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Sampling frequency thresholds for the quantum advantage of
the quantum approximate optimization algorithm
Danylo Lykov 1,2✉, Jonathan Wurtz3,4, Cody Poole5, Mark Saffman 5,6, Tom Noel 7 and Yuri Alexeev 1

We compare the performance of the Quantum Approximate Optimization Algorithm (QAOA) with state-of-the-art classical solvers
Gurobi and MQLib to solve the MaxCut problem on 3-regular graphs. We identify the minimum noiseless sampling frequency and
depth p required for a quantum device to outperform classical algorithms. There is potential for quantum advantage on hundreds
of qubits and moderate depth with a sampling frequency of 10 kHz. We observe, however, that classical heuristic solvers are
capable of producing high-quality approximate solutions in linear time complexity. In order to match this quality for large graph
sizes N, a quantum device must support depth p > 11. Additionally, multi-shot QAOA is not efficient on large graphs, indicating that
QAOA p ≤ 11 does not scale with N. These results limit achieving quantum advantage for QAOA MaxCut on 3-regular graphs. Other
problems, such as different graphs, weighted MaxCut, and 3-SAT, may be better suited for achieving quantum advantage on near-
term quantum devices.
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INTRODUCTION
Quantum computing promises enormous computational powers
that can far outperform any classical computational capabilities1.
In particular, certain problems can be solved much faster
compared with classical computing, as demonstrated experimen-
tally by Google for the task of sampling from a quantum state2.
Thus, an important milestone2 in quantum technology, so-called
‘quantum supremacy’, was achieved as defined by Preskill3.
The next milestone, ‘quantum advantage’, where quantum

devices solve useful problems faster than classical hardware, is
more elusive and has arguably not yet been demonstrated.
However, a recent study suggests a possibility of achieving a
quantum advantage in runtime over specialized state-of-the-art
heuristic algorithms to solve the Maximum Independent Set
problem using Rydberg atom arrays4. Common classical solutions
to several potential applications for near-future quantum comput-
ing are heuristic and do not have performance bounds. Thus,
proving the advantage of quantum computers is far more
challenging5–7. Providing an estimate of how quantum advantage
over these classical solvers can be achieved is important for the
community and is the subject of this paper.
Most of the useful quantum algorithms require large fault-

tolerant quantum computers, which remain far in the future. In the
near future, however, we can expect to have noisy intermediate-
scale quantum (NISQ) devices8. In this context, variational
quantum algorithms (VQAs) show the most promise9 for the
NISQ era, such as the variational quantum eigensolver (VQE)10 and
the Quantum Approximate Optimization Algorithm (QAOA)11.
Researchers have shown remarkable interest in QAOA because it
can be used to obtain approximate (i.e., valid but not optimal)
solutions to a wide range of useful combinatorial optimization
problems4,12,13.
In opposition, powerful classical approximate and exact solvers

have been developed to find good approximate solutions to

combinatorial optimization problems. For example, a recent work
by Guerreschi and Matsuura5 compares the time to solution of
QAOA vs. the classical combinatorial optimization suite AKMAX-
SAT. The classical optimizer takes exponential time with a small
prefactor, which leads to the conclusion that QAOA needs
hundreds of qubits to be faster than classical. This analysis
requires the classical optimizer to find an exact solution, while
QAOA yields only approximate solutions. However, modern
classical heuristic algorithms are able to return an approximate
solution on demand. Allowing for worse-quality solutions makes
these solvers extremely fast (on the order of milliseconds),
suggesting that QAOA must also be fast to remain competitive.
A valid comparison should consider both solution quality
and time.
In this way, the locus of quantum advantage has two axes, as

shown in Fig. 1: to reach advantage, a quantum algorithm must be
both faster and return better solutions than a competing classical
algorithm (green, top right). If the quantum version is slower and
returns worse solutions (red, bottom left), there is clearly no
advantage. However, two more regions are shown in the figure. If
the QAOA returns better solutions more slowly than a classical
algorithm (yellow, top left), then we can increase the running time
for the classical version. It can try again and improve its solution
with more time. This is a crucial mode to consider when assessing
advantage: heuristic algorithms may always outperform quantum
algorithms if the quantum time to solution is slow. Alternatively,
QAOA may return worse solutions faster (yellow, bottom right),
which may be useful for time-sensitive applications. In the same
way, we may stop the classical algorithm earlier, and the classical
solutions will become worse.
One must keep in mind that the reason for using a quantum

algorithm is the scaling of its time to solution with the problem
size N. Therefore, a strong quantum advantage claim should

1Computational Science Division, Argonne National Laboratory, 9700 S. Cass Ave., Lemont, IL 60439, USA. 2Department of Computer Science, The University of Chicago, Chicago,
IL 60637, USA. 3Department of Physics and Astronomy, Tufts University, Medford, MA 02155, USA. 4QuEra Computing Inc., Boston, MA 02135, USA. 5Department of Physics,
University of Wisconsin - Madison, Madison, WI 53706, USA. 6ColdQuanta, Inc., 612 W. Main St., Madison, WI 53703, USA. 7ColdQuanta, Inc., 3030 Sterling Circle, Boulder, CO
80301, USA. ✉email: dlykov@anl.gov

www.nature.com/npjqi

Published in partnership with The University of New South Wales

1
2
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41534-023-00718-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41534-023-00718-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41534-023-00718-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41534-023-00718-4&domain=pdf
http://orcid.org/0000-0002-2979-2633
http://orcid.org/0000-0002-2979-2633
http://orcid.org/0000-0002-2979-2633
http://orcid.org/0000-0002-2979-2633
http://orcid.org/0000-0002-2979-2633
http://orcid.org/0000-0001-6398-2097
http://orcid.org/0000-0001-6398-2097
http://orcid.org/0000-0001-6398-2097
http://orcid.org/0000-0001-6398-2097
http://orcid.org/0000-0001-6398-2097
http://orcid.org/0000-0002-7732-042X
http://orcid.org/0000-0002-7732-042X
http://orcid.org/0000-0002-7732-042X
http://orcid.org/0000-0002-7732-042X
http://orcid.org/0000-0002-7732-042X
http://orcid.org/0000-0001-5066-2254
http://orcid.org/0000-0001-5066-2254
http://orcid.org/0000-0001-5066-2254
http://orcid.org/0000-0001-5066-2254
http://orcid.org/0000-0001-5066-2254
https://doi.org/10.1038/s41534-023-00718-4
mailto:dlykov@anl.gov
www.nature.com/npjqi


