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Surpassing the repeaterless bound with a photon-number
encoded measurement-device-independent quantum key
distribution protocol
Özlem Erkılıç 1✉, Lorcán Conlon 1, Biveen Shajilal 1, Sebastian Kish1, Spyros Tserkis 1, Yong-Su Kim 2,3, Ping Koy Lam 1,4 and
Syed M. Assad1✉

Decoherence is detrimental to quantum key distribution (QKD) over large distances. One of the proposed solutions is to use
quantum repeaters, which divide the total distance between the users into smaller segments to minimise the effects of the losses in
the channel. Here we introduce a measurement-device-independent protocol which uses high-dimensional states prepared by two
distant trusted parties and a coherent total photon number detection for the entanglement swapping measurement at the repeater
station. We present an experimentally feasible protocol that can be implemented with current technology as the required states
reduce down to the single-photon level over large distances. This protocol outperforms the existing measurement-device-
independent and twin-field QKD protocols by achieving better key rates in general and higher transmission distance in total when
experimental imperfections are considered. It also surpasses the fundamental limit of the repeaterless bound at a much shorter
transmission distance in comparison to the existing TF-QKD protocols.
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INTRODUCTION
Quantum key distribution is a method used to securely establish a
secret key between two distant trusted parties, namely Alice and
Bob1–3. Depending on the degrees of freedom of the underlying
quantum system involved, QKD protocols are classified into two
types: discrete-variable (DV) protocols where the key information
is encoded on discrete degrees of freedom of photonic states such
as polarisation4,5; and continuous-variable (CV) based protocols
which encode the keys on continuous degrees of freedom such as
amplitude and phase quadratures of the optical field6,7. In QKD,
the main obstacle in establishing a secure key over large distances
for a pure-loss channel is the photon losses.
Quantum repeaters are devices that can be used to improve the

transmission distance of QKD protocols by dividing the total
distance into smaller portions between the sender and receiver,
making the losses in the channel more manageable8–12. Quantum
repeaters12 use entanglement swapping13–15 to distribute entan-
glement, which is enhanced by entanglement distillation proto-
cols16–18. One issue is that a majority of these repeater protocols
require the use of quantum memories11,19,20. However, quantum
memories are limited by their operational wavelengths and
memory efficiencies. Even though solid-state quantum mem-
ories21,22 can operate at telecommunication wavelengths, their
memory efficiency limits their efficacy. In contrast, cold-atom
quantum memories currently hold the record for the efficiency,
but operate outside of telecommunication wavelengths requiring
frequency conversion to leverage communication infrastruc-
ture23,24. The frequency conversion results in low efficiencies
limiting the performance of the current quantum repeaters25.
The PLOB bound26 sets the fundamental limit for the maximum

amount of private states that can be transferred in QKD for a given

quantum channel without the use of a repeater (See ref. 27 for the
strong converse property of the bound and ref. 28 for the bounds
generalised to repeater-assisted communication). No point-to-
point QKD protocol can surpass this bound unless there is a
quantum repeater splitting the channel. Therefore, the PLOB
bound can also be used as a benchmark to test the quality of
quantum repeaters3. It is known that the PLOB bound can be
saturated with the squeezed-state protocol without the need for
several copies of the states or a collective measurement for the
pure-loss channel3. When there is a repeater-chain, the end-to-end
quantum capacity scales with the number of repeaters28 and it is
still an open question whether the corresponding repeater
bounds can be saturated with a simple protocol without multiple
copies of the quantum states.
Measurement-device-independent QKD (MDI-QKD) protocols

