the operating points shown in b. d Occupation probabilities exposing the
edge-states when taking the respective eigenvectors from the spectrum in c. Note that the occupation probability is zero on one side for both
directional edge-states. The qubit site 44 has been omitted for clarity, while the site indices are enumerated from 1 to 43 from the most
leftward site to the most righward site (so 22 is the central site). e An example multi-qubit array where multiple edge states can be made to
either overlap (finite interaction) or have zero crosstalk by simply switching the qubits’ on-site potentials.
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yields the same phase in the reflected signal. That is, stronger
coupling to the ports yields less chirality in the edge states as any
macroscopic wavefunction will undergo greater losses to the
ports. Note that wf is the measure of edge state wavefunction’s
decay from the beginning to end of the Rice-Mele chain. In the
limit where the states are away from the edges of the band-gap,

with the band-gap being large, we can approximate this term as:

wf � t22 � t21
t22ðt2t1Þ2p � t21

: (11)

Thus, for a small Rice-Mele chain where p is small, wf tends to unity
and the reflectance is limited by Γ. When p is large, wf tends to
zero as there is appreciable decay of the edge state leading to
near zero population on the edge sites (1 or N). Thus, the Γ term is
overcome, yielding a lower port coupling, to give a reflection of 1.
Figure 2a shows the changing SNN when probing an edge-state

facing port 1. It is once again clear that when Γ is increased, the
reflectance moves about the semi-circle from SNN= 1 to SNN=− 1.
In doing so, the local density of states (LDOS) shifts (details of its
calculation are given in Supplementary Note 10) from a strongly
chiral edge-state with all population exclusively on the left hand
side to being on sides. The interpretation is that when a strongly
coupled port makes site N starts to dominate the adjacent tunnel
coupling Γ≫ t2 (thereby, making a large energy cost to occupy
site N), the site N− 1 starts to become isolated from site N. Thus,
like in Fig. 1 in Supplementary Note 1, an edge-state forms from
site N. A similar edge state does not form from site 2 as it is
effectively zeroed on this site by the main edge-state from the
central site. We can now define a simple chirality factor:

χ ¼
PM�1

n¼1 PnPN
n¼Mþ1 Pn

; (12)

where Pn is the occupation probability at site n given the LDOS. By
definition, χ=∞ when there are no ports. When increasing Γ to
move from SNN= 1 to SNN=− 1, the resulting change in chirality is
shown in Fig. 2b. The chirality drops quadratically until it settles at
a steady-state value whereupon the central edge-state and the
edge-state at port N settle to the limit where the port coupling
fully isolates site N− 1.

Implementation
The proposed structure for a switchable edge state can be
implemented either as photonic edge-states in circuit quantum
electrodynamics (cQED) or electronic edge-states in conventional
quantum dot system. This section highlights the details in design
and implementation for both platforms.
The Y-structure and the associated Rice-Mele chains can be

implemented using cQED elements. An example implementation
of a p= 4 Y-structure in Fig. 3a is shown in Fig. 3b. We implement

Fig. 2 Numeric simulation demonstrating the edge-states pro-
duced by the Y-structure when probing the reflectance on port 1
and N. The simulation takes V= 37.5 MHz, t1= 120MHz,
t2= 150MHz and tQ= 62.5 MHz. There are p= 10 cells of Rice-
Mele chains. The leftward edge-state is initialised via VQ=− V.
a Here Γ is varied and the left panel shows the trajectory of SNN on
the Argand plane on increasing Γ. For four selected values of Γ, the
resulting LDOS are plotted alongside (the qubit site is omitted in
this plot for clarity). It is clear that the chirality of the wavefunction is
slowly eroded with increasing Γ as population. In addition, the
contrast used to distinguish the edge-state by comparing S11 and
SNN is also diminished. b Plot of associated chirality χ as the port
coupling Γ is increased. The resulting edge-state spawning near port
N causes a loss in chirality χ.

