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Extensive characterization and implementation of a family of
three-qubit gates at the coherence limit
Christopher W. Warren 1✉, Jorge Fernández-Pendás 1, Shahnawaz Ahmed1, Tahereh Abad 1, Andreas Bengtsson 1,
Janka Biznárová1, Kamanasish Debnath1, Xiu Gu 1, Christian Križan 1, Amr Osman 1, Anita Fadavi Roudsari 1, Per Delsing 1,
Göran Johansson1, Anton Frisk Kockum1, Giovanna Tancredi 1✉ and Jonas Bylander 1✉

While all quantum algorithms can be expressed in terms of single-qubit and two-qubit gates, more expressive gate sets can help
reduce the algorithmic depth. This is important in the presence of gate errors, especially those due to decoherence. Using
superconducting qubits, we have implemented a three-qubit gate by simultaneously applying two-qubit operations, thereby
realizing a three-body interaction. This method straightforwardly extends to other quantum hardware architectures, requires only a
firmware upgrade to implement, and is faster than its constituent two-qubit gates. The three-qubit gate represents an entire family
of operations, creating flexibility in the quantum-circuit compilation. We demonstrate a process fidelity of 97.90%, which is near the
coherence limit of our device. We then generate two classes of entangled states, the Greenberger–Horne–Zeilinger and Dicke
states, by applying the new gate only once; in comparison, decompositions into the standard gate set would have a two-qubit gate
depth of two and three, respectively. Finally, we combine characterization methods and analyze the experimental and statistical
errors in the fidelity of the gates and of the target states.
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INTRODUCTION
Quantum algorithms are generally developed using single-qubit
and two-qubit gates as the basis of the instruction set1,2. All
quantum algorithms can be decomposed into a minimal universal
gate set consisting of such elements; however, this is not a
requirement. Taking advantage of hardware-aware compilation or
using larger-than-minimal gate sets can help reduce the
algorithmic depth3,4: shallow quantum circuits are paramount in
the presence of decoherence. Moreover, parameterized families of
two-qubit interactions have enhanced the capabilities of quantum
hardware by reducing the circuit depth4, improving the success
probability of algorithms5, or allowing more expressive gates
tailored to specific problems6,7.
Three-qubit gates, such as the Toffoli and Fredkin gates, are

central components of several quantum algorithms8–11. However,
when only standard single- and two-qubit gate sets are available,
compiling these three-qubit gates results in considerable over-
heads of additional gates1,12,13. There have been several
implementations of three-qubit gates using hardware-aware
compilation in order to minimize the number of applied control
pulses14–19, but these increase the depth of circuits and
complicate calibration procedures. Having access to a native
three-qubit gate implemented with a single control at the
hardware level would therefore be beneficial. Unfortunately, the
types of three-body interactions that naturally produce these
gates can be difficult to engineer.
Single-control, multi-qubit gates have been implemented in

trapped-ion systems20, spin-qubit systems21, and superconducting
qubits22. However, many of these implementations suffer from
drawbacks that limit the control, fidelity of operation, and
extension to larger circuits. For example, Levine et al.20 relied on
numerical optimization of the pulse, increasing the complexity of
recalibration in the presence of drift. Roy et al.22 engineered an

effective three-qubit system from the collective modes of a
Josephson ring modulator and implemented a gate set comprised
of only three-qubit conditional operations; however, lacking native
single- and two-qubit gates, these must be compiled, increasing
the circuit depth.
Recent work has modeled23–26 or experimentally demon-

strated27 methods of implementing three-qubit gates through
the simultaneous application of two-qubit gates. In particular, Gu
et al.23 analyzed a general model of three-body interactions
generated by simultaneously driving two-qubit interactions
through an intermediate state. Such an implementation can be
seen as a ‘firmware’ upgrade—meaning no changes to the
underlying hardware, only to the control—and the physical gate
set can be readily extended to include native three-qubit gates.
In this work, we demonstrate the three-qubit Controlled-

CPHASE-SWAP gate (CCZS) in a single application of the pulse
controls, as proposed in ref. 23. The resulting three-qubit
interaction is faster than the individual constituent operations
and implements a three-qubit gate that shares similarities with
Fredkin-like gates. For specific parameters, it has the structure of a
controlled-fermionic SWAP gate, which we call a fermionic Fredkin
(fFredkin) gate. Furthermore, with the addition of a CZ gate, the
CCZS gate can be compiled into an iFredkin gate. We use the
CCZS gate to demonstrate that we can implement an entire family
of three-qubit operations characterized by the SWAP phase, which
could aid in variational-type algorithms. We additionally demon-
strate the rapid generation of entangled GHZ28 and W29 states in a
single application of this three-qubit operation.
The characterization of quantum processes and quantum states