are a type of repeater protocols in which the secret keys are
established via the measurement of an untrusted third party29,30.
These protocols are called ‘measurement-device-independent’as
Alice and Bob do not perform a measurement in their stations, but
the measurement is performed by an untrusted party, called
Charlie. These protocols have been explored experimentally in
refs. 30–35. Twin-field QKD (TF-QKD)36 is a DV based MDI protocol
which utilises weak identical coherent states sent by both Alice
and Bob to Charlie, who performs entanglement swapping via a
probabilistic photon detection measurement. TF-QKD protocol is
the first repeater protocol without a quantum memory that is able
to surpass the PLOB bound36–42 as it scales proportionally to the
single-repeater bound28. CV based MDI (CV-MDI) QKD protocols
work in a similar fashion where Alice and Bob both send a
distribution of either coherent or squeezed states to Charlie,
where he performs a heterodyne measurement30,43,44. In order to
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achieve a positive key rate in these CV-MDI protocols, the relay is
positioned very close to Alice resulting in a very asymmetric set-
up. As the relay is not placed right in the middle between Alice
and Bob, the protocols scale like the repeaterless bound instead of
the single-repeater bound45. Hence, these protocols always sit
below the PLOB bound.
In this work, we present a photon-number encoded MDI

repeater protocol that surpasses the PLOB bound without the use
of quantum memories through an entanglement swapping
measurement. Unlike the TF-QKD protocol, the entanglement
swapping is obtained by a coherent total photon number
measurement performed by Charlie who measures the total
number of photons coming from Alice and Bob without knowing
the individual contributions. Even though the photon-number
encoded states are vulnerable to losses, we show that in the short
distance regime, the secret key rates are much higher than the
ones of the single-photon encoded states. We also propose an
experimentally feasible protocol using single-photons as these
high dimensional states reduce down to the single-photon level
over large distances. This protocol performs better than the
existing MDI and TF-QKD protocols as it attains higher key rates
for the same transmission distances.

RESULTS
First, we introduce our MDI protocol providing the details of the
states that Alice and Bob use for key generation and estimating
Eve’s information followed by Charlie’s entanglement swapping
measurement. We then derive the asymptotic key rate formula for
the computation of the secret key rate. Finally, we present the
results of the high-dimensional protocol followed by the
experimentally feasible version of the MDI protocol using single-
photons.

Alice and Bob’s states for generating a key
Let us assume that both Alice and Bob generate two-mode
entangled states in their stations where they keep one arm of the
entangled states to themselves and send the other to Charlie.
Charlie then performs a joint entanglement swapping measure-
ment on the states that Alice and Bob send.
QKD protocols can be expressed in either entanglement-based

or prepare-and-measure schemes. Both of these models are

mathematically equivalent46,47, however the entanglement-based
representation is more convenient for the security analysis of a
QKD protocol. In the conventional entanglement-based CV-QKD
protocols, Alice sends one arm of a two-mode squeezed vacuum
state (TMSV) to Bob while performing a heterodyne measurement
on the other arm of the TMSV state she kept. This procedure is
equivalent to Alice sending a coherent state in the prepare-and-
measure scheme47. This entangled two-mode state in Fock basis is
expressed as

Ψj iA1A2
¼ 1ffiffiffiffi

N
p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� γ2

p Xnmax

n¼0

γn nnj iA1A2
; (1)

where γ 2 0; 1½ Þ is the squeezing parameter and N is the
normalisation coefficient given by

Pnmax
n¼0ð1� γ2Þγ2n. nj i denotes

the n-photon Fock state. Note that a TMSV state is retrieved with
when nmax ! 146.
In this paper, we use the entanglement-based version, shown in

Fig. 1a, for the security analysis of the prepare-and-measure
method, shown in Fig. 1b. We express Alice’s and Bob’s states as
follows:

Ψj iA1A2
¼
Xnmax

n¼0

ffiffiffiffiffi
an

p
nnj iA1A2

; (2)

Ψj iB1B2 ¼
Xnmax

n¼0

ffiffiffiffiffi
bn

p
nnj iB1B2 ; (3)

where
Pnmax

n¼0 an ¼ 1 and
Pnmax

n¼0 bn ¼ 1. an and bn represent real
coefficients of each Fock-number state nnj i for Alice and Bob,
respectively. These coefficients are the same for both Alice and
Bob and optimised to achieve an optimal key rate explained in
more detail in Calculation of the secret key rate. nmax is the
maximum number of photons that Alice and Bob send
individually, and each party encodes the key information on the
Fock states nj i.
In the entanglement-based scheme, Alice and Bob keep one

arm of the entangled states to measure the number of photons
using a photon-number resolving detector (PNRD) to establish a
key while sending the other arm to Charlie. Charlie performs a
coherent total photon number measurement on the incoming
modes from Alice and Bob, and announces the outcome of his
measurement (described in detail in Charlie’s measurement).