Fig. 3 Implementing the Rice-Mele Y-coupler using cQED elements. The individual sites are formed with resonators while the tunnel
couplings are implemented with coupling capacitors. a A simple coupled using chains with p= 4 cells. Site 20 has a tunable on-site energy.
b Implementing the structure shown in a using cQED elements. Each site m has a resonator comprising of a capacitor Cm and inductor Lm (not
labelled for clarity). The resonant frequencies alternate with the on-site potentials (shown via the larger and smaller capacitances for smaller
and larger on-site potentials respectively). The tunnel couplings are implemented via capacitors Cm,n. The capacitances Cm,n are also shown to
alternate to account for the modulating t1 and t2 (being smaller and larger capacitances respectively). The tunable element is implemented via
a flux-tunable Transmon qubit. If this structure is not coupled to other qubits and is just being measured via two ports, the circuit will contain
two transmission lines Σ1 and Σ19 with coupling capacitors c1 and c19.
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each site n with an LC-oscillator (consisting of Cn and Ln) where its
resonant frequency corresponds to the on-site potential. The
tunnel-couplings are achieved via capacitors connecting across
the resonators (Cn;n0 across resonators or sites n and n0). The
tunable side-coupled site (in this example, site 20) is achieved via
a flux tunable Transmon qubit. The resulting edge states are
photonic edge states across multiple resonators. As discussed in
Supplementary Note 6, the corresponding on-site potentials

Vn∈ {V,− V} and tunnel-couplings tn;n0 2 ft1; t2; tQg are:

Vn ¼ _ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LnCnðBÞ

p � _ω0 (13)

tn;n0 ¼ � _
ffiffiffiffiffiffiffiffiffiffiffi
ZnZn0

p
2CnðBÞCn0ðBÞ

Cn;n0 ; (14)

where Cn(B) is the sum total of all capacitances connected to site n
and Zn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CnðBÞ=Ln

p
with the important assumption: Cn;n0 � CnðBÞ.

Since the Rice-Mele chain requires a modulation of positive and
negative energies, we globally offset the on-site energies by ℏω0.
Note that ℏω0 vertically recenters the spectrum in Fig. 1b.
Choosing a global nominal inductance Ln= L0, we can solve for
Cn(B). Thus, we obtain the Cn;n0 for a given tn;n0 . Note that Cn;n0 is
linearly proportional to tn;n0 as shown in Fig. 3. On obtaining all the
Cn;n0 terms, we can finally obtain the resonator capacitances Cn.
Given that the cQED implementation will likely be tested via

probing ports on the end sites (sites 1 and 19 in the example
given in Fig. 3), it is useful to understand the parameters
concerning the coupling of the array to these ports. As discussed
in Supplementary Note 6, the port couplings can be modelled via
the self-energy term given by:

Σn ¼ Δωn � i
κn
2
; (15)

where the frequency shift and photon loss rate are given as:

Δωn � ωnffiffiffiffiffiffiffiffiffiffiffiffi
1þ cn

Cn

q � ωn (16)

κn � c2nR

C2
nLn

; (17)

Note that the idea is that the lead connecting to site n has a
resistance R (typically 50Ω) and a coupling capacitor cn satisfying
the limit cn≪ Cn. Additionally, note that Γn= κn/2. Supplementary
Note 7 shows the SPICE simulations done on the model shown in
Fig. 3 to verify the expressions for the individual lumped elements.
Due to the fixed values in the inductors and capacitors, it is

important to consider the effect of fabrication defects on the final
chiralities. As discussed in Supplementary Note 7, numerical
simulations using a modest fabrication precision yielding 1%
variation in V, t1 and t2, yields a spread of χ= 1130 ± 80 for a
typical port-coupled implementation. In the case of no port-
couplings (that is, coupling the chains to adjacent qubits like in
Fig. 1e), the median chirality drops from infinity to be bounded by
the 5th and 95th quantiles as: 48000 (6 × 103, 6 × 106). The
sustained chirality confirms the fact that the states in the band-
gap of a Rice-Mele or SSH waveguide are protected from localised
defects as the wavefunction is macroscopically spread over
multiple sites to effectively average out the effect of defects.
Given that the structure given in Eq. (2) describes a network of

tunnel-coupled sites with individual on-site potentials, a natural
implementation falls directly in quantum dots. The chiral bound
states are now electronic wavefunctions as opposed to the
photonic wavefunctions seen when implementing in cQED. The
required array is compatible with all major quantum dot
platforms.
In the case of gate-defined quantum dots in Fig. 4a (such as