is non-trivial. Techniques that map all errors to stochastic errors
can be efficient in the required resources30,31 but come at the
expense of losing the ability to identify the specific source of these
errors, and at worst, the reported values can be disconnected from
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the average gate fidelity32–34 they are meant to indicate.
Particularly, careful treatment is needed not to wash out coherent
errors, which hint at cross-talk or miscalibration, via this mapping
to stochastic errors.
The most detailed methods for characterization are those of the

tomography family (not necessarily limited to state, process, and
gate set tomography). Gate set tomography (GST)35 provides the
most detailed information but rapidly becomes intractable for
many qubits. By separately characterizing the state preparation
and measurement (SPAM) errors associated with single-qubit
operations, we demonstrate that we can use single-qubit GST to
mitigate the errors intrinsic to multi-qubit quantum process
tomography. This detailed analysis allows us to distinguish
between control errors and decoherence and demonstrate that
we are near the coherence-limited performance of our device for
the CCZS gate.

RESULTS
Device description
Our experiment is conducted on three qubits (Q0, Q1, Q2) of a five-
qubit superconducting quantum processor, as shown in Fig. 1a,
and states are ordered as such in ket notation. The qubits are
fixed-frequency transmon qubits36, each with individual control
lines and readout resonators. Qubit–qubit interactions are
mediated using flux-tunable transmon qubits (C1, C2), referred to
as couplers. The couplers are not considered in the computational
space. This architecture with tunable couplers is flexible in that it
allows for several types of two-qubit gates to be performed37–39.
The Hamiltonian of the circuit depicted in Fig. 1b is modeled as

H
_ ¼ P2

i¼0
ωia

y
i ai þ ηi

2 a
y
i aiðayi ai � 1Þ

þP2
j¼1

ωcj ðΦjÞbyj bj þ
ηcj
2 byj bjðbyj bj � 1Þ

þP
i;j
Jijðayi þ aiÞðbyj þ bjÞ:

(1)

The frequencies of the fixed-frequency qubits i (couplers j) are
given by ωi (ωcj parameterized by magnetic flux Φj). Each element
of the system is modeled as a multi-level transmon with
anharmonicity ηi and annihilation (creation) operators ai (a

y
i ), bj (

byj ). Couplings between fixed-frequency qubits and couplers are
denoted Jij. The couplers can be eliminated from the dynamics of
the Hamiltonian via a Schrieffer–Wolff transformation when they
are in the dispersive regime (j Jij

ωi�ωcj ðΦjÞ j � 1)26,38–42.
The resulting interactions between pairs of qubits are generated

by modulating the frequency of their shared tunable coupler. This
is achieved by sending an AC signal to the SQUID of the coupler
via a flux-bias line (Z1 and Z2 in Fig. 1a) of the form
ΦjðtÞ ¼ Φbj þ ΩjðtÞ cosðωdj t þ ϕjÞ, where Φbj is the DC bias and
Ωj(t) is the pulse envelope. We use a cosine rise and fall of 25 ns
with flat time τ. ωdj and ϕj are the AC driving frequency and phase
of the signal, respectively. By modulating the coupler at the
frequency difference between eigenstates of the qubits, as
depicted in Fig. 1c, we selectively turn on interactions between
pairs of qubits. In our case, we couple the 200j i state of the system
to the 110j i or 101j i states when we are in the two-excitation
manifold, or we couple 111j i to 201j i or 210j i in the three-
excitation manifold. These transitions correspond to driving at a
transition frequency given by ωCZ

Q0Qi
¼ jωQi � ωQ0 � ηQ0

j. This
interaction generates a time-dependent coupling J0i(Φj)26,38–42.
We define the effective quasistatic gate strength to be the time
that implements a CZ gate, tCZg ¼ π=j~J0i j, corresponding to a round
trip from one of the initial computational states to 200j i and back.

Simultaneous driving dynamics
Several proposals have been made for implementing effective
three-qubit interactions23–25,27. In superconducting qubits, one
such proposal has recently been demonstrated by applying
simultaneous cross-resonance gates27. We follow an alternative
schema based on the simultaneous parametric driving of tunable
couplers as laid out in Gu et al.23 based on driving non-adiabatic
holonomic gates43,44. These results are general and can be readily
applied to any doubly driven three-qubit system that has a similar
level structure.