demonstrate the superior performance of a quantum algorithm in
the large-N limit.
This paper focuses on the MaxCut combinatorial optimization

problem on 3-regular graphs for various problem sizes N. MaxCut
is a popular benchmarking problem for QAOA because of its
simplicity and straightforward implementation. We propose a fast
fixed-angle approach to running QAOA that speeds up QAOA
while preserving solution quality compared with slower conven-
tional approaches. We evaluate the expectation value of noiseless
QAOA solution quality using tensor network simulations on
classical hardware. We then find the time required for classical
solvers to match this expected QAOA solution quality. Surprisingly,
we observe that even for the shortest possible time, the classical
solution quality is above our QAOA solution quality for p= 11, our
largest p with known performance. Therefore, we compensate for
this difference in quality by using multishot QAOA and finding the
number of samples K required to match the classical solution
quality. K allows us to characterize quantum device parameters,
such as sampling frequency, required for the quantum algorithm
to match the classical solution quality.

RESULTS AND DISCUSSION
This section will outline the results and comparison between
classical optimizers and QAOA. This has two halves: Section
“Expected QAOA solution quality” outlines the results of the
quantum algorithm and Section “Classical solution quality and
time to solution” outlines the results of the classical competition.

Expected QAOA solution quality
The first algorithm is the quantum approximate optimization
algorithm (QAOA), which uses a particular ansatz to generate
approximate solutions through measurement. We evaluate QAOA

for two specific modes. The first is a single shot fixed angle QAOA,
where a single solution is generated. This has the benefit of being
very fast. The second generalization is multi-shot fixed angle
QAOA, where many solutions are generated, and the best is kept.
This has the benefit that the solution may be improved with
increased run time.
In Section “QAOA performance,” we find that one can put limits

on the QAOA MaxCut performance even when the exact structure
of a 3-regular graph is unknown using fixed angles. We have
shown that for large N, the average cut fraction for QAOA
solutions on 3-regular graphs converges to a fixed value ftree. If
memory limitations permit, we evaluate these values numerically
using tensor network simulations. This gives us the average QAOA
performance for any large N and p ≤ 11. To further strengthen the
study of QAOA performance estimations, we verify that for the
small N, the performance is close to the same value ftree. We are
able to numerically verify that for p ≤ 4 and small N, the typical cut
fraction is close to ftree, as shown in Fig. 6.
Combining the large-N theoretical analysis and small-N heuristic

evidence, we are able to predict the average performance of
QAOA on 3-regular graphs for p ≤ 11. We note that today’s
hardware can run QAOA up to p ≤ 44 and that for larger depths,
the hardware noise prevents achieving better QAOA performance.
Therefore, the p ≤ 11 constraint is not an important limitation for
our analysis.

Classical solution quality and time to solution
The second ensemble of algorithms is classical heuristic or any-
time algorithms. These algorithms have the property that they can
be stopped mid-optimization and provide the best solution found
so far. After a short time spent loading the instance, they find an
initial ‘zero-time’ guess. Then, they explore the solution space and
find incrementally better solutions until stopping with the best
solution after a generally exponential amount of time. We
experimentally evaluate the performance of the classical solvers
Gurobi and MQLib using BURER2002 heuristic and FLIP in Section
“Classical solvers”. We observe that the zero-time performance,
which is the quality of the fastest classical solution, is above the
expected quality of QAOA p= 11, as shown in Fig. 3. The time to
first solution scales almost linearly with size, as shown in Fig. 2. To
compete with classical solvers, QAOA has to return better
solutions faster.
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Fig. 1 Locus of quantum advantage over classical algorithms. A
particular classical algorithm may return some solution to some
ensemble of problems in time TC (horizontal axis) with some quality
CC (vertical axis). Similarly, a quantum algorithm may return a
different solution sampled in time TQ, which may be faster (right) or
slower (left) than classical, with a better (top) or worse (bottom)
quality than classical. If QAOA returns better solutions faster than
the classical ones, then there is a clear advantage (top right), and
conversely, no advantage for worse solutions slower than the
classical ones (bottom left).

Fig. 2 Time required for a single-shot QAOA to match classical
MaxCut algorithms. The blue line shows the time for comparing
with the Gurobi solver and using p= 11; the yellow line shows a
comparison with the FLIP algorithm and p= 6. Each quantum device
that runs MaxCut QAOA can be represented on this plot as a point,
where the x-axis is the number of qubits and the y-axis is the time to
solution. For any QAOA depth p, the quantum device should return
at least one bitstring faster than the Y-value on this plot.
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Multi-shot QAOA
To improve the performance of QAOA, one can sample many
bitstrings and then take the best one. This approach will work only
if the dispersion of the cut fraction distribution is large, however.
For example, if the dispersion is zero, measuring the ansatz state
would return only bitstrings with a fixed cut value. By analyzing
the correlations between the qubits in Section “QAOA perfor-
mance”, we show that the distribution of the cut fraction is a
Gaussian with the standard deviation on the order of 1=

ffiffiffiffi
N

p
. The

expectation value of the maximum of K samples is proportional to
the standard deviation, as shown in Equation (7). This equation
determines the performance of multishot QAOA. In the large N
limit the standard deviation is small, and one might need to
measure more samples in order to match the classical
performance.
If we have the mean performance of a classical algorithm, we

can estimate the number of samples K required for QAOA to
match the classical performance. We denote the difference
between classical and quantum expected cut fraction as Δp(t),
which is a function of the running time of the classical algorithm.
Moreover, it also depends on p since p determines QAOA
expected performance. If Δp(t) < 0, the performance of QAOA is
better, and we need only a K= 1 sample. In order to provide an
advantage, QAOA would have to measure this sample faster than
the classical algorithm, as per Fig. 1. On the other hand, if Δp(t) > 0,
the classical expectation value is larger than the quantum one,
and we have to perform multisample QAOA. We can find K by
inverting Eq. (7). In order to match the classical algorithm, a
quantum device should be able to run these K samples for no
longer than t. We can therefore get the threshold sampling
frequency.

