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Boundaries of quantum supremacy via random circuit
sampling
Alexander Zlokapa 1✉, Benjamin Villalonga2, Sergio Boixo 2 and Daniel A. Lidar 3

Google’s quantum supremacy experiment heralded a transition point where quantum computers can evaluate a computational
task, random circuit sampling, faster than classical supercomputers. We examine the constraints on the region of quantum
advantage for quantum circuits with a larger number of qubits and gates than experimentally implemented. At near-term gate
fidelities, we demonstrate that quantum supremacy is limited to circuits with a qubit count and circuit depth of a few hundred.
Larger circuits encounter two distinct boundaries: a return of a classical advantage and practically infeasible quantum runtimes.
Decreasing error rates cause the region of a quantum advantage to grow rapidly. At error rates required for early implementations
of the surface code, the largest circuit size within the quantum supremacy regime coincides approximately with the smallest circuit
size needed to implement error correction. Thus, the boundaries of quantum supremacy may fortuitously coincide with the advent
of scalable, error-corrected quantum computing.
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INTRODUCTION
A recent seminal result1,2 by Google Quantum AI and collaborators
claimed quantum supremacy3–11, sampling pseudo-random
quantum circuits on noisy intermediate-scale quantum (NISQ)
hardware12 beyond what can be done in practice by state-of-the-
art supercomputers. The observed runtime advantage over
classical simulation methods in cross-entropy benchmarking
through random circuit sampling provides a critical achievement
in establishing a performance benchmark between NISQ compu-
ters and classical supercomputers. It shows a quantum runtime
speedup beyond the reach of implemented classical algo-
rithms6,13–19. However, it is inevitable that implemented classical
algorithms will continue to improve, and there also exist
proposals20,21 for faster classical implementations which have
not been realized so far.
As the quantum circuit width and depth increase, circuit fidelity

is observed to decrease exponentially in the absence of quantum
error correction (QEC)22,23. We describe the computational task of
cross-entropy benchmarking in terms of this fidelity and its
variance, with the concomitant increased effort of random circuit
sampling on a quantum computer as the fidelity worsens. Our
main finding is that currently known classical simulation
algorithms can recover a classical advantage for cross-entropy
benchmarking on sufficiently large quantum circuits. In other
words, the quantum advantage is in fact a relatively limited region
in the circuit width and depth plane. Using data from Refs. 1,2, we
explicitly characterize this region with respect to quantum circuit
width and depth. At the current fidelity of quantum hardware
established by the Google Sycamore chip, numerical estimates
indicate that a quantum advantage may extend to circuits with a
depth of a few hundred and a width of several hundred qubits,
beyond which a classical advantage returns.
As NISQ hardware continues to improve gate and readout

fidelity, we quantify the trajectory of the quantum runtime
advantage in cross-entropy benchmarking and place it in the

context of current and future milestones for quantum computing
in the NISQ era. This era is expected to last up to the point where
QEC becomes pervasive and beneficial—the QEC era—estimated
to be around a few thousand qubits for gate-model quantum
computers, assuming a concurrent improvement in metrics of
fidelity and coherence24–27. We show that improving the gate
fidelity enlarges the region of quantum supremacy inversely with
gate error, although a classical advantage will still remain for
sufficiently large quantum circuits. At the gate fidelity required for
QEC, the boundary of quantum supremacy provided by cross-
entropy benchmarking may naively be expected to be situated at
circuit sizes distant from those in proposed QEC protocols.
However, our results suggest that the boundary of advantage in
quantum random circuit sampling will soon coincide with circuit
sizes sufficiently large for early implementations of QEC. Once in
the QEC regime, more significant benefits than are possible from
random circuit sampling are anticipated from scaling advantages
of quantum algorithms for important problems such as prime
factorization28, matrix inversion29 or quantum simulation30. Hence,
the extrapolations provided below indicate that we may witness a
smooth transition from beyond-classical computation in the NISQ
era to applications in the QEC era.