Fig. 1 Schematic of superconducting quantum processor and three-qubit gate operation. a Optical micrograph of the quantum processor.
The three shown qubits (Q0,Q1,Q2) are used in this work. The couplers (C1,C2) mediate coupling between neighboring qubits. b Reduced circuit
diagram of the three-qubit device. c Energy levels of the Λ- and V-systems. AC pulses are applied at the CZ transition frequencies (ωCZ

Q0Q1
,

ωCZ
Q0Q2

) corresponding to driving Q0 to the 2j i state. Individual drives activate two-qubit CZ gates, whereas simultaneous drives activate an
effective three-body interaction in the Λ- and V-systems. The drives may be detuned from the true transition frequency due to miscalibration
or Stark shifting during the drive, which must be corrected. d Population transfer in the Λ-system after initializing 110j i. The Λ-system in (c)
(bottom level structure) defines the SWAP component, whereas a round trip in the V-system (top level structure) causes the CCPHASE
component (not shown).
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The simultaneous drives activate a Λ-system, spanned by the
states f 110j i; 200j i; 101j ig within the two-excitation manifold,
and a V-system, spanned by f 201j i; 111j i; 210j ig in the three-
excitation manifold (Fig. 1c). For these two systems, the dynamics
are described by the same Hamiltonian in the interaction picture

H ¼
�δ1 ~J01 0
~J
�
01 0 ~J02

0 ~J
�
02 �δ2

2
64

3
75: (2)

The terms δi represent the detuning of the respective drives from
the CPHASE transition frequency. The simultaneous drives activate
a CSWAP between Q1 and Q2 and additionally cause a CCPHASE
when Q0 is in 1j i, in a time

tCCZSg ¼ πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j~J01j2 þ j~J02j2 þ ðδ=2Þ2

q : (3)

The resulting three-qubit gate under the evolution of (2) after a
time tCCZSg has the form23 (see Supplementary Note 4)

UCCZSðθ;ϕ; γÞ ¼ 0j i 0h j0 � I1 � I2 þ 1j i 1h j0 � UCZSðθ;ϕ; γÞ (4)

with

UCZSðθ;ϕ; γÞ ¼
1 0 0 0

0 �eiγsin2 θ
2 þ cos2 θ

2 eið
γ
2�ϕÞ cos γ

2 sin θ 0

0 eið
γ
2þϕÞ cos γ

2 sin θ �eiγcos2 θ
2 þ sin2 θ

2 0

0 0 0 �e�iγ

2
6664

3
7775: (5)

The three-qubit gate has three parameters: the SWAP angle θ; the
SWAP phase ϕ; and the CCPHASE phase γ, resulting in an entire
family of three-qubit interactions. Experimentally, these angles are
given by

tan
θ

2
eiϕ ¼

~J01
~J02

; (6)

γ ¼ πδffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðj~J01j2 þ j~J02j2Þ þ δ2

q : (7)

The SWAP phase ϕ is controlled by the relative phase between
the two AC flux drives, ϕ= ϕ1− ϕ2. Virtual Z rotations are
additionally applied to update the local frame of the qubits5,45

after the application of the gate.
Of particular interest are the dynamics when the constituent

two-qubit gates are of the same strength, i.e., j~J01j ¼ j~J02j, and
when the drives are in resonance with their corresponding
transitions, δ= 0. With these parameters, we obtain the gate

UCZSðπ=2;ϕ; 0Þ ¼

1 0 0 0

0 0 e�iϕ 0

0 eiϕ 0 0

0 0 0 �1

2
6664

3
7775; (8)

which is implemented in a time tCZg =tCCZSg ¼ ffiffiffi
2

p
times faster than

the constituent two-qubit gates (3). For the instance of ϕ= 0, we
obtain a controlled-fermionic SWAP or fFredkin gate46.

Determination of gate parameters
We begin validating the driven model by first individually tuning
up two pulses with equal effective coupling strengths ~J0i=2π ¼
2:833MHz (� 353 ns pulse length) yielding θ= π/2. We then apply
the pulse sequence as depicted in the inset of Fig. 1d, preparing
the state 110j i.
In order to achieve the resonance condition, δ= 0, we perform

two measurements in which we sweep the plateau of the

simultaneous pulses as well as the frequency of one of the
couplers’ drives while keeping the other fixed. This produces
oscillations in the Λ-system, which are fit to extract the frequency
detunings δ1 and δ2 (see Supplementary Note 3) as well as ensure
equal coupling strengths. The population transfers of Fig. 1d
correspond to a linecut in this 3D dataset (see Supplementary
Fig. 2) where δ1= δ2= 0, with a corresponding fit to the dynamics
modeled in (2).
The resonance condition (and thus γ= 0) is verified by

performing the two experiments shown in the inset of Fig. 2a.
In the first, we prepare the state 1þ 0j i and apply the
UCCZS(π/2, ϕ0, γ) gate to swap the state for some, at the moment
unknown, SWAP phase ϕ0. We then sweep the angle of a Z
rotation on Q2 and measure on either the X or Y basis. In the
second experiment, we apply a NOT gate on the third qubit to
prepare 1þ 1j i. The relative phase of the resulting superpositions
is only sensitive to variations in γ. For any ϕ, the two preparations
oscillate π out of phase when the resonance condition is achieved
(δ1= δ2= 0).
To determine the unknown SWAP phase ϕ0, we run the circuit

in the inset of Fig. 2b. We prepare the input state 1þ 0j i and then
apply the simultaneous pulses while sweeping the phase of one of
the AC drives relative to the other. The gate swaps the
superposition state on Q1 to Q2, accumulating a phase at the
difference between the individual phases of the two drives. We
reference ϕ= 0 to the phase difference between drives which