Charlie

PNRD

Alice Bob

A1 A2 B2 B1

PNRD

EA EB

CA CB

(a)

CharlieAlice BobEA EB
(b)

A2 B2CA CB

Fig. 1 Equivalent representations of the protocol. a Entanglement-based scheme where both Alice and Bob send optimised states with
nmax ¼ 7 to Charlie while keeping one arm of their states to themselves denoted as modes A1 and B1, respectively, and measure the number of
photons using photon-number resolving detectors (PNRDs). Charlie interferes modes A2 and B2 coming from Alice and Bob and performs a
coherent total photon number measurement. b Prepare-and-measure scheme where Alice and Bob send single-mode states to Charlie where
they encode the key information on the single mode Fock state one at a time. Charlie then performs a total photon number measurement in
his station on the modes that Alice and Bob send.
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Alice and Bob’s measurement in their own stations is represented
as

Πn ¼ nj i nh j; (4)

where n denotes the number of photons being measured. In the
prepare-and-measure scheme, this corresponds to preparing the
Fock state nj i with probability an or bn for Alice and Bob,
respectively. The states in the prepare-and-measure scheme can
be engineered experimentally with several different methods such
as conditional teleportation48, coherent displacements and
photon subtraction49, and repeated parametric-down conver-
sion50. Alternatively, these states can be created by extending the
work presented in ref. 51 to higher photon levels by using
spontaneous parametric down-conversion on the signal channel
and conditional measurements on the idler channel.

Charlie’s measurement
The states are sent to Charlie via a channel with a total
transmissivity of τ ∈ [0, 1], which is split into smaller channels
between Alice and Charlie and Charlie and Bob represented as τA
and τB, respectively. Single-repeater protocols can be bench-
marked based on the PLOB bound, which is given by
�log2ð1� τÞ26,28. In order to surpass this bound, the protocol
needs to scale like the single-repeater bound28, which is expressed
as �log2ð1�

ffiffiffi
τ

p Þ. This requires Charlie to be positioned in the
middle of Alice and Bob such that the key-rate scales with the
square root of the transmission probability, Oð ffiffiffi

τ
p Þ. In this protocol,

Charlie performs a collective photon number measurement on the
incoming modes from Alice, A2, and Bob, B2. If Alice and Bob send
a maximum of n photons each, denoted as nmax, Charlie can
measure from 0 to 2nmax photons. Charlie’s measurement can be
realised by projecting the modes A2 and B2 onto the following
states

ϕj
c

�� � ¼Xc
n¼0

ωnj nj i c � nj iffiffiffiffiffiffiffiffiffiffiffi
c þ 1

p ; (5)

where c 2 f0; 1; � � � ; 2nmaxg represents the total number of
photons Charlie receives from the two modes, and j∈ {0, 1,⋯ , c}
denotes the different states in the c-photon subspace states while
ω is given by ω ¼ e

2πi
cþ1.