νpðtÞ ¼ K
t
¼ 1

t
exp

N
2γ2p

ΔpðtÞ2
 !

(1)

The scaling of Δp(t) with t is essential here since it determines at
which point t we will have the smallest sampling frequency for
advantage. We find that for BURER2002, the value of Δ(t) is the
lowest for the smallest possible t= t0, which is when a classical
algorithm can produce its first solution. To provide the lower
bound for QAOA, we consider t0 as the most favorable point since
a classical solution improves much faster with time than a multi-
shot QAOA solution. This point is discussed in more detail in the
Supplementary Methods.
Time t0 is shown in Fig. 2 for different classical algorithms. We

note that in the figure, the time scales polynomially with the
number of nodes N. Figure 3 shows the mean cut fraction for the
same classical algorithms, as well as the expectation value of
QAOA at p= 6, 11. These two figures show that a simple linear-
runtime FLIP algorithm is fast and gives a performance on par with
p= 6 QAOA. In this case, Δ6(t0) < 0, and we need to sample only a
single bitstring. To obtain the p= 6 sampling frequency for
advantage over the FLIP algorithm, one has to invert the time
from Fig. 2. If the quantum device is not capable of running p= 6
with little noise, the quantum computer will have to do multishot
QAOA. Note that any classical prepossessing for QAOA will be at
least linear in the time since one must read the input and produce
a quantum circuit. Therefore, for small p < 6, QAOA will not give a
significant advantage: for any fast QAOA device, one needs a fast
classical computer; one might just run the classical FLIP algorithm
on it.
The Gurobi solver is able to achieve substantially better

performance, and it slightly outperforms p= 11 QAOA. Moreover,
the BURER2002 algorithm demonstrates even better solution
quality than does Gurobi while being significantly faster. For both
Gurobi and BURER2002, the Δ11(t0) > 0, and we need to either
perform multishot QAOA or increase p. Figure 4 shows the
advantage sampling frequency ν11(t0) for the Gurobi and

BURER2002 algorithms; note that the vertical axis is doubly
exponential.
The sampling frequency is a result of two factors that work in

opposite directions. On the one hand, the time to solution for a
classical algorithm grows with N, and hence ν drops. On the other
hand, the standard deviation of distribution vanishes as 1=

ffiffiffiffi
N

p
,

and therefore the number of samples K grows exponentially.
There is an optimal size N for which the sampling frequency is
minimal. This analysis shows that there is a possibility for an
advantage with multi-shot QAOA for moderate sizes of
N= 100. . .10 000, for which a sampling frequency of ≈ 10kHz is
required. These frequencies are very sensitive to the difference in
solution quality, and for p ≥ 12, a different presentation is needed
if one quantum sample is expected to give better than classical

Fig. 3 Zero-time performance for graphs of different sizes N. The
Y-value is the cut fraction obtained by running corresponding
algorithms for the minimum possible time. This corresponds to the
Y-value of the star marker in Fig. 5. Dashed lines show the expected
QAOA performance for p= 11 (blue) and p= 6 (yellow). QAOA can
outperform the FLIP algorithm at depth p > 6, while for Gurobi, it
needs p > 11. Note that in order to claim an advantage, QAOA has to
provide zero-time solutions in a faster time than FLIP or Gurobi
does. These times are shown in Fig. 2.

Fig. 4 Sampling frequency required to achieve MaxCut advantage
using QAOA p= 11. The shaded area around the solid lines
corresponds to 90–10 percentiles over 100 seeds for Gurobi and
20 seeds for BURER2002. The background shading represents a
comparison of a quantum computer with the BURER2002 solver
corresponding to modes in Fig. 1. Each quantum device can be
represented on this plot as a point, where the x-axis is the number
of qubits, and the y-axis is the time to solution. Depending on the
region where the point lands, there are different results of
comparisons. QAOA becomes inefficient for large N when sampling
frequency starts to grow exponentially with N.
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solution quality. This is discussed in more detail in Supplementary
Methods.
For large N, as expected, we see a rapid growth of sampling

frequency, which indicates that QAOA does not scale for larger
graph sizes unless we go to a higher depth p > 11. The color
shading shows correspondence with Fig. 1. If the quantum device
is able to run p ≥ 11 and its sampling frequency and the number
of qubits N corresponds to the green area, we have a quantum
advantage. Otherwise, the quantum device belongs to the red
area, and there is no advantage.
It is important to note the effect of classical parallelization on

our results. Despite giving more resources to the classical side,
parallel computing is unlikely to help it. To understand this, one
has to think about how parallelization would change the
performance profile, as shown in Fig. 5. The time to the first
classical solution is usually bound from below by preparation tasks
such as reading the graph, which is inherently serial. Thus,
parallelization will not reduce t0 and is, in fact, likely to increase it
due to communication overhead. Instead, it will increase the slope
of the solution quality curve, helping classical algorithms to
compete in the convergence regime.

Discussion
As shown in Fig. 1, to achieve quantum advantage, QAOA must
return better solutions faster than the competing classical
algorithm. This puts stringent requirements on the speed of
QAOA, which previously may have gone unevaluated. If QAOA
returns a solution more slowly, the competing classical algorithm
may ‘try again’ to improve its solution, as is the case for anytime
optimizers such as the Gurobi solver. The simplest way to improve
the speed of QAOA is to reduce the number of queries to the
quantum device, which we propose in our fixed-angle QAOA
approach. This implementation forgoes the variational optimiza-
tion step and uses solution concentration, reducing the number of
samples to order 1 instead of order 100,000. Even with these
improvements, however, the space of quantum advantage may be
difficult to access.
Our work demonstrates that with a quantum computer of ≈100

qubits, QAOA can be competitive with classical MaxCut solvers if
the time to solution is shorter than 100 μs and the depth of the