Fig. 2 Calibration and characterization of three-qubit gate
CCPhase and CSWAP phase. a Calibration and verification of γ (or
equivalently δ) similar to typical CZ calibration39. We use 1þ 0j i and
1þ 1j i as probe states, as they are insensitive to the currently
unknown SWAP phase, ϕ0, and oscillate γ+ π out of phase of one
another. b Performing a cross-Ramsey experiment using Q1
prepared in þj i and using the three-qubit gate to SWAP the
population to Q2. We define ϕ= 0 from the phase that maximizes
the expectation value in I⊗ I⊗ X. We additionally demonstrate full
SWAP-phase control regardless of input state after calibration of
γ= 0.

C.W. Warren et al.

3

Published in partnership with The University of New South Wales npj Quantum Information (2023)    44 



maximizes the expectation value 〈IIX〉 for the 1þ 0j i state.
Additionally, we demonstrate full control over ϕ by repeating
the measurement with all eigenstates of X, ±j i ¼ 1ffiffi

2
p ð 0j i± 1j iÞ,

and Y, i ±j i ¼ 1ffiffi
2

p ð 0j i± i 1j iÞ, initialized on Q1. We find coherent

oscillations regardless of input state, demonstrating that we
implement an entire family of three-qubit gates with the SWAP
phase being a free parameter.

Gate characterization
With the CCZS gate tuned up, we move on to characterization. We
aim to obtain a measure of the fidelity of the gate independent of
state preparation and measurement (SPAM) errors. Several
methods exist for this7,47,48, but we seek more explicit information
to trace whether the errors are the result of miscalibration,
decoherence, or parasitic terms in the Hamiltonian. To achieve
this, we use standard quantum process tomography (QPT)49.
Process tomography is generally referenced to idealized state

preparations, rotation operators, and detectors, making it difficult
to separate SPAM errors from the process being characterized35,50.
To remedy this, we modify the protocol by separately performing
gate set tomography (GST)35 on the single-qubit operations to
obtain a model of the noisy initial states, noisy single-qubit
rotations, and the single-qubit positive-operator valued measures
(POVM) corresponding to readout. With these priors, we condition
the QPT reconstruction to characterize our SPAM-free process51.
The exact procedure is depicted in Fig. 3a and outlined in
“Methods”.
For the reconstruction, we use the projected least-squares (PLS)

method52,53 to obtain the Choi matrix54, ρΦ, of the noisy quantum
process, Φ. The PLS method finds a least-squares estimate of the
Choi matrix and then iteratively projects it into the space of
completely positive trace-preserving (CPTP) maps which preserve
the physicality of the process. The procedure also provides

guarantees of error bounds, which more familiar methods, such as
maximum likelihood estimation (MLE), do not. We opt to use a
least-squares estimate rather than the more familiar MLE due to
the simplicity of implementation, statistical guarantees of the
protocol, and lack of several pathological limitations associated
with MLE, which have been well studied50,55–57.
In the Choi representation, a quantum channel evolves an input

state ρ as

ρ0 ¼ ΦðρÞ ¼ TraððρT � IdÞρΦÞ; (9)

where Id is the identity operator on a Hilbert space of dimension,
d, equal to our system, and we take the partial trace over the input
state’s system.
From the reconstructed Choi matrix ρΦ, we can transform to any

other representation of a quantum process, such as to compute
the process fidelity with the Chi matrix58–60

Fðχ; ~χÞ ¼ Tr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~χ

p
χ
ffiffiffi
~χ

pq� �2

: (10)

χ and ~χ are Chi matrices representing two quantum processes. This
definition of fidelity is convenient to work with, as it generalizes
the notion of fidelity between both superoperators and density
matrices, where χ could be replaced by any density matrix ρ. Also,
by mapping a quantum process to the Kraus representation, we
can identify the dominant evolution61,62 to obtain a quantum
truth table, as shown in Fig. 3b. This provides a connection to
phase information as well as the classical mapping of input states.
However, the reconstruction only obtains a point estimate of

the quantum process and the fidelity given our observations.
Ideally, we would like to construct confidence intervals over the
fidelity and over the space of possible reconstructions. We
bootstrap the reconstruction by repeatedly sampling from the
observed empirical distributions. Each newly sampled dataset
represents possible experimental outcomes given the sample