RESULTS
We first briefly review random circuit sampling and the linear
cross-entropy benchmarking metric F XEB to define the precise
computational task of quantum supremacy for random circuit
sampling. Using an empirical fidelity model described in the
Methods section, we assess the expected performance of classical
algorithms. We show an asymptotic scaling advantage above a
threshold depth with the Schrödinger algorithm; for our main
results about the boundaries of a quantum advantage, we also
consider the Schrödinger-Feynman algorithm and tensor
networks.
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Random circuit sampling
In circuit sampling, we seek to sample from the probability
distribution of outcomes pUðxÞ ¼ j xh jU 0j ij2 for a given quantum
circuit U and bitstrings xj i, starting from the all-zero string 0j i.
Historically, circuit sampling was first studied for quantum circuits
from a family with certain structure: instantaneous quantum
polynomial time (IQP) circuits were shown to be hard to simulate
classically under reasonable average-case conjectures5,31. In
random circuit sampling (RCS)10 as experimentally realized by the
Google experiment6, we sample from circuits U 2 U , defining the
set U to be n-qubit circuits with m cycles, where each cycle
consists of a layer of randomly chosen single-qubit gates applied
to all qubits followed by a layer of two-qubit gates.
RCS is classically hard for noiseless, fully randomly drawn

quantum circuits subject to conjectures widely believed to
hold10,11 (note that the set U is not fully random). At the other
extreme, if the circuits are completely noisy RCS is classically trivial
since then the output bitstrings are uniformly distributed. RCS is
also classically easy for very small m32. Additionally, sufficiently
noisy one-dimensional random circuits can be simulated efficiently
classically using matrix product state21 or operator33 methods.
To quantify the hardness of RCS, we use an estimator of circuit

fidelity called linear cross-entropy benchmarking (XEB) F XEB
1,2,6,9:

F XEB þ 1 ¼ 2n
X
x

qUðxÞpUðxÞ
* +

¼ 2nhhpUðxÞii; (1)

where qU:{0,1}n↦[0, 1] is the probability density function of the
distribution obtained by measuring U 0nj i, pU(x) is the probability
of bitstring x ∈ {0, 1}n computed classically for the ideal quantum
circuit U, and the outer average 〈⋅〉 is over random circuits U.
For a fully random quantum circuit, the probability distribution
over U 0nj i is given by the Porter-Thomas distribution, i.e., an
exponential distribution over a random permutation of bitstrings.
In practice, ideal unitary circuits will be replaced by noisy versions,
generally trace-preserving completely-positive maps EU . Thus the
sampling is from the noisy probability distribution of outcomes
~qUðxÞ ¼ xh jEUð 0j i 0h jÞ xj i, which replaces qU(x) in Eq. (1). In an
experimental setting, the fidelity may still be effectively measured
due to the existence of “heavy” bitstrings with a higher probability
of being measured by virtue of the Porter-Thomas distribution.
By definition, F XEB compares how often each bitstring is observed

experimentally with its corresponding ideal probability computed
via classical simulation, though it is also possible to avoid classical
simulation to try to “spoof" F XEB

34,35. It can also be understood as a
test that checks that the observed samples tend to concentrate on
the outputs that have higher probabilities under the ideal (Porter-
Thomas) distribution for the given quantum circuit, or simply as the
probability that no error has occurred while running the circuit.
Thus, the cross-entropy benchmark fidelity F XEB is a good estimator
of the experimental circuit fidelity F1,2,6,9,15. Note that a noiseless
random circuit has F XEB ¼ 1 on average for a perfect simulation,
while a distribution pU which is the uniform distribution or another
distribution independent of U will give F XEB ¼ 035. As described in
the Methods section, we use an empirical fidelity model of a circuit
with n qubits and m cycles given by

F ¼ 2�λmð3n� ffiffi
n

p Þ=2�γn; (2)

with parameters λ, γ fitted to data from Ref. 1 shown in Fig. 5 and
found to correspond to average gate errors of 0.3% and readout
errors of 3% (see Methods). The cross-entropy benchmark fidelity
F XEB is a good estimator of the empirical fidelity F1,6,9,15, so
henceforth we use the two interchangeably.

The quantum supremacy task
Under the conjecture XQUATH introduced in Ref. 34, XEB is shown
to be classically hard: given a circuit U on n qubits, generate

N distinct samples x1,…, xN such that 〈pU(x)〉 ≥ b/2n for b > 1.
Phrased in terms of the fidelity estimator defined in Eq. (1), solving
XEB (also referred to as XHOG) requires N ¼ OðF�2

XEBÞ samples. For
clarity, we can restate the task as generating a sample of bitstrings
such that the random variable F XEBðn;mÞ for random circuits with
n qubits and m cycles can be estimated to within standard
deviation σ<F XEB. By the central limit theorem σ= N−1/2, i.e., this
requires N ¼ OðF�2