QAOA circuit is p ≥ 6. Note that this time to solution must include
all parts of the computation, including state preparation, gate
execution, and measurement. Depending on the parallelization of
the architecture, there may be a quadratic time overhead.
However, the required speed of the quantum device grows
exponentially with N. Even if an experiment shows an advantage
for intermediate N and p ≤ 11, the advantage will be lost on larger
problems regardless of the quantum sampling rate. Thus, in order
to be fully competitive with classical MaxCut solvers, quantum
computers have to increase solution quality, for instance, by using
p ≥ 12. Notably, p= 12 is required but not sufficient for achieving
advantage: the end goal is obtaining a cut fraction better than
≥0.885 for large N, including overcoming other challenges of
quantum devices such as noise.
These results lead us to conclude that for 3-regular graphs

(perhaps all regular graphs), achieving quantum advantage on
NISQ devices may be difficult. For example, the fidelity require-
ments to achieve quantum advantage are well above the
characteristics of NISQ devices.
We note that improved versions of QAOA exist, where the initial

state is replaced with a preoptimized state14 or the mixer operator
is adapted to improve performance15,16. One also can use
information from classical solvers to generate a better ansatz
state17. These algorithms have further potential to compete
against classical MaxCut algorithms. Also, more general problems,
such as weighted MaxCut, maximum independent set, and 3-SAT,
may be necessary in order to find problem instances suitable for
achieving quantum advantage.
When comparing with classical algorithms, one must record the

complete time to solution from the circuit configuration to the
measured state. This parameter may be used in the extension of
the notion of quantum volume, which is customarily used for
quantum device characterization. Our work shows that QAOA
MaxCut does not scale with graph size for at least up to p ≤ 11,
thus putting the quantum advantage for this problem away from
the NISQ era.

METHODS
Both classical solvers and QAOA return a bitstring as a solution to
the MaxCut problem. To compare the algorithms, we must decide
on a metric to use to measure the quality of the solution. A
common metric for QAOA and many classical algorithms is the
approximation ratio, which is defined as the ratio of the cut value
(as defined in Eq. (3)) of the solution divided by the optimal (i.e.,
maximum possible) cut value for the given graph. This metric is
hard to evaluate heuristically for large N since we do not know the
optimal solution. We, therefore, use the cut fraction as the metric
for solution quality, which is the cut value divided by the number
of edges.
We analyze the algorithms on an ensemble of problem

instances. Some instances may give an advantage, while others
may not. We, therefore, analyze ensemble advantage, which
compares the average solution quality over the ensemble. The set
of 3-regular graphs is extremely large for large graph size N, so for
classical heuristic algorithms, we evaluate the performance on a
subset of graphs. We then look at the mean of the cut fraction
over the ensemble, which is the statistical approximation of the
mean of the cut fraction over all 3-regular graphs.

QAOA methodology
Usually, QAOA is thought of as a hybrid algorithm, where a
quantum-classical outer loop optimizes the angles γ, β through a
repeated query to the quantum device by a classical optimizer.
Depending on the noise, this process may require hundreds or
thousands of queries in order to find optimal angles, which slows
the computation. To our knowledge, no comprehensive work

Fig. 5 Evolution of cut fraction value in the process of running
the classical algorithms solving 3-regular MaxCut with N= 256.
The shaded area shows a 90–10 percentiles interval, and the solid
line shows the mean cut fraction over 100 graphs. The dashed lines
show the expectation value of single-shot QAOA for p= 6, 11, and
the dash-dotted lines show the expected performance for multishot
QAOA given a sampling rate of 5 kHz. Note that for this N= 256, the
multi-shot QAOA with p= 6 can compete with Gurobi at 50ms.
However, the slope of the multi-shot line will decrease for larger N,
reducing the utility of the multi-shot QAOA.
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exists on exactly how many queries may be required to find such
angles. It has been numerically observed6,18, however, that for
small graph size N= 12 and p= 4, classical noise-free optimizers
may find good angles in approximately 100 steps, which can be
larger for higher N and p. Each step may need order 103 bitstring
queries to average out shot noise and find expectation values for
an optimizer, and thus seeking global angles may require
approximately 100,000 queries to the simulator. The angles are
then used for preparing an ansatz state, which is, in turn,
measured (potentially multiple times) to obtain a solution.
Assuming a sampling rate of 1 kHz, this approach implies a
QAOA solution of approximately 100 s.
Recent results, however, suggest that angles may be precom-

puted on a classical device19 or transferred from other similar
graphs20. Further research analytically finds optimal angles for
p ≤ 20 and d→∞ for all large-girth d-regular graphs but does not
give angles for finite d21. Going a step further, recent work finds
that evaluating regular graphs at particular fixed angles has good
performance on all problem instances22. These precomputed or
fixed angles allow the outer loop to be bypassed, finding close to
optimal results in a single shot. In this way, a 1000 Hz QAOA
solution can be found in milliseconds, a speedup of several orders
of magnitude.
For this reason, we study the prospect of quantum advantage in

the context of fixed-angle QAOA. For d-regular graphs, there exist
particular fixed angles with universally good performance23.
Additionally, as will be shown in Section “Single-shot QAOA
Sampling”, one can reasonably expect that sampling a single
bitstring from the fixed-angle QAOA will yield a solution with a cut
fraction close to the expected value.
The crucial property of the fixed-angle single-shot approach is

that it is guaranteed to work for any graph size N. On the other
hand, angle optimization could be less productive for large N, and
the multiple-shot (measuring the QAOA ansatz multiple times)
approach is less productive for large N, as shown in Section “Mult-
shot QAOA Sampling”. Moreover, the quality of the solution scales
with a depth of

ffiffiffi
p

p 23, which is faster than with the number of
samples

ffiffiffiffiffiffiffiffiffiffi
log K

p
, instructing us to resort to multishot QAOA only if

a larger p is unreachable. Thus, the fixed-angle single-shot QAOA
can robustly speed up finding a good approximate solution from
the order of seconds to milliseconds, a necessity for advantage
over state-of-the-art anytime heuristic classical solvers, which can
get good or exact solutions in approximately milliseconds.
Crucially, single-shot QAOA quality of solution can be maintained
for all sizes N at fixed depth p, which can mean constant time
scaling for particularly capable quantum devices.
To simulate the expectation value of the cost function for

QAOA, we employ a classical quantum circuit simulation algorithm
QTensor24–26. This algorithm is based on tensor network contrac-
tion and is described in more detail in Supplementary Methods.
Using this approach, one can simulate expectation values on a
classical computer, even for circuits with millions of qubits.