Fig. 3 Reconstruction procedure and results of three-qubit CCZS gate. a Reconstruction procedure for QPT. Standard QPT is first performed
to collect the 64 × 27 datasets comprising the reconstruction. Separately, single-qubit GST is performed to extract the noisy groundstates,
rotation gates, and POVMs for the three qubits, which are used in the reconstruction to separate SPAM errors. b The ideal unitary of
UCCZSðπ2 ; π2 ; 0Þ and the leading Kraus (LK) matrix obtained from the Kraus operators. The LK matrix captures the majority of the dynamics of a
noisy channel62. c Bootstrap distributions for a chosen SWAP angle of ϕ ¼ π

2 over Nboot= 1000. The “raw” process fidelity compares against the
target unitary, whereas the control-error-free fidelity mitigates for imperfections in the UCCZS(θ, ϕ, γ) calibration. d Coherence limit of the three-
qubit gate given the T1, T2 values with 95% confidence interval (see Supplementary Note 5), the raw fidelity of the reconstruction, and the
control-error-free fidelity with 2σ error.
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error of each QPT measurement63,64. We report the average
fidelity over the resulting distribution and the uncertainty rather
than the point estimate. The process fidelity of the three-qubit
gate for all angles of ϕ is summarized in Table 1 for the 250 ns
three-qubit gate time that results from constituent 353 ns two-
qubit operations. We find that the process fidelity is near the
coherence limit of 98.30% (Supplementary Note 3), as seen in Fig.
3d, and well within a 95% confidence interval of the fluctuations
of the coherence of our device.
There is an identifiable dependence of the fidelity on the SWAP

phase ϕ, as seen in Fig. 3d, where the fidelity drops slightly until
ϕ= π/2 then increases again. While the decrease in fidelity lies
within the typical fluctuations of the device, if we assume this
trend is real, we can attempt to isolate the cause during the
bootstrapping loop. We first perform the reconstruction and then
optimize over the angles of an ideal CCZS gate to find the

parameters ð~θ; ~ϕ;~γÞ that maximize the fidelity with respect to the
reconstructed process (see Fig. 3c, d). We term this fidelity the
control-error-free fidelity, F CEF, and the fidelity from the
reconstruction to the ideal target parameters as the “raw” fidelity,
F raw. If the ϕ-dependence were purely due to drift in the controls
or miscalibration, this optimization procedure should lift the
dependency and flatten the fidelity along the coherence limit.
While there are miscalibrations between the ideal target

parameters (Table 1), the seeming dependence on ϕ remains.
Leakage to the couplers or population outside the computational
space is excluded, as leakage would be phase-independent. The
sensitivity of exchange-like interactions to residual ZZ parasitic
terms has been well documented in superconducting
qubits37,39,65–67 and could explain the resulting phase depen-
dence. However, without further analysis, it would be difficult to
separate the influence of these parasitic terms from a fluctuation
in coherence; such studies will be the subject of follow-up work.

Rapid generation of entangled states
As a demonstration of the gate, we opt to use the CCZS gate in
two different modes of operation. In the first, Fig. 4a, b, we treat
the three-qubit gate as acting solely within the computational
subspace and prepare a GHZ state, ð 000j i þ 111j iÞ= ffiffiffi

2
p

, in a single
application of the CCZS. With only two-qubit operations, this
requires the application of two sequential two-qubit gates. We
achieve a state fidelity of 95.56 (16)% [using (10)] after mitigating
measurement errors.
In the second case, Fig. 4c, d, we allow for evolution outside of

the computational subspace and apply the CCZS gate for
approximately half the time (denoted a

ffiffiffiffiffiffiffiffiffiffiffi
CCZS

p
gate) using the

same gate parameters. This alternative implementation leverages
the qutrit space to rapidly generate the W state.
Hence, in our circuit (see inset of Fig. 4d), we first prepare the

state
ffiffiffiffiffiffiffiffi
1=3

p
000j i þ ffiffiffiffiffiffiffiffi

2=3
p

100j i by applying a rotation
Ryð2 arccos

ffiffiffiffiffiffiffiffi
1=3

p Þ to Q0. We then apply a calibrated X1→2 pulse

Table 1. Reconstructed fidelities and extracted parameters for a
family of three-qubit CCZS gates.