XEBÞ bitstrings to be generated2. For a quantum
computer, the task requires a random circuit to be run N times,
while typically classical algorithms either simulate these circuits
noiselessly or approximately15,17. Critically, the factor of N samples
required by a quantum computer causes the quantum runtime to
scale poorly with fidelity, ultimately allowing a classical advantage
for XEB at sufficiently large circuit sizes.
The latter is the computational problem solved in Google’s

quantum supremacy work1, which reported
F XEBð53; 20Þ � ð2:24 ± 0:21Þ ´ 10�3, i.e., passed the σ <F XEB test.
As expected, this required N � F�2

XEB � 106 runs and was done in
~ 200s, a time that has so far resisted attempts to be overtaken by
classical algorithms17–19.
We note that although XEB is known to be classically hard

under certain plausible conjectures1,2,6,34, it can be spoofed for
circuits shallower than those in the Google experiment35. In our
analysis, we do not rule out alternative classical algorithms that
completely bypass circuit simulation, but do not consider this
possibility here given the conjectured exponential classical cost
of RCS.

Asymptotic classical scaling advantage above a threshold
depth
We address several classical simulation algorithms in this and the
following sections for RCS with an n-qubit and m-cycle quantum
circuit, including the Schrödinger algorithm15,20, Schrödinger-
Feynman algorithm7,15,16 and tensor networks17–19,36,37. First,
however, we address the scaling of a quantum computer for
comparison. Given a time scaling of TQ � m=F 2

XEB (assuming
parallel readout) for the quantum computer to evaluate 1=F 2

XEB
samples for cross-entropy benchmarking, we evaluate the scaling
for samples using our fidelity model:

TQ � m2λmð3n� ffiffi
n

p Þþ2γn: (3)

It should be noted that the depolarization model leading to this
estimate [given by Eq. (2)] is subject to certain caveats noted in
the Methods section; with this in mind, we proceed with this
model to provide approximate numerical figures that help make
the NISQ landscape more concrete.
Out of the different classical simulation algorithms we consider,

we begin with the Schrödinger algorithm (SA)15,20 due to its
favorable asymptotic scaling. Since it provides a full fidelity
simulation, an optimal implementation of SA allows us to simulate
only one randomly generated circuit and then repeatedly sample
from its resulting amplitudes to solve XEB. From Eq. (107) of Ref. 2,
this is completed in time

TSA � mn2n ¼ TQn2
nð1�2γÞ�λmð3n� ffiffi

n
p Þ: (4)

For sufficiently small constants λ and γ, XEB can be classically
solved exponentially faster in m and n using SA for any m greater
than a threshold value mth(n), corresponding to an asymptotic
classical advantage for RCS for circuits deeper than

mthðnÞ ¼ nð1� 2γÞ þ log2n
λð3n� ffiffiffi

n
p Þ �!n!1 1� 2γ

3λ
: (5)

For the Google Sycamore device with n= 53, this threshold
occurs at m ≈ 87. If the experimentally achieved values of λ, γ may
be sustained for larger devices, an advantage for SA is achieved
for all m≳ 71 as n→∞. As these are relatively shallow depths, this
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result may be compared to the algorithm of Bravyi, Gosset and
Movassagh (BGM)38 for simulating the circuit in time
TBGM � n2Oðm

2Þ , yielding a classical exponential speedup over
quantum RCS for fixed m. Hence, a classical exponential
advantage is achieved for RCS in all cases, above a certain
width-dependent threshold circuit depth set by the quantum
hardware’s fidelity. However, classical hardware limitations con-
strain the experimental realization of such speedups, and thus we
turn to the existence of a quantum runtime advantage at non-
asymptotic widths and depths.

Limited-scale quantum runtime advantage
Due to limitations in random access memory, the Schrödinger
algorithm is infeasible to run for a sufficiently large number of
qubits, requiring storage of 2n complex amplitudes. Similarly, the
BGM algorithm has prohibitively large runtime with increasing
depth since it scales as 2Oðm

2Þ. In contrast, while achieving worse
asymptotic performance than SA or BGM, the Schrödinger-
Feynman algorithm (SFA)7,15,16 and tensor networks
(TN)17–19,36,37 are more suitable to accommodate constraints of
available classical hardware due to the use of Feynman paths and
patching techniques that do not require keeping the entire
quantum state in memory, as explained in more detail below. Both
of these classical methods allow circuits to be simulated to partial
fidelity F.
For SFA, we optimize the number of patches p ≥ 2 and the

number of paths simulated to satisfy XEB. We need to simulate
2kpBm

ffiffi
n

p
F permutations or paths of Schmidt decompositions of

cross-gates between patches2,15. After simulating each patch (at a
time cost of 2n/p) we must compute the partial amplitudes of 1/F2

bitstrings (but at most 2n). Assuming that both simulation within
patches and in between patches have similar runtime prefactors,
the time scaling is