Classical solvers
Two main types of classical MaxCut algorithms exist approximate
algorithms and heuristic solvers. Approximate algorithms guaran-
tee a certain quality of solution for any problem instance. Such
algorithms27,28 also provide polynomial-time scaling. Heuristic
solvers29,30 are usually based on branch-and-bound methods31

that use branch pruning and heuristic rules for variable and value
order. These heuristics are usually designed to run well on graphs
that are common in practical use cases. Heuristic solvers typically
return better solutions than approximate solvers, but they provide
no guarantee of the quality of the solution.
The comparison of QAOA with classical solvers thus requires

making choices of measures that depend on the context of
comparison. From a theoretical point of view, guaranteed

performance is more important; in contrast, from an applied
point of view, heuristic performance is the measure of choice. A
previous work22 demonstrates that QAOA provides better
performance guarantees than does the Goemans–Williamson
algorithm28. In this paper, we compare against heuristic algo-
rithms since such a comparison is more relevant for real-world
problems. On the other hand, the performance of classical solvers
reported in this paper can depend on a particular problem
instance.
We evaluate two classical algorithms using a single node of

Argonne’s Skylake testbed; the processor used is an Intel Xeon
Platinum 8180M CPU @ 2.50 GHz with 768 GB of RAM.
The first algorithm we study is the Gurobi solver29, which is a

combination of many heuristic algorithms. We evaluate Gurobi
with an improved configuration based on communication with
Gurobi support (https://support.gurobi.com/hc/en-us/community/
posts/4403570181137-Worse-performance-for-smaller-problem).
We use Symmetry=0 and PreQLinearize=2 in our improved
configuration. As further tweaks and hardware resources may
increase the speed, the results here serve as a characteristic lower
bound on Gurobi performance rather than a true guarantee. We
run Gurobi on 100 random-regular graphs for each size N and
allow each optimization to run for 30 min. During the algorithm
runtime, we collect information about the process, in particular,
the quality of the best-known solution. In this way, we obtain a
performance profile of the algorithm that shows the relation
between the solution quality and the running time. An example of
such a performance profile for N= 256 is shown in Fig. 5. Gurobi
was configured to use only a single CPU to avoid interference in
runtime between different Gurobi optimization runs for different
problem instances. In order to speed up the collection of the
statistics, 55 problem instances were executed in parallel.
The second algorithm is MQLib30, which is implemented in C+

+ and uses a variety of different heuristics for solving MaxCut and
QUBO problems. We chose the BURER2002 heuristic since, in our
experiments, it performs the best for MaxCut on random regular
graphs. Despite using a single thread, this algorithm is much faster
than Gurobi; thus, we run it for 1 s. In the same way as with
Gurobi, we collect the performance profile of this algorithm.
While QAOA and Gurobi can be used as general-purpose

combinatorial optimization algorithms, this algorithm is designed
to solve MaxCut problems only, and the heuristic was picked that
demonstrated the best performance on the graphs we considered.
In this way, we use Gurobi as a worst-case classical solver, which is
capable of solving the same problems as QAOA can. Moreover,
Gurobi is a well-established commercial tool that is widely used in
industry. Note, however, that we use QAOA fixed angles that are
optimized specifically for 3-regular graphs, and one can argue that
our fixed-angle QAOA is an algorithm designed for 3-regular
MaxCut. For this reason, we also consider the best-case MQLib
+BURER2002 classical algorithm, which is designed for MaxCut,
and we choose the heuristic that performs best on 3-regular
graphs.

QAOA performance
Two aspects are involved in comparing the performance of
algorithms, as outlined in Fig. 1: time to solution and quality of
solution. In this section, we evaluate the performance of single-
shot fixed-angle QAOA. As discussed in the introduction, the time
to solution is a crucial part, and for QAOA is dependent on the
initialization time and the number of rounds of sampling. Single-
shot fixed-angle QAOA involves only a single round of sampling,
so the time to solution can be extremely fast, with initialization
time potentially becoming the limiting factor. This initialization
time is bound by the speed of classical computers, which perform
calibration and device control. Naturally, if one is able to achieve
greater initialization speed by using better classical computers, the
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same computers can be used to improve the speed of solving
MaxCut classically. Therefore, it is also important to consider the
time scaling of both quantum initialization and classical runtime.
The quality of the QAOA solution is the other part of the

performance. The discussion below evaluates this feature by using
subgraph decompositions and QAOA typicality, including a
justification of single-shot sampling.
QAOA is a variational ansatz algorithm structured to provide

solutions to combinatorial optimization problems. The ansatz is
constructed as p repeated applications of an objective Ĉ and
mixing B̂ unitary:

γ; βj i ¼ e�iβpB̂e�iγpĈð� � � Þe�iβ1 B̂e�iγ1Ĉ þj i; (2)

where B̂ is a sum over Pauli X operators B̂ ¼PN
i σ̂

i
x . A common

problem instance is MaxCut, which strives to bipartition the
vertices of some graph G such that the maximum number of
edges have vertices in opposite sets. Each such edge is considered
to be cut by the bipartition. This may be captured in the objective
function

Ĉ ¼ 1
2

X
hiji2G

ð1� σ̂i
zσ̂

j
zÞ; (3)

whose eigenstates are bipartitions in the Z basis, with eigenvalues
that count the number of cut edges. To get the solution to the
optimization problem, one prepares the ansatz state γ; βj i on a
quantum device and then measures the state. The measured
bitstring is the solution output from the algorithm.
While QAOA is guaranteed to converge to the exact solution in

the p→∞ limit in accordance with the adiabatic theorem11,32,
today’s hardware is limited to low depths p ~1 to 5 because of the
noise and decoherence effects inherent to the NISQ era.
A useful tool for analyzing the performance of QAOA is the fact

that QAOA is local11,12: the entanglement between any two qubits
at a distance of ≥2p steps from each other is strictly zero. For a
similar reason, the expectation value of a particular edge 〈ij〉

f hiji ¼ 1
2

γ; βh j1� σ̂i
zσ̂

j
z γ; βj i (4)

depends only on the structure of the graph within p steps of edge
〈ij〉. Regular graphs have a finite number of such local structures
(also known as subgraphs)22, and so the expectation value of the
objective function can be rewritten as a sum over subgraphs

hĈi ¼
X

subgraphsλ

MλðGÞf λ: (5)