(θ, ϕ, γ) F raw [%] F CEF [%] ~θ=π ~ϕ=π ~γ=π

ðπ2 ; 0; 0Þ 97.898 (61) 98.214 (58) 0.4969 (9) −0.0160 (7) −0.0374 (9)

ðπ2 ; π4 ; 0Þ 97.514 (65) 97.898 (63) 0.4867 (7) 0.2378 (7) −0.0411 (9)

ðπ2 ; π2 ; 0Þ 97.255 (64) 97.425 (64) 0.4954 (8) 0.4889 (7) −0.0275 (9)

ðπ2 ; 3π4 ; 0Þ 97.256 (61) 97.547 (60) 0.4928 (7) 0.7385 (7) −0.0370 (9)

ðπ2 ; π; 0Þ 97.622 (61) 97.956 (60) 0.4988 (7) 0.9803 (7) −0.0365 (9)

Fidelity of the reconstruction for ideal target gate parameters (θ, ϕ, γ) of the
CCZS gate (F raw) and the calibration-error-free fidelity (F CEF). We report the
angles best matching the reconstruction ð~θ; ~ϕ;~γÞ to understand how much
of the fidelity is due to miscalibration. Errors in the angles due to
miscalibration or drift deviate by � 1

75 π,
1
50 π, and

1
20 π for each of the

parameters of the gate.

Fig. 4 Quantum state tomography of GHZ and W states using CCZS gate. a, c Density matrix of the GHZ and W states with their magnitudes
and phases plotted for each basis element. The theoretical values are plotted as the wireframes around the solid bars. b, d Expectation values
of the different experimentally obtained Pauli observables and the ideal theoretical expectations and the corresponding circuits (insets) for
generating the respective states.
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to perform a NOT operation in the qutrit space and map the
population in 100j i to 200j i. From here, the application of theffiffiffiffiffiffiffiffiffiffi
CCZS

p
gate divides the population in 200j i to states 101j i and

110j i, resulting in the state ð 000j i þ eiϕ1 110j i þ eiϕ2 101j iÞ= ffiffiffi
3

p
. A

final NOT gate applied to Q0 completes the generation of the W
state up to locally correctable phases with single-qubit Rz gates.
This three-qutrit gate is implemented in 133 ns and generates the
W state with a fidelity of 94.71(21)%.
The rapid generation of larger Dicke states across a lattice could

also be achieved by simultaneously driving iSWAP operations
between all pairs of qubits without having to make an excursion
outside of the computational subspace23 by collectively coupling
qubits to a common mode68 or bringing all qubits into
resonance69,70. However, in the context of the CCZS gate and
logical operations, in an architecture with limited connectivity, we
find that our three-qubit gate always outperforms the compilation
using two-qubit gates without the need for tailored architectures.
We find that generating the GHZ and W states using the native

three-qubit gate always outperforms the equivalent circuit decom-
posed into single and two-qubit gates. We show the infidelity of
generating the GHZ and W states in Fig. 5a, b, respectively.
Simulations are performed taking into account multi-level effects
using the experimental parameters in Supplementary Table 1. All
single-qubit gates take t1qg ¼ 20 ns to implement in our hardware.
The CZ gates set the timescale for implementing the three-

qubit gate according to (3). This gives the three-qubit gate a
ffiffiffi
2

p
speedup over the CZ gates. Compiling the GHZ circuits to
minimize total runtime gives

tGHZ2q ¼ 2t1qg þ 2tCZg ; (11)

tGHZ3q ¼ 2t1qg þ tCZgffiffiffi
2

p : (12)

Using the three-qubit gate, we exploit the higher energy levels of
the transmon to generate the W state. Therefore, the CCZS gate is
applied for only half its gate time, resulting in a 2

ffiffiffi
2

p
speedup over

the CZ gate. The total runtime for the two circuits then scales as

tW2q ¼ 4t1qg þ 3tCZg ; (13)

tW3q ¼ 3t1qg þ tCZg
2
ffiffiffi
2

p : (14)

When predominantly coherence-limited, the three-qubit gate
allows for substantial shortening of the circuit depth and could
significantly aid in compilation strategies.

DISCUSSION
We demonstrated a single-step implementation of a family of
three-qubit gates based on simultaneous driving of transitions to

an intermediate eigenstate. These gates combine aspects of
Toffoli and Fredkin gates resulting in an operation that we denote
controlled-CPHASE-SWAP or CCZS. Our approach is extensible, as
it can be implemented across larger qubit systems and other
quantum-computing implementations. For this reason, the three-
qubit gate represents a ‘firmware’ upgrade of existing systems: the
only requirement is the simultaneous driving of transitions to a
common eigenstate in a multi-qubit system. The calibration uses
existing two-qubit gate strategies and can be straightforwardly
applied to other systems. This results in process fidelities
approaching the coherence limit of our device of ~98%.
Applying the CCZS gate to our hardware allowed us to rapidly

prepare two different classes of entangled states. We therefore
envision that this gate can be used to augment existing gate sets
and leverage the multi-qubit nature to aid in the compilation of
quantum algorithms. In particular, the rapid generation of GHZ
states would facilitate the rapid creation and distillation of larger
entangled states71, which can then be used as resources to
demonstrate the power of unbounded quantum fanout gates72

experimentally. The CCZS gate can also be used to generate more
familiar three-qubit gates, such as the iFredkin, with the addition
of a single CZ gate23, or for ϕ= 0, a fermionic Fredkin gate.
Beyond the computational basis, this gate can be used to
augment gate sets in qutrit systems, which has been a
comparatively unexplored field.