TSFA ¼ 2kpBm
ffiffi
n

p
F p2n=p þmin F�2; 2n

� �� �
(6)

where k= 1 for p= 2 patches, k= 3/4 for p= 4 patches, and so
on2,15,16, approximated as k ¼ 1

2 þ 1
p. The constant B= 0.24 is given

by the grid layout of the Sycamore chip2. Optimizing the runtime
TSFA as a function of the simulation fidelity F gives F−2= p2n/p for
n> log2ðpÞ=ð1� 1=pÞ. In contrast to the SA memory usage of 2n

complex amplitudes, SFA with p patches only requires 2p2n/p

complex amplitudes at the optimal simulation fidelity. Although
increasing the number of patches reduces memory requirements,
larger p increases TSFA runtime as well. In practice, SFA runtimes
may be improved by taking checkpoints during simulation15, but
the leading order in runtime scaling is given by Eq. (6).
To compare the expected runtime of a classical model to

quantum hardware given our fidelity model, we define the total
runtime of the computational task Rx(n, m)= τxTx(n,m), with
x∈ {Q, SA, SFA}. The runtime constants τx are obtained from Ref. 2;
for SFA this constant captures the fact that parallelization may
reduce the runtime significantly. Since the total runtime is
exponential in both m and n in all cases, and any scaling
advantage is therefore due to a reduced exponent, we also define
a more natural notion of an effective polynomial quantum speedup
αC > 0 if for a classical method C (with, for our purposes, C∈ {SA,
SFA}) the time scalings are related via TC(n,m)= TQ(n,m)1+α, i.e.,

αC ¼ log TC

log TQ
� 1: (7)

A value of αC > 0 (αC < 0) implies a quantum (classical)
advantage, capturing the relative reduction of the exponent in
TQ(n, m) (TC(n, m)). We compare the runtime advantage
boundaries created by the effective polynomial speedup analysis
and a direct runtime analysis. The result is shown in Fig. 1, with
runtime constants estimated from empirical data2. The Google

Sycamore experiments are inside the boundary of a quantum
advantage, which extends to a maximum depth and width of
approximately 70 cycles and 104 qubits, respectively, beyond
which classical algorithms dominate.
The results shown in Fig. 1 do not account for memory

constraints. To more accurately place bounds on a quantum
runtime advantage, the memory limitations of classical hardware
must be considered. An additional boundary is imposed by
infeasible quantum runtimes, resulting in Fig. 2. Besides consider-
ing current quantum devices, we project superconducting qubit
NISQ error rates and classical hardware to estimate the computa-
tional feasibility of XEB in the near term. Error rates of two-qubit
gates of superconducting qubit NISQ devices are taken from
isolated measurements of transmons at a given year1,39–44 to
determine an exponential fit shown in the inset of Fig. 2(c), which
is then applied to the fitted constants γ and λ in the error model of
Eq. (2). Although not exact, this provides an estimate of a
reasonable range of error rates to consider on a 5-year timescale.
Besides the return of a classical advantage for sufficiently large

quantum circuits due to requiring O(1/F2) samples to solve XEB
with a quantum computer, the numerical extrapolations above
indicate additional boundaries on quantum supremacy caused by
intractable quantum runtimes and classical memory limitations.
We observe that the Google experiments have achieved a critical
fidelity threshold to gain a runtime advantage over classical
simulation. Had error rates been around 2.8 × larger than
Sycamore’s (corresponding to an increased isolated two-qubit
gate error rate of 1%), no quantum advantage would have been
achieved in cross-entropy benchmarking within 100-year quan-
tum runtimes [Fig. 2(a)]. However, even at the fidelity achieved by
the Google experiment, the quantum runtime advantage for XEB
stops at a few hundred qubits due to long quantum runtimes (Fig.
2(b)). Extrapolations suggest that even at achievable near-term
fidelities below surface code thresholds, cross-entropy bench-
marking will yield a runtime advantage up to at most a thousand

Fig. 1 Boundaries of an effective polynomial quantum speedup
(Eq. (7)) for circuits with n qubits and m cycles (without
accounting for memory constraints). Circuits that are too wide or
deep have low fidelity, enabling a classical advantage. However, the
Google Sycamore experiments (red dots) achieved a sufficiently
high fidelity to enter the region of a quantum runtime advantage,
denoted by the white region (αC > 0). Only depths larger than 5
cycles are shown due to recent polynomial-time simulation results
for shallow 2D circuits32.
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qubits, beyond which quantum runtimes are computationally
infeasible [Fig. 2(c)]. However, the regime of quantum advantage
rapidly improves with lower error rates, underscoring the
importance of achieving lower error rates for NISQ devices.