Here, λ indexes the different possible subgraphs of depth p for a
d regular graph, MλðGÞ counts the number of each subgraph λ for
a particular graph G, and fλ is the expectation value of the
subgraph (e.g., Eq. (4)). For example, if there are no cycles ≤2p+ 1,
only one subgraph (the tree subgraph) contributes to the sum.
With this tool, we may ask and answer the following question:

What is the typical performance of single-shot fixed-angle QAOA
evaluated over some ensemble of graphs? Here, performance is
characterized as the typical (average) fraction of edges cut by a
bitstring solution returned by a single sample of fixed-angle
QAOA, averaged over all graphs in the particular ensemble.
For our study, we choose the ensemble of 3-regular graphs on N

vertices. Different ensembles, characterized by different connec-
tivity d and size N, may have different QAOA performance33,34.
Using the structure of the random regular graphs, we can put

bounds on the cut fraction by bounding the number of different
subgraphs and evaluating the number of large cycles. These
bounds become tighter for N⟶∞ and fixed p since the majority
of subgraphs become trees and 1-cycle graphs. We describe this
analysis in detail in Supplemental methods, which shows that the
QAOA cut fraction will equal the expectation value on the tree
subgraph, which may be used as a ‘with high probability’ (WHP)

proxy of performance. Furthermore, using a subgraph counting
argument, we may count the number of tree subgraphs to find an
upper and lower WHP bound on the cut fraction for smaller
graphs. These bounds are shown as the boundaries of the red and
green regions in Fig. 6.

QAOA ensemble estimates
A more straightforward but less rigorous characterization of QAOA
performance is simply to evaluate fixed-angle QAOA on a
subsample of graphs in the ensemble. The results of such an
analysis require an assumption not on the particular combinatorial
graph structure of ensembles but instead on the typicality of
expectation values on subgraphs. This is an assumption on the
structure of QAOA and allows an extension of typical cut fractions
from the large N limit where most subgraphs are trees to a small N
limit where typically a very small fraction of subgraphs are trees.
Figure 6 plots the ensemble-averaged cut fraction for p= 2 and

various sizes of graphs. For N ≤ 16, the ensemble includes every
3-regular graph (4681 in total). For each size of N > 16, we evaluate
fixed-angle QAOA on 1000 3-regular graphs drawn at random
from the ensemble of all 3-regular graphs for each size
N∈ (16, 256]. Note that because the evaluation is done at fixed
angles, it may be done with minimal quantum calculation by a
decomposition into subgraphs, then looking up the subgraph
expectation value fλ from22. This approach is also described in
more detail in35. In this way, expectation values can be computed
as fast as an isomorphism check.
From Fig. 6, we observe that the median cut fraction across the

ensemble appears to concentrate around that of the tree
subgraph value, even for ensembles where the typical graph is
too small to include many tree subgraphs. Additionally, the
variance (dark fill) reduces as N increases, consistent with the fact
that for larger N, there are fewer kinds of subgraphs with non-
negligible frequency. Furthermore, the absolute range (light fill),
which plots the largest and smallest expectation value across the

Fig. 6 p= 2 QAOA cut fraction guarantees under different
assumptions. Dashed and solid lines plot with high probability
the lower and upper bounds on cut fractions, respectively, assuming
only graph theoretic typicality on the number of subgraphs. Dotted
plots are the ensemble median over an ensemble of 3 regular
graphs; for N ≤ 16 (dots); this includes all graphs, while for N > 16,
this is an ensemble of 1000 graphs for each size. We used 32 sizes
between 16 and 256. Dark black fill plots the variance in the cut
fraction over the ensemble, and light black fill plots the extremal
values over the ensemble. The median serves as a proxy of
performance, assuming QAOA typicality. Given a particular cut from
a classical solver, there may be different regions of advantage,
shown by the four colors and discussed in the text.
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ensemble, is consistently small. While the data for the absolute
range exists here only for N ≤ 16 because of complete sampling of
the ensemble, 0ne can reasonably expect that these absolute
ranges extend for all N, suggesting that the absolute best
performance of p= 2 QAOA on 3-regular graphs is around ≈0.8.
We numerically observe across a range of p (not shown) that

these behaviors persist: the typical cut fraction is approximately
equal to that of the tree subgraph value fp-tree even in the limit
where no subgraph is a tree. This suggests that the typical
subgraph expectation value fλ ≈ fp-tree, and only an atypical
number of subgraphs have expectation values that diverge from
the tree value. With this observation, we may use the value fp-tree
as a proxy for the average cut fraction of fixed-angle QAOA.
These analyses yield four different regimes for advantage vs.

classical algorithms, shown in Fig. 6. If a classical algorithm yields
small cut fractions for large graphs (green, bottom right), then
there is an advantage in a strong sense. Based only on graph
combinatorics, with a high probability, most of the edges
participate in a few cycles, and thus the cut fraction is almost
guaranteed to be around the tree value, larger than the classical
solver. Conversely, if the classical algorithm yields large cut
fractions for large graphs (red, top right), there is no advantage in
the strong sense: QAOA will yield, for example, only ~0.756 for
p= 2 because most edges see no global structure. This analysis
emphasizes that of12, which suggests that QAOA needs to ‘see’ the
whole graph in order to get reasonable performance.
Two additional performance regimes for small graphs exist,

where QAOA can reasonably see the whole graph. If a classical
algorithm yields small cut fractions for small graphs (yellow,
bottom left), then there is an advantage in a weak sense, which we
call the ‘ensemble advantage’. Based on QAOA concentration,
there is at least a 50% chance that the QAOA result on a particular
graph will yield a better cut fraction than will the classical
algorithm; assuming that the variance in the cut fraction is small,
this is a ‘with high probability’ statement. Conversely, if the
classical algorithm yields large cut fractions for small graphs
(orange, top left), there is no advantage in a weak sense. Assuming
QAOA concentration, the cut fraction will be smaller than the
classical value, and for some classical cut fractions there are no
graphs with advantage (e.g., >0.8 for p= 2).
Based on these numerical results, we may use the expectation

value of the tree subgraph fp-tree as a high-probability proxy for
typical fixed-angle QAOA performance on regular graphs. For
large N, this result is validated by graph-theoretic bounds
counting the typical number of tree subgraphs in a typical graph.
For small N, this result is validated by fixed-angle QAOA evaluation
on a large ensemble of graphs.