SiGe or CMOS), the tunable tunnel couplings and on-site
potentials enable a fully configurable array that can account for
local defects22,23. Note that the outlined gates require constant DC
biases, provided by DC looms, that can be rapidly tuned once on
startup23–27. Afterwards, the direction of the bound state is rapidly
controlled via DC pulses, sent through wide-band coaxial lines, on
the central gate controlling to the qubit.
Another approach is to use atomic precision STM (scanning

tunnelling microscope) patterned Si-P quantum dots where single

Fig. 4 Implementing the Rice-Mele Y-coupler using quantum
dots. In each case, the outlined gates have constant voltage biases
that are tuned once on startup. To rapidly control the direction of
the bound state on demand, we highlight the single gate that
requires DC pulsing. a Implementation using gate-defined quantum
dots. The p= 4 structure is given in Fig. 3a. The confinement
potential formed by the gates traps the electrons into small
quantum dots. The barrier gates can be used to in-situ tune the
confinement potentials, while the plunger gates enable in-situ
tuning of the on-site potentials. Thus, one may tune the parameters
to form the required Rice-Mele chains. b When using STM patterned
Si-P quantum dots, there is no need for dedicated confinement
gates. The tunnel couplings are set by varying the distances
between the P-donor dots (dots closer together had larger tunnel
couplings), while the on-site potentials are tuned in-situ via the
P-donor gates on the top (dots closer to the gates are tuned more
strongly). Only the gate closest to site 20 is reservoir-coupled to the
dot and is used to load electrons into the array. c The STM-patterned
structure can be modified to provide alternating on-site potentials
via larger 2P-donor dots. In this case, the on-site potentials
dominate the tunnel couplings, whereupon we utilise the large T1
and T�2 times of electron spins in P-donor dots. This regime of
operation is discussed in Supplementary Note 3.
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P-donors are placed within a silicon substrate28–30. The P-donor
dots yield a trapping potential without the need for confinement
gates. To alternate the tunnel-couplings the distances between
the dots are alternated with shorter distances used for the higher
tunnel coupling t2. As shown in Fig. 4b, the on-site potentials can
be alternated by staggering the alternate dots closer to tuning
gates. As dots are typically spaced in the order of 12 nm to create
tunnel-couplings in the order of 10 GHz, the on-site potentials
only need to be tuned to approximately 1 GHz or approximately
4 μeV. Thus, the gates need to be only tuned approximately
100 μV for typical lever-arm α values.
An alternative approach using P-donor quantum dots utilises

the ability to tune the depth of the on-site potentials by placing
another P-donor in the dot (a 2P cluster) like in Fig. 4c. In this case,
depending on the positions of the P-donors in the Si crystal, the
on-site potentials can vary in the order of 1 meV or 200 GHz31. In
such a case, the tunnel-couplings can be feasibly set in the order
of 50 GHz32. Thus, the on-site potentials dominate the tunnel
couplings as in the case discussed in Supplementary Note 3. In
such a case, the edge-state can be tuned to be leftward, rightward
or completely localised to the central qubit dot. Although this
configuration was discouraged earlier, in the case of Si-P dots, the
large electron spin T1 and T�

2 times may make this a desirable
configuration33. That is, the electron spin can be localised and
made to interact with neighbouring qubits on demand with zero
crosstalk to other adjacent qubits.
It should be noted that the outlined proposals for the quantum

dot structures require extra tuning gates (albeit, minimal with the
Si-P implementations) compared to typical multi-qubit architec-
tures. However, these are simply DC tuning gates that are only
required to be tuned once to achieve the long-distance coupling
with zero crosstalk between adjacent qubits. Whereas, a proposal
that uses a normal quantum dot array through which to shuttle
electrons (to mitigate crosstalk via distance) will require multiple
fast-pulse gates34. One notes that fast-pulse gates are more
spatially expensive for they are extra coaxial lines in the dilution
fridge as opposed to a compact DC wire loom.

DISCUSSION
We have shown a general structure that can realise directional
edge states with perfect chirality and in-situ switching via Rice-
Mele chains. The direction can be switched by simply tuning the
on-site potential of a single site; a feat that is easily realised in
both cQED (via flux tuning) and quantum dot implementations
(via gate voltage tuning). We show how our model can be
implemented in cQED via a universal translation recipe that can be
used to implement arbitrary site models using cQED elements. In
addition, we show that the Rice-Mele chains can be implemented
in quantum dot arrays in both the gate-defined and atomically
defined quantum dot platforms. Finally, we provide a complete
analysis of the influence of measurement probes. That is, although
our model has zero crosstalk when coupling adjacent qubits, we
show that there is a marginal loss in chirality when coupling the
array to measurement probes in the case of verifying the
directionality of a single qubit edge state. The overall simplicity
of design and implementation shows promise in realising long-
range inter-qubit interactions while minimising crosstalk between
adjacent qubits.
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