Sampling using tensor networks
In this section we consider the estimated runtimes of tensor
network methods in the quantum supremacy sampling task. The
simulation cost using tensor networks has been drastically
reduced since the original experimental supremacy result (see,
e.g., Refs. 45,46), and in this section we provide an up-to-date
analysis.
We consider random circuits of depth m similar to those of Ref. 1

over square lattices of qubits of size
ffiffiffi
n

p
´

ffiffiffi
n

p
. In line with Section

the quantum supremacy task we require the number of bitstrings
N to be large enough to resolve the variable F XEB with certainty
comparable to that of Ref. 1. In order to do so, we consider the
parameters of the largest circuits ran in Ref. 1, i.e., n= 53, m= 20,
N= 106, and F XEB ¼ 2:24 ´ 10�3. If we sample with F XEB ¼ 1, then

N / OðF�2
XEBÞ yields N ¼ 106 2:24 ´ 10�3

1

� �2
¼ 5:02 � 5. Note that

tensor network methods can sample at low fidelity with a speedup
approximately equal to F�1

XEB. However, given that the number of
bitstrings N necessary to achieve a constant F XEB=σ ratio grows
with F�2

XEB, it is advantageous for tensor network methods to
sample with maximal F XEB ¼ 1. As introduced in Ref. 47, we
assume that each contraction of the tensor network generated by
the random circuit yields an uncorrelated sample from the output
distribution. Ref. 46 introduced a method to sample many
uncorrelated bitstrings per contraction. Similarly, Ref. 45 introduced
a method to reuse intermediate computations across many
independent tensor network contractions. However, these meth-
ods were heavily optimized for the m= 20, n= 53 circuits of Ref. 1

and it is unclear how they scale asymptotically. We do not include
them in our analysis. As discussed below, this does not affect the
validity of our lowest time estimates.

As mentioned above, one can also define the sampling task
with a fixed number of bitstrings N ≈ 106 and a target fidelity
F XEB

1,6,15,17–19,47. In that case, tensor network methods can
advantageously leverage the linear speedup introduced in
Refs. 15,47, i.e., sampling with fidelity F XEB with a reduction in
computation time by a factor F�1

XEB. In this section we analyze the
performance of tensor networks for both definitions of the task.
In order to get tensor network runtime estimates for the

sampling tasks we proceed as follows. First, we generate random
circuits similar to those run on Sycamore over square lattices of
size n= 3 × 3 through n= 20 × 20, and depths m= 4 through
m= 60. We then optimize the contraction ordering of the tensor
network induced by these circuits using CoTenGra18 for a
maximum contraction width of 29, i.e., the largest tensor in the
contraction cannot exceed 229 in size18,19,48. This width is chosen
so that the memory requirement of a single contraction is smaller
than the memory available on each GPU in Summit, as discussed
in more length in Refs. 18,19. We use the KaHyPar driver in the
optimization and make use of the subtree reconfiguration
functionality implemented in CoTenGra for subtrees of size 1019.
For each circuit, we run the optimization 500 times. This yields an
upper bound on the number of floating point operations required
for each circuit of parameters (m, n), for a discrete set of (m, n)
points. We then linearly interpolate the logarithm of this function,
log2FLOPðm; nÞ, which lets us estimate the FLOP cost of a
contraction over the (m, n) plane. The estimated cost for the
(m= 20, n= 53) circuits is larger than the one found in Ref. 19,
presumably due to the hardness of simulation of square lattices as
compared to the rectangular n= 53 Sycamore topology. (Syca-
more’s layout is not really a rectangle, but a rotated surface code
layout with a slight asymmetry in the length of both axes. In
addition, there is a missing qubit on one edge, which makes it
easier to simulate.) In order to be consistent with the estimate of
Ref. 19, we define a new function

log2FLOP
0ðm; nÞ ¼ log2FLOPðm; nÞ � D ; (8)