METHODS
Measurement setup
Qubit fabrication is performed as in the previous work73.
Additionally, we make use of aluminum crossovers to aid in
routing signals across the device and for tying together ground
planes of the chip. The device is packaged in a copper box and
wirebonded to a palladium- and gold-plated printed circuit board
(PCB). An aluminum shield with a volume is cut out around the
PCB traces, and the chip is fixed atop the device to push package
modes away from the operating frequencies of the device and
provide an additional layer of shielding. The PCB contains 16 non-
magnetic connectors, of which we use seven: two for the input
and output of the readout, three for local control of the single
qubits, and two for the static and AC flux control of the couplers.
The setup used in this experiment is a standard circuit-QED

setup. The copper package housing the sample sits at the bottom
of our Bluefors LD250 dilution refrigerator and is shielded from
magnetic fields by two shields of cryoperm/mu-metal and two
superconducting shields. All signal lines are attenuated and
filtered to thermalize the signals coming into the fridge (see
Supplementary Fig. 1).
We perform readout using a Zurich Instruments UHFQA for

generating and reading out the signals. The readout pulses pass

Fig. 5 Comparison of coherence limits of GHZ and W states via compilation to two- or three-qubit gates. a Coherence limits of GHZ state
preparation using two-qubit CZ gates and the three-qubit CCZS gate. The two-qubit decomposition is given in the inset, whereas the
preparation using the CCZS gate is shown in Fig. 4b. Similarly, in b, we compare the coherence limits of generating the W state using an
optimal two-qubit decomposition using the CZ gate and the qutrit version of the CCZS gate described in the main text and shown in Fig. 4d.
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through an up/down-conversion board where the local oscillator
(LO) from a Rohde & Schwarz SGS100a continuous-wave signal
generator is split between both the up- and down-conversion
halves. This maintains the phase coherence between the
generation and digitization of the readout signals. Single-qubit
pulses are synthesized using Zurich Instruments HDAWG and
upconverted internally using Rohde & Schwarz SGS100a vector
signal generators using internal IQ mixers. The flux drives for
couplers are generated digitally by the HDAWG as the signal
frequencies for our coupling gates fall within the bandwidth of
the HDAWG.

Qubit frame tracking
We fix the trigger period of the measurements such that it is an
even multiple of the least common multiple of the inverse of the
LO frequencies of the qubits

τp ¼ n ´ lcm
1

f 0LO
;
1

f 1LO
;
1

f 2LO

 !
(15)

For the qubit LOs of 4.5 GHz, 4.5 GHz, 5 GHz, this ends up being an
even multiple of 2 ns. In our case, we set our trigger period to
350 μs to allow for adequate time for the qubit to relax to the
ground state and reset. This timing ensures that for every trigger,
the qubits see the same phase of all drives (digital and analog). All
phase control of the pulses can then be handled by digitally
manipulating the carrier of the pulses generated on the HDAWG.
This holds for the adjustments in the local phases of the qubits to
update the qubit frame with virtual-Z gates and those of the flux
drives on the couplers, allowing full control over the SWAP phase
ϕ of the three-qubit gate.

Single-qubit gate set tomography
For the single-qubit gate set tomography, we first set about
verifying the independence of single-qubit operations and
measurements. We perform GST individually across all qubits
and then perform single-qubit GST simultaneously. In doing so, we
seek to find whether there is significant non-Markovianity
between the two modes of operation. While we do find greater
model violations between individual and simultaneous GST (see
Supplementary Fig. 4), the reconstructed operations and infide-
lities are similar between the two runs. Non-Markovianity can also
arise from drifts in parameters between the experiments as well as
fluctuations in the coherence of the device, which will occur over
the runtime of the GST measurements.
We perform a long-sequence GST (LSGST) set consisting of

gates from the set {I, Ry(π), Ry( ± π/2), Rx( ± π/2)}. The total number
of circuits performed in the analysis was 2904 separate gate
sequences up to a depth of L= 16, and each circuit was sampled
n= 5000 times. The circuits were generated, and results were
analyzed using pyGSTi74. From this, we extract for each qubit: the
noisy initial states, ~ρ0, noisy rotation operators,
f~Rxð± π=2Þ; ~Ryð± π=2Þ; ~RyðπÞg, and POVMs ~Mj for mitigating the
SPAM errors in the reconstruction. The results are summarized in
Supplementary Tables 2 and 3. Residual initial state populations
correspond to effective qubit temperatures of 50–60mK, which
are nominally the same as in state-of-the-art superconducting
architectures75.