For example, when c= 2, Charlie’s three possible outcomes are

ϕ0
2

�� � ¼ 1ffiffiffi
3

p ð 02j i þ 11j i þ 20j iÞ; (6)

ϕ1
2

�� � ¼ 1ffiffiffi
3

p 02j i þ e
2πi
3 11j i þ e�

2πi
3 20j i

� �
; (7)

ϕ2
2

�� � ¼ 1ffiffiffi
3

p 02j i þ e�
2πi
3 11j i þ e

2πi
3 20j i

� �
: (8)

These measurements are designed such that even though Charlie
knows the total number of photons between Alice and Bob, he
does not know the number of photons in each mode separately.
The outcomes of Charlie’s measurement form a valid positive

operator value measurement (POVM) for a given outcome

Πj
c ¼ ϕj

c

�� �
ϕj
c

� ��; (9)

with all the possible outcomes satisfying the identity resolution
with c 2 f0; 1; � � � ; 2nmaxg and j∈ {0, 1,⋯ , c}, i.e.,

X2nmax

c¼0

Xc
j¼0

Πj
c ¼ I: (10)

The measurement performed by Charlie establishes correlations
between Alice and Bob. In the lossless channel, when Charlie detects
two photons with his POVM element ϕ0

2

�� �
, Alice and Bob’s state

becomes ψj iA1B1jj¼0
c¼2

¼ ffiffiffiffiffiffiffiffiffi
a0a2

p
02j i þ a1 11j i þ ffiffiffiffiffiffiffiffiffi

a2a0
p

20j i. Therefore,

Charlie swaps the entanglement between Alice and Bob via the
measurement he performs similar to many MDI protocols29,36.

Alice and Bob’s check states for security
A possible security issue is that Charlie can potentially lie to Alice and
Bob about his measurement outcome, as he can perform separable
measurements on Alice and Bob’s modes individually or announce a
different photon number from the one he actually measured. When
the latter occurs, Alice and Bob can tell that Charlie is not telling the
truth as the probabilities of measuring different number of photons
are not equal. However, when the former happens, Alice and Bob
cannot distinguish whether Charlie is performing a total photon
number measurement or a separable measurement on the two
modes. Even though the separable measurement does not yield an
entangled state between Alice and Bob, it still establishes classical
correlations between the parties. The probability of Charlie
measuring a given number of photons when he performs a
separable measurement ends up being the same as his joint
measurement described in Charlie’s measurement.
We address this security issue by Alice and Bob randomly

switching from their key states and sending some check states to
Charlie to detect any abnormalities in the system. One of the
possible check states they send consists of a superposition of the
photon number states, and are analogous to the original DV
diagonal states in the following form

þj i ¼
Xnmax

n¼0

ffiffiffiffiffi
ϵn

p
nj i; (11)

where ϵn represents the coefficients an and bn in Eq. (2) and (3) for
Alice and Bob, respectively.
The untrusted party, Charlie, is required to announce the total

number of photons he measured as well as the outcome index (c, j).
Table 1 shows Charlie’s probability of measuring c= 2 photons as
Alice and Bob send a mixture of key states and check states.
Whenever both parties send þþj iAB, the probability of Charlie
measuring c= 2 photons is different for the non-separable and
separable measurements. This is due to the nature of Charlie’s POVM.
For c= 2, Charlie has three different outcomes in this set labelled as
ϕ0
2

�� �
; ϕ1

2

�� �
, and ϕ2

2

�� �
. If Alice and Bob send þþj iAB, the probability of

measuring ϕ0
2

�� �
is 1/3 whereas the other two outcomes return 0. In

the case of separable measurements, the probability of measuring a
two-photon event is equal, allowing Alice and Bob to determine
whether Charlie is being unfaithful or not.
The separable measurement is not the only possible measure-

ment that Charlie can make. Ideally, Alice and Bob should not rely
on Charlie’s announcement of his measurement basis to
determine if Charlie was being reliable or estimate how much
information is leaked to another malicious party, called Eve. For
security purposes, it is essential to utilise two or more non-
orthogonal bases in QKD. For example, in BB844 and the six-state

Table 1. Charlie’s measurement probability for both non-separable
and separable measurements for c= 2 when Alice and Bob send a
combination of their check states, ðþÞ; þj i ¼ 1ffiffi

3
p ð 0j i þ 1j i þ 2j iÞ and

key states, (K), ρA2
¼ 1

3 ð 0j i 0h j þ 1j i 1h j þ 2j i 2h jÞ in the prepare-and-
measure representation with nmax ¼ 2 photons.