Fig. 2 Classical and quantum runtime advantage boundaries after accounting for memory constraints. Subfigures show different error
rates relative to the Sycamore error model fitted in Fig. 5, with corresponding captions indicating isolated two-qubit gate error rates. Black
contours indicate quantum device runtimes; colored regions indicate where a classical runtime advantage is expected according to
supercomputer memory and performance; red dots show the circuit width (n) and number of cycles (m) of each Sycamore experiment
reported in1. Panel (a) shows that a mere 2.8 × factor increase in the error rate relative to the Sycamore chip would have required a quantum
runtime of 100 years to break even with SA and SFA. Panel (b) shows the performance of SA and SFA relative to quantum runtimes at the error
rate of the Sycamore device. Panel (c) uses the extrapolated fidelity of a state-of-the-art NISQ device in 2025 (inset, error rates decay by a factor
of ~ 0.77 per year), and illustrates how even modest gains in error rates can significantly move the feasible quantum supremacy boundary.
Extrapolated error rates are given by an exponential regression over transmon device two-qubit gate errors1,39–44. All errors of the Sycamore
device (single-qubit/two-qubit gates, readout errors) are scaled proportionally to the extrapolation. Runtimes are computed using Eqs. (3), (4),
and (6) with p optimized within memory limitations, using performance and memory values reported in Ref. 2.
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where D ¼ log2FLOPð20; 53Þ � log2FLOPSycð20; 53Þ and
log2FLOPSycð20; 53Þ is the estimate given by Ref. 19. In other
words, we shift log2FLOPðm; nÞ in order for it to match the best
known (m= 20, n= 53) estimate for the Sycamore topology.
Finally, the time estimate TSummit(m, n) to finish the sampling task
on the Summit supercomputer using single precision floating
point complex numbers is

TSummitðm; nÞ ¼ 8ESummit
2log2FLOP

0 ðm; nÞ ´N ´F XEB

FLOPsSummit
; (9)

where N is the number of bitstrings sampled, the F XEB factor
accounts for the linear speedup due to low fidelity sampling,
FLOPsSummit ≈ 4 × 1017s−1 is the peak single precision FLOP count
per second delivered by Summit, the factor of 8 accounts for the
use of single precision multiply-add operations in the matrix
multiplications involved in the tensor contractions17, and ESummit ≈
0.15 is the empirical efficiency of the tensor contractions run on
Summit’s NVIDIA V100 GPUs19.
Figure 3 shows the estimated compute time needed to

complete the sampling tasks over n qubits and m cycles using
the Summit supercomputer, TSummit(m, n). As expected, for
constant, sufficiently small n, increasing depth m does not add
complexity to the contraction beyond a linear factor. This is not
true at constant m and increasing n on a square lattice.
Estimates for parameters F XEB ¼ 1 and N= 5 are shown with

black, solid lines. Estimates for F XEB ¼ 2:24 ´ 10�3 and N= 106 are
shown with blue, dotted lines. As discussed above, the first set of
parameters is targeted at achieving F XEB > σ, while the second is
targeted at sampling N= 106 output bitstrings with fidelity similar
to that one of the experiment of Ref. 1. Sampling 5 bitstrings from
the (m= 20, n= 53) circuit with fidelity F XEB ¼ 1 is estimated to
take about 1.23 h on Summit. Sampling 106 bitstrings from the
same circuit with fidelity F XEB � 2:24 ´ 10�3 is estimated to take
about 23 days on Summit, which is consistent with Ref. 19, which
estimated 20 days with F XEB � 2 ´ 10�3. Note that we have not
included the methods studied in Refs. 45,46 in our analysis, given
that it is not clear how they would scale at larger values of m and
n. However, the low number of bitstrings needed when sampling
with F XEB ¼ 1 makes our estimate for the (m= 20, n= 53) circuits

consistent with the results of Ref. 46, which manages to sample a
large number of uncorrelated bitstrings at a cost not much larger
than that of computing a single amplitude. Ref. 46 uses 512 NVIDIA
A100 GPUs and completes the sampling task in 15 h. Summit, on
the other hand, has 27648 NVIDIA V100 GPUs, which have less
computational power and memory than the A100 model.
Extrapolating time estimates for this method to Summit is
therefore not straightforward. Similarly, our time estimate for
these circuits is much lower than the 7.5 days of Ref. 45. Note that
Ref. 49 claimed that it solved the sampling task in about
300 seconds. However, this work generated a single set of
correlated bitstrings, unlike Refs. 45,46 and our own estimates,
which sample uncorrelated bitstrings, similar to experimental RCS.
In our estimates we have targeted a contraction width of 29 in

order to decrease memory requirements to fit the memory of
NVIDIA V100 GPUs. One could wonder how much time estimates
decrease when memory constraints are loosened. It turns out that
in the unrealistic case where we do not constrain the memory
requirements (as in Fig. 1), compute times go down by about a
factor of 419. This would place the time estimate for sampling 5
bitstrings from the (m= 20, n= 53) circuit at fidelity F XEB ¼ 1 at
about 18.5 min. Sampling 106 bitstrings at fidelity F XEB ¼
2:24 ´ 10�3 from the same circuit would take about 5.75 days.
This is to be compared to 200 seconds for the experiment of Ref. 1

with N= 106 and F XEB ¼ 2:24 ´ 10�3.