SPAM-independent process tomography
In process tomography49, we first prepare the input probe states
f gj i; ej i; þj i; iþj ig�3 by performing single-qubit rotations from the
set fI; RyðπÞ; Ryðπ=2Þ; Rxð�π=2Þg�3. This gives us a set of 64 input
states on which we apply the process to be characterized. Finally,
we rotate the outcome into the bases {X, Y, Z}⊗3 by applying
single-qubit rotations from the set fRyð�π=2Þ; Rxðπ=2Þ; Ig�3. This

choice of rotations maintains the parity of the eigenvalue
associated with each input probe state when measured in its
basis so that we are left with binary output strings in the space
{0, 1}⊗3, simplifying the model of the POVMs.
Using the results of GST, we redefine the probe states in terms

of the noisy initial states for the three qubits, ~ρ0¼
N2

k¼0~ρ
k
0. We

then prepare the input probe states with the noisy rotation
operators, ~Ri¼

N2
k¼0

~R
k
, to generate each of the 64 input states,

~ρi ¼ ~Ri~ρ0~R
y
i : (16)

The process is then applied to the state using the Choi matrix
according to (9). The resulting state is then rotated into its
measurement basis and projected onto the set of outcomes
{0, 1}⊗3. We can represent our rotated POVM for a measurement
outcome s∈ [1, 8] and a particular Pauli basis j∈ [1, 27] as

~Mjs ¼ ~Rj ~Ms
~R
y
j : (17)

The probability that a three-qubit state has an outcome s, given a
measurement basis j, and preparation i is then

pi;j;s ¼ Trð~Mj;s~ρ
0
iÞ ¼ Trð~Mj;s � Idð~ρi � IdÞρΦÞ

¼ Trðð~Mj;s~ρi � IdÞρΦÞ:
(18)

The probabilities can be written down as a vector and, since the
above equation is linear, can be set up as a linear inversion
problem that obtains the Choi matrix by inverting the equation

A ρ!Φ ¼ p!: (19)

Here, the matrix A contains all the information regarding the
probes and measurements with ρ!Φ and p! as the flattened Choi
matrix and the probabilities. The construction of A is described in
ref. 52; we use linear inversion of A to obtain an initial estimate of
the process.

Quantum state reconstruction
For the state tomography, we prepare the states as the insets in
Fig. 4b, d show and similarly measure the {X, Y, Z}⊗3 basis. We
apply the measurement mitigation we obtain from the measured
POVMs and perform a least-square algorithm to reconstruct the
density matrix constraining the fit to be trace-preserving. The
density matrix is represented using the Cholesky decomposition,
making the reconstruction manifestly positive semidefinite,

ρ ¼ T yT
TrT yT

: (20)

T is a triangular matrix,

T ¼

t0 0 0 � � � 0

t2n þ it2nþ1 t1 0 � � � 0

t3ð2n�1Þþ1 þ it3ð2n�1Þþ2 t2nþ2 þ it2nþ3 t2 � � � 0

..

. ..
. ..

. . .
.

0

� � � � � � � � � t3ð2n�1Þ�1 þ it3ð2n�1Þ t2n�1

2
66666664

3
77777775
;

(21)

where t ¼ ½t0; t1; � � � ; t4n�1	 is a set of parameters containing all
real numbers ti.
For the state tomography, we perform post-processing on the

relative phases between populations of the GHZj i ¼ 1=
ffiffiffi
2

p ð 000j i þ
eiϕ 111j iÞ and Wj i ¼ 1=

ffiffiffi
3

p ð 100j i þ eiϕ1 010j i þ eiϕ2 001j iÞ by find-
ing local rotations RZ(ϕi) for each reconstruction which maximize the
overlap with their ideal states. Neither of these local operations
alters the entanglement characteristics of the resulting states.

DATA AVAILABILITY
All measurement data that support the findings of this work are publically available
at https://github.com/warrench/CCZS-gate. Any other required information is
available from the corresponding author upon reasonable request.
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CODE AVAILABILITY
All code for the analysis that supports the findings of this work can be found at
https://github.com/warrench/CCZS-gate. pyGSTi is used for gate set tomography and
may be found at https://github.com/pyGSTio/pyGSTi. The state tomography library
may be found at https://github.com/warrench/pyQTomo. We adapt code for the PLS
from the original implementation found in https://github.com/Hannoskaj/
Hyperplane_Intersection_Projection. Any other required code may be obtained from
the corresponding author upon reasonable request.
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