Non-separable Separable

AB Π0
2 Π1

2 Π2
2 02 11 20

KK 1/9 1/9 1/9 1/9 1/9 1/9

K+ 1/9 1/9 1/9 1/9 1/9 1/9

+ K 1/9 1/9 1/9 1/9 1/9 1/9

++ 1/3 0 0 1/9 1/9 1/9
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protocol52, Alice sends states in two and three different orthogonal
bases to Bob, respectively. By calculating the bit-error rates in these
bases, Alice and Bob can estimate Eve’s information. However, these
protocols use only the probabilities of the matched measurement
outcomes, which overestimates Eve’s information resulting in a
lower key rate53. Refs. 53,54 showed that full tomography of the
quantum state between Alice and Bob can enhance the secret key
rate due to bounding Eve’s information more accurately. Instead of
using the statistics of the matched bases only, Alice and Bob can
estimate their joint state from both the matched and unmatched
bases. This joint state then can be used to calculate the Holevo
bound on Eve’s information. The Holevo bound55 describes the
maximum amount of classical information that can be extracted
from a quantum channel. In QKD, Holevo bound can be used to
upper bound the leaked information to Eve.
Our protocol requires a similar approach to the protocols

discussed above53,54, where Alice and Bob measure their joint state
in mutually unbiased bases to perform a full tomography of their
joint state in the entanglement-based scheme. Two bases f eij igm�1

i¼0

and f hij igm�1
i¼0 are called mutually unbiased when jhei jhjij2 ¼ 1=m

for any i and j56, wherem is the dimension of the Hilbert space. If the
dimension of the Hilbert space, m, is a power of a prime number,
there exists m+ 1 mutually unbiased bases which form a complete
set57. In Estimating Eve’s information using quantum tomography
with single-photon states, we show how to estimate Eve’s
information by reconstructing Alice and Bob’s joint state through
full tomography when Alice and Bob send single-photon states, i.e.,
nmax ¼ 1. In the entanglement-based scheme, Alice and Bob
measure the modes they keep in their stations using the
eigenvectors of the X, Y and Z bases which are expressed as

± xj i ¼ 0j i± 1j iffiffiffi
2

p ; (12)

± yj i ¼ 0j i± i 1j iffiffiffi
2

p ; (13)

þzj i ¼ 0j i; �zj i ¼ 1j i: (14)

These bases form a complete set of mutually unbiased bases for
m= 2. In the equivalent prepare-and-measure scheme, Alice and
Bob’s measurement on the two mode entangled states, Ψj iA1A2

¼ffiffiffiffiffi
a0

p
00j i þ ffiffiffiffiffi

a1
p

11j i and Ψj iB1B2 ¼
ffiffiffiffiffi
b0

p
00j i þ ffiffiffiffiffi

b1
p

11j i in the Z
basis corresponds to them preparing the following states

ψþz

�� � ¼ 0j i; (15)

ψ�zj i ¼ 1j i; (16)

with probability a0 and b0, and a1 and b1, respectively. Their
measurement in the X basis is equivalent to them preparing the
following states with equal probability

ψ± xj i ¼ ffiffiffiffiffi
ϵ0

p
0j i± ffiffiffiffiffi

ϵ1
p

1j i; (17)

i.e., they prepare ψþx

�� �
and ψ�xj i with a probability of 0.5, where ϵ0

and ϵ1 represent the coefficients a0 and b0, and a1 and b1,
respectively. Similarly, their measurement in the Y bases corresponds
to them preparing the following states with equal probability

ψ± y

�� E
¼ ffiffiffiffiffi

ϵ0
p

0j i ∓ i
ffiffiffiffiffi
ϵ1

p
1j i: (18)