DISCUSSION
Due to an asymptotic classical advantage for circuits with
sufficiently small n and large m for random circuit sampling at
fixed quantum fidelity, we find that the projected quantum
runtime advantages for the next five years in solving the XEB
problem underlying Google’s quantum supremacy demonstra-
tion1 are limited to the very early NISQ regime. However, reducing
the component error rate increases the quantum advantage
regime rapidly, which underscores the importance of a continued
emphasis on error rate reduction. We observe that while our work
can be interpreted as placing a practical upper bound on circuit
width and depth for which RCS-based quantum supremacy holds,
a rigorous lower bound based on complexity theory conjectures
ruling out all possibility of competitive classical simulation
algorithms, both known and unknown, was presented in Ref. 50

for other supremacy proposals in the noiseless setting.
For narrow circuits within classical memory constraints of up to

50 qubits, a classical advantage is expected to remain in the near-
term beyond depths of a few hundred [see Fig. 2]. As given by Eq.
(2), these results assume depolarization error with the additional
simplification into independent cycle and qubit errors. While the
model provides a reasonable heuristic, the possible superexpo-
nential decay of fidelity discussed in the Methods section implies
that this is an upper bound on the expected fidelity for larger
circuits. Hence, the presence of the upper boundary on the
quantum supremacy regime caused by requiring O(1/F2) samples
with a decaying fidelity may occur at even shallower depths. In the
absence of quantum data51 or an oracle52, we observe that the
lack of structure in random circuit sampling provides a lower
bound on hardness: any circuit with additional structure (such as
quantum simulation) must lie within the boundaries of quantum
RCS advantage to achieve a quantum speedup.
While RCS provides a purposeful milestone for measuring the

progress of quantum devices, we have shown that the regime of
quantum advantage for a standard approach to XEB in the near
term is upper-bounded by about a thousand qubits, rapidly
approaching circuit sizes sufficient for early QEC. Given that
fidelities comparable to those achieved in the Google experiment
are close to establishing surface codes at a few hundred to a few
thousand physical qubits24–27, we anticipate that the disappear-
ance of the quantum runtime advantage in RCS shown here

Fig. 3 Time estimates for the quantum supremacy sampling task
using tensor networks and the Summit supercomputer. Black,
solid contours give estimates for perfect fidelity simulations, which
require only 5 bitstrings to achieve F XEB > 0 with similar confidence
to the experiment of Ref. 1. Blue, dotted contours consider a fidelity
and a number of bitstrings similar the one achieved by the
experiment of Ref. 1 for the largest circuits, i.e., n= 53 qubits and
m= 20 cycles. See the main text for a discussion of both
sampling tasks.
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approximately coincides with the onset of error-corrected
quantum computing. Hence, while the point of comparison in
XEB and other metrics are either established through or motivated
by classical simulation of random quantum circuits, this transition
point into QEC motivates the adoption of problem-specific or
QEC-specific metrics of progress for the field. By focusing on
problems that do not require direct circuit simulation — similar to
the benchmarking of quantum annealers vs state-of-the-art
classical optimization algorithms53–56 — we may obtain a more
informative view of the usefulness of a quantum device.
In combination with the above limitations on intractable

quantum runtimes for wide circuits, this result naively suggests
a non-smooth transition to QEC characterized by a classical
advantage, as circuits may be too large to achieve a quantum
advantage via XEB but too small to perform computational tasks
aided by QEC. However, the numerical results suggest that the
onset of QEC will approximately coincide with the boundary of a
feasible quantum advantage in random circuit sampling. To be
precise, performing XEB on 1000 qubits within reasonable
quantum runtime and depth m ¼ ffiffiffi

n
p

requires error rates that
are an order of magnitude reduced from Sycamore; this coincides
with error rates at the fault tolerance threshold. Many of the most
appealing results for quantum computers are far more transfor-
mative in the presence of QEC. With this in mind we anticipate
that given the limitations of the XEB problem in maintaining a
quantum advantage upon its intersection with early QEC circuit
sizes, it will be natural to transition from the NISQ era to the QEC
era along with metrics designed to capture performance under
QEC, such as logical error rate.