Single-shot QAOA Sampling
A crucial element of single-shot fixed-angle QAOA is that the
typical bitstring measured from the QAOA ansatz has a cut value
similar to the average. This fact was originally observed by Farhi
et al. in the original QAOA proposal11: because of the strict locality
of QAOA, vertices a distance more than >2p steps from each other
have a ZZ correlation of strictly zero. Thus, for large graphs with a
width >2p, by the central limit theorem, the cut fraction
concentrates to a Gaussian with a standard deviation of order
1ffiffiffi
N

p around the mean. As the variance grows sublinearly in N, the
values concentrate at the mean, and thus with high probability
measuring a single sample of QAOA will yield a solution with a cut
value close to the average.
However, this result is limited in scope for larger depths p

because it imposes no requirements on the strength of correla-
tions for vertices within distance ≤2p. Therefore, here we
strengthen the argument of Farhi et al. and show that these
concentration results may persist even in the limit of large depth p
and small graphs N. We formalize these results by evaluating the

ZZ correlations of vertices within 2p steps, as shown in Fig. 7.
Expectation values are computed on the 3-regular Bethe lattice,
which has no cycles and thus can be considered the N→∞
typical limit. Instead of computing the nearest-neighbor correla-
tion function, the x-axis computes the correlation function
between vertices a certain distance apart. For distance 1, the
correlations are that of the objective function fp-tree. Additionally,
for distance >2p, the correlations are strictly zero in accordance
with the strict locality of QAOA. For distance ≤2p, the correlations
are exponentially decaying with distance. Consequently, even for
vertices within the lightcone of QAOA, the correlation is small; and
so by the central limit theorem, the distribution will be Gaussian.
This result holds because the probability of having a cycle of fixed
size converges to 0 as N→∞. In other words, we know that with
N→∞, we will have a Gaussian cost distribution with standard
deviation / 1ffiffiffi

N
p .

When considering small N graphs, ones that have cycles of
length ≤2p+ 1, we can reasonably extend the argument of
Section “QAOA ensemble estimates” on the typicality of subgraph
expectation values. Under this typicality argument, the correla-
tions between close vertices are still exponentially decaying with
distance, even though the subgraph may not be a tree and there
are multiple short paths between vertices. Thus, for all graphs, by
the central limit theorem, the distribution of solutions concen-
trates as a Gaussian with a standard deviation of order 1ffiffiffi

N
p around

the mean. By extension, with a probability ~50%, any single
measurement will yield a bitstring with a cut value greater than
the average. These results of cut distributions have been found
heuristically in36.
The results are a full characterization of the fixed-angle single-

shot QAOA on 3-regular graphs. Given a typical graph sampled
from the ensemble of all regular graphs, the typical cut fraction
from level p QAOA will be about that of the expectation value of
the p-tree fp-tree. The distribution of bitstrings is concentrated as a
Gaussian of sub-extensive variance around the mean, indicating
that one can find a solution with quality greater than the mean
with order 1 samples. Furthermore, because the fixed angles
bypass the hybrid optimization loop, the number of queries to the
quantum simulator is reduced by orders of magnitude, yielding
solutions on potentially millisecond timescales.

Fig. 7 Long-range antiferromagnetic correlation coefficient on
the 3-regular Bethe lattice, which is a proxy for an N→∞ typical
3-regular graph. Horizontal indexes the distance between two
vertices. QAOA is strictly local, which implies that no correlations
exist between vertices a distance >2p away. As shown here,
however, these correlations are exponentially decaying with
distance. This suggests that even if the QAOA ‘sees the whole
graph’, one can use the central limit theorem to argue that the
distribution of QAOA performance is Gaussian with the standard
deviation of / 1=

ffiffiffiffi
N

p
.
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Mult-shot QAOA sampling
In the preceding section, we demonstrated that the standard
deviation of MaxCut cost distribution falls as 1=

ffiffiffiffi
N

p
, which deems

impractical the usage of multiple shots for large graphs. However,
it is worth verifying more precisely its effect on the QAOA
performance. The multiple-shot QAOA involves measuring the
bitstring from the same ansatz state and then picking the bitstring
with the best cost. To evaluate such an approach, we need to find
the expectation value for the best bitstring over K measurements.
As shown above, the distribution of cost for each measured

bitstring is Gaussian, pðxÞ ¼ Gðx�μp
σN

Þ. We define a new random
variable ξ which is the cost of the best of K bitstrings. The
cumulative distribution function (CDF) of the best of K bitstrings is
FK(ξ), and F1(ξ) is the CDF of a normal distribution. The probability
density for ξ is

pK ðξÞ ¼
d
dξ

FKðξÞ ¼ d
dξ

FK1 ðξÞ ¼ KFK�1
1 ðξÞpðξÞ; (6)

where F1ðξÞ ¼
R ξ
�1 pðxÞdx and FK1 is the ordinary exponentiation.