We present the detailed results of this protocol in Realistic
implementation of the MDI protocol with single-photon states.
When Alice and Bob wish to encode the key onto the higher

dimensional states, i.e., nmax > 1, the number of check states they
need to send increases. However, determining the existence of a
complete set of mutually unbiased bases in an arbitrary
dimensional Hilbert space is still an open problem in quantum
information58. In this protocol, if Alice and Bob send states with

nmax photons with a dimension of m ¼ nmax þ 1, they need to
send check states using all the eigenvectors of m+ 1 mutually
unbiased bases to estimate Eve’s Holevo bound provided that m is
a power of a prime number. These check states can be determined
by following the method discussed in ref. 57. They can also be
implemented experimentally using the methods discussed in
refs. 48–50 and scaling the experiment performed by Bimbard
et al.51 from two-photon level to higher dimensions similar to the
key states in the prepare-and-measure scheme. We show the key
rates of these higher dimensional states later in detail in The
Results of the high-dimensional states with nmax ¼ 7 photons.

Calculation of the secret key rate
In the entanglement-based protocol, the global state before
Charlie’s measurement is a four-mode state. The dimension to
simulate this protocol scales as m4. Therefore, the coefficients of
Alice and Bob’s states in Eq. (2) and (3) are optimised by
considering a classical protocol where Eve and Charlie perform a
photon number measurement on their modes. We optimise the
difference between the classical mutual information between
Alice and Bob, and, Eve and Alice. We call this protocol the
‘classical protocol’ and an explicit method for the implementation
of this protocol is shown in Classical protocol used to optimise the
coefficients of the high dimensional states. The reason for doing
this is to avoid having to optimise a high dimensional four mode
joint state with a total dimension of m4. However, when
computing the secret key rates, we do not assume any type of
attacks for Eve and calculate Eve’s Holevo bound instead and
Charlie performs his collective photon number measurement. It is
also important to note that the optimisation problem is not
convex for the high-dimensional states and the solution provided
for the coefficients an and bn in this paper is one possible solution.
The states that Alice and Bob prepare are previously shown in Eq.

(2) and (3), respectively. They send these states through a pure-loss
channel with a transmissivity τA and τB for the channel between
Alice and Charlie and Charlie and Bob, respectively. The pure-loss
channel is modelled with a beamsplitter with a transmissivity τ,
where the beamsplitter mixes the input mode with the vacuum.
The beamsplitter transformation can be defined as

BðτÞ ¼ exp½cos�1ð ffiffiffi
τ

p Þðâyb̂� âb̂
yÞ�; (19)

where τ can be written as a function of the fibre distance, d, with a
loss of 0.2dB per km with τ ¼ 10�0:02d . â and b̂ are the annihilation
operators, while ây and b̂

y
are the creation operators of the two

modes, respectively.
In this protocol, we assume that Eve has full access to the

channel between Alice and Charlie and Charlie and Bob including
Charlie’s measurements. Eve mixes vacuum with the incoming
modes causing Alice and Bob to lose photons. Thus, we can
express the state between Alice and Charlie and Charlie and Bob
after Eve’s attack as

ρA1CA ¼ Tr3
�
Im�BðτAÞ

	�
ρA1A2

� 0j i 0h j	�Im�BðτAÞ
	yh i

; (20)

ρCBB1 ¼ Tr1
�
BðτBÞ�Im

	�
0j i 0h j�ρB2B1

	�
BðτBÞ�Im

	yh i
; (21)

where Tri[ρ] stands for tracing out the i-th mode of the state ρ.
After Charlie’s measurement and tracing out his modes, the

subnormalised state between Alice and Bob becomes

~ρABjjc ¼ Tr23 Im�Πj
c�Im


 �
ρA1CA�ρCBB1

 �

Im�Πj
c�Im


 �yh i
: (22)

We can calculate Charlie’s probability of obtaining outcomes
(c, j) from the following expression

Pj
c
¼ Tr ~ρABjjc

h i
: (23)

Ö. Erkılıç et al.