METHODS
Depolarization error model
We describe the fidelity model given in Eq. (2) and fitted to the
Google experiment (Fig. 5).
We assume a depolarization error model, which yields a fidelity

that decays like a power law with the addition of gates and qubits.
For a gate set G, gate errors eg, qubit set Q, and qubit errors
(measurement and state preparation) eq, we approximate the
fidelity in the absence of QEC by F= ∏g∈G(1− eg)∏q∈Q(1− eq)2.
We simplify the approximation of fidelity into cycle errors,

assigning a constant error per cycle and per readout. A single
cycle consists of single-qubit gates applied to all n qubits followed
by a pattern of two-qubit gates along edges in the planar graph,
denoted by a single color in Fig. 4. For a square lattice of n qubits,
each row and each column includes

ffiffiffi
n

p � 1 two-qubit gates. Each
cycle contains two-qubit gates of just one color. For odd n, all four
colors appear

ffiffiffi
n

p
´ ð ffiffiffi

n
p � 1Þ=2 ¼ ðn� ffiffiffi

n
p Þ=2 times. For even n,

blue and yellow each appear
ffiffiffi
n

p
´ ð ffiffiffi

n
p

=2Þ times, whereas red and
green appear

ffiffiffi
n

p
´ ð ffiffiffi

n
p

=2� 1Þ times. Thus, also for even n on
average ðn� ffiffiffi

n
p Þ=2 gates are applied per cycle. Hence, a total of

mðnþ ðn� ffiffiffi
n

p Þ=2Þ gates are applied for each circuit of m cycles.
Including a separate factor for the readout error, we thus
approximate the fidelity as in Eq. (2).
Due to this error model, we may observe the noise dependence

of the outer boundary of the quantum supremacy regime defined
by setting TQ to a given constant (e.g. 1 year). Since TQ ~m/F2 and
F ~ (1−e)−mn to leading order for characteristic gate error rate e,
fixing m (or n) and Taylor expanding logð1� eÞ in small e shows
that the number of gates (i.e., the boundary in m or n) grows like
O(1/e). This provides the rapid growth of the quantum supremacy
regime with improved error rates, as discussed in the abstract and
main text.
We perform an empirical fit of the fidelity model to data from

Ref. 1 shown in Fig. 5. The parameters λ, γ are constants that result
from the regular application of cycles and readout errors,
respectively, as random gate selection in RCS allows us to adopt

an effective error rate per cycle or qubit. As noted in the Results
section, the cross-entropy benchmark fidelity F XEB is a good
estimator of the empirical fidelity F1,6,9,15. The values of λ and γ
may also be related directly to gate fidelities: rearranging the
depolarization error model for F gives an average gate error of
eg= 1− 2−λ ≈ 0.3% and an average readout error of
eq= 1− 2−γ ≈ 3%, assuming equal errors for all gates and qubits.
These numbers closely match the observed gate and readout
errors reported in the original quantum supremacy experiment of

Fig. 4 Cycles of a random circuit sampling experiment on an n-
qubit planar architecture. Each cycle consists of single-qubit gates
followed by a pattern of two-qubit gates, such as those highlighted
by a single color in the diagram.

Fig. 5 Empirical fidelity model Eq. (2) for λ= 0.0043 ± 0.0008 and
γ= 0.042 ± 0.017 (to two standard deviations) showing quality of
fit for elided verifiable circuits of fixed depth (blue) and elided
supremacy circuits of fixed width (red). The deviation from the fit is
largely caused by the proportion of two-qubit gates used in larger
circuits. Source: Fig. 4 of Ref. 1.
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0.1−1% (depending on the type of gate and presence neighbor-
ing gates) and 3.1−3.8% (depending on isolated or simultaneous
measurement) respectively1.
The superexponential decay in fidelity for larger circuits visible

in Fig. 5 largely occurs due to the increased proportion of two-
qubit gates for circuits with a relatively smaller boundary, as seen
by the better fit in Fig. 4 of Ref. 1 that considers gate-specific noise
and accounts for a non-square geometry. If other sources of noise
such as 1/f noise appear on longer timescales57 or cross-talk
between qubits increases with wider circuits, the quantum
advantage region may be further constrained. Hence, the
depolarization model provides an upper bound on the expected
fidelity of large quantum circuits. Nevertheless, our results above
showing a return of classical advantage for sufficiently large
quantum circuits are robust to this, although the precise location
of the boundary may shift if the depolarization error assumption is
weakened.

DATA AVAILABILITY
We provide all data for computing quantum advantage boundaries in a
supplemental GitHub repository58.
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