The expectation value for ξ can be found by EK ¼ R1�1 dx xpKðxÞ.
While the analytical expression for the integral can be extensive, a
good upper bound exists for it: EK � σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log K

p þ μ.
Combined with the 1=

ffiffiffiffi
N

p
scaling of the standard deviation, we

can obtain a bound on improvement in cut fraction from sampling
K times:

Δ ¼ γp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
N
log K

r
; (7)

where γp is a scaling parameter. The value Δ is the difference in
solution quality for multishot and single-shot QAOA. Essentially it
determines the utility of using multishot QAOA. We can determine
the scaling constant γp by classically simulating the distribution of
the cost value in the ansatz state. We perform these simulations
using QTensor for an ensemble of graphs with N ≤ 26 to obtain
γ6= 0.1926 and γ11= 0.1284.
It is also worthwhile to verify the 1=

ffiffiffiffi
N

p
scaling, by calculating γp

for various N. We can do so for smaller p= 3 and graph sizes

N ≤ 256. We calculate the standard deviation by ΔC ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hC2i � hCi2

q
and evaluate the 〈C2〉 using QTensor. This evalua-

tion gives large light cones for large p; the largest that we were
able to simulate is p= 3. From the deviations ΔC, we can obtain
values for γ3. We find that for all N, the values stay within 5% of the
average overall N. This shows that they do not depend on N,
which in turn signifies that the 1=

ffiffiffiffi
N

p
scaling is a valid model. The

results of the numerical simulation of the standard deviation are
discussed in more detail in the Supplementary Methods.
To compare multishot QAOA with classical solvers, we plot the

expected performance of multishot QAOA in Fig. 5 as dash-dotted
lines. We assume that a quantum device is able to sample at the
5kHz rate. Today’s hardware is able to run up to p= 5 and achieve
the 5 kHz sampling rate37. Notably, the sampling frequency of
modern quantum computers is bound not by gate duration but by
qubit preparation and measurement.
For small N, reasonable improvement can be achieved by using

a few samples. For example, for N= 256 with p= 6 and just
K= 200 shots, QAOA can perform as well as single-shot p= 11
QAOA. For large N, however, too many samples are required to
obtain substantial improvement for multishot QAOA to be
practical.

Classical performance
To compare the QAOA algorithm with its classical counterparts,
we choose state-of-the-art algorithms that solve a similar
spectrum of problems as QAOA, and we evaluate the time to

solution and solution quality. Here, we compare two algorithms:
Gurobi and MQLib+BURER2002. Both are anytime heuristic
algorithms that can provide an approximate solution at an
arbitrary time. For these algorithms, we collect the ‘performance
profiles’—the dependence of solution quality on time spent
finding the solution. We also evaluate the performance of a simple
MaxCut algorithm FLIP. This algorithm has a proven linear time
scaling with input size. It returns a single solution after a short
time. To obtain a better FLIP solution, one may run the algorithm
several times and take the best solution, similar to the
multishot QAOA.
Both algorithms have to read the input and perform some

initialization steps to output any solution. This initialization step
determines the minimum time required for getting the initial
solution—a ‘first guess’ of the algorithm. This time is the leftmost
point of the performance profile marked with a star in Fig. 5. We
call this time t0 and the corresponding solution quality ‘zero-time
performance’.
We observe two important results.

1. Zero-time performance is constant with N and is compar-
able to that of p= 11 QAOA, as shown in Fig. 3, where solid
lines show classical performance and dashed lines show
QAOA performance.

2. t0 scales as a low-degree polynomial in N, as shown in Fig. 2.
The y-axis is t0 for several classical algorithms.

Since the zero-time performance is slightly above the expected
QAOA performance at p= 11, we focus on analyzing this zero-
time regime. In the following subsections, we discuss the
performance of the classical algorithms and then proceed to the
comparison with QAOA.

Performance of Gurobi solver
In our classical experiments, as mentioned in Section “Classical
solvers”, we collect the solution quality with respect to time for
multiple N and graph instances. An example of averaged solution
quality evolution is shown in Fig. 5 for an ensemble of 256 vertex
3-regular graphs. Between times 0 and t0,G, the Gurobi algorithm
goes through some initialization and quickly finds some naive
approximate solution. Next, the first incumbent solution is
generated, which will be improved in further runtime. Notably,
for the first 50 ms, no significant improvement in solution quality
is found. After that, the solution quality starts to rise and slowly
converges to the optimal value of ~0.92.
It is important to appreciate that Gurobi is more than just a

heuristic solver: in addition to the incumbent solution, it always
returns an upper bound on the optimal cost. When the upper
bound and the cost for the incumbent solution match, the optimal
solution is found. It is likely that Gurobi spends a large portion of
its runtime on proving the optimality by lowering the upper
bound. This emphasizes that we use Gurobi as a worst-case
classical solver.
Notably, the x-axis of Fig. 5 is logarithmic: the lower and upper

bounds eventually converge after exponential time with a small
prefactor, ending the program and yielding the exact solution.
Additionally, the typical upper and lower bounds of the cut
fraction of the best solution are close to 1. Even after
approximately 10 s for a 256-vertex graph, the algorithm returns
cut fractions with very high quality ~0.92, far better than
intermediate-depth QAOA.
The zero-time performance of Gurobi for N= 256 corresponds

to the Y-value of the star marker in Fig. 5. We plot this value for
various N in Fig. 3. As shown in the figure, zero-time performance
goes up and reaches a constant value of ~0.882 at N ~100. Even
for large graphs of N= 105, the solution quality stays at the
same level.
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Such solution quality is returned after time t0,G, which we plot in
Fig. 2 for various N. For example, for a 1000-node graph, it will take
~40ms to return the first solution. Evidently, this time scales as a
low-degree polynomial with N. This shows that Gurobi can
consistently return solutions of quality ~0.882 in polynomial time.

Performance of MQLib+ BURER2002 and FLIP algorithms
The MQLib algorithm with the BURER2002 heuristic shows
significantly better performance, which is expected since it is
specific to MaxCut. As shown in Fig. 5 for N= 256 and in Fig. 2 for
various N, the speed of this algorithm is much better compared
with Gurobi’s. Moreover, t0 for MQLib also scales as a low-degree
polynomial, and for 1000 nodes MQLib can return a solution in
2 ms. The zero-time performance shows the same constant
behavior, and the value of the constant is slightly higher than
that of Gurobi, as shown in Fig. 3.
While for Gurobi and MQLib, we find the time scaling

heuristically, the FLIP algorithm is known to have linear time
scaling. Our implementation in Python, shows speed comparable
to that of MQLib and solution quality comparable to QAOA p= 6.
We use this algorithm as a demonstration that a linear-time
algorithm can give a constant performance for large N, averaged
over multiple graph instances. The supplementary material uses
the following research38–52 to provide more details on corre-
sponding questions.

DATA AVAILABILITY
The code, figures, and datasets generated during the current study are available in a
public repository https://github.com/danlkv/quantum-classical-time-maxcut. See the
README.md file for the details on the contents of the repository.
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