4

npj Quantum Information (2023)    29 Published in partnership with The University of New South Wales



Normalising Alice and Bob’s joint state by Charlie’s probability
of measuring c photons for his measurement j gives us the final
conditional state between them as

ρABjjc ¼
~ρABjjc
Pjc

: (24)

However, for the key states that Alice and Bob send, the
probability of Charlie measuring c photons, Alice and Bob’s
conditional mutual information and Eve’s conditional information
do not change for each j ranging from 0 to c. As such, there is no
need to calculate Alice and Bob’s conditional joint state for each
value of j. Therefore, we omit j from the following equations and
set it to zero.
We then calculate Charlie’s total probability of measuring c

photons from

Pc ¼
Xc
j¼0

Tr ~ρABjjc

h i
¼ ðc þ 1ÞTr ~ρABjj¼0

c

h i
; (25)

since there are c+ 1 POVM outcomes with a total photon number
c.
In order to calculate Alice and Bob’s mutual information, we first

generate Alice and Bob’s probability table as follows

Pðna; nbjcÞ ¼ na; nbh jρABjc na; nbj i; (26)

where each term in Alice and Bob’s mutual information is given by
the conditional Shannon’s entropy as expressed below

HðAjcÞ ¼ �
Xnmax

na¼0

PðnajcÞlog2PðnajcÞ; (27)

HðBjcÞ ¼ �
Xnmax

nb¼0

PðnbjcÞlog2PðnbjcÞ; (28)

HðABjcÞ ¼ �
Xnmax

na¼0

Xnmax

nb¼0

Pðna; nbjcÞlog2Pðna; nbjcÞ: (29)

Using the equations above, we evaluate Alice and Bob’s mutual
information conditioned on Charlie’s measurement outcome from
IABjc ¼ HðAjcÞ þ HðBjcÞ � HðABjcÞ.
Eve’s information is calculated from Alice and Bob’s conditional

state after Bob’s measurement outcome on this joint state using

IEjc ¼ SðρABjcÞ �
Xnmax

b¼0

PbSðρAjcbÞ; (30)

where Bob’s POVM is shown in Eq. (4) in Alice and Bob’s states for
generating a key. b represents the number of photons that Bob
measures while Pb corresponds to Bob’s probability of measuring
b photons. The subnormalised state ~ρAjcb is obtained from

~ρAjcb ¼ Tr2
�

Im � Πb

�
ρABjc



Im � Πb

�y
; (31)

where Bob’s probability of measuring b photons is given by

Pb ¼ Tr½~ρAjcb�: (32)

Alice’s subnormalised state conditioned on Bob’s and Charlie’s
measurement outcomes, ~ρAjcb is then normalised by Bob’s
measurement probability by

ρAjcb ¼
~ρAjcb
Pb

: (33)

The asymptotic key rate of this protocol requires the combina-
tion of all the possible outcomes of Charlie’s POVM since Alice and
Bob are sending states with n photons each with a possibility of
measuring 0 to 2n photons by Charlie. However, we discard events
where Eve’s conditional information is greater than Alice and

Bob’s conditional mutual information. For example, when a zero
photon occurs, Eve gets more information than Alice and Bob due
to all the photons being lost to Eve. As such we exclude the case
when c= 0. Similarly, when Charlie measures c ¼ 2nmax photons,
the key rate conditioned on this measurement outcome is zero
even though Eve’s conditional information is zero. Therefore, the
resulting asymptotic key rate can be expressed as

K ¼
X2nmax

c¼0

Pc max
�
0; IABjc � IEjc


: (34)

The Results of the high-dimensional states
Our simulation results are shown in Fig. 2a for the pure-loss
channel with 0.2dB loss per km. We compare our results with the
existing MDI protocols such as the CV-MDI protocol from Pirandola
et al.30 and one of the best performing TF-QKD protocols known
as TF-QKD without phase post-selection (NPP-TF-QKD) from Cui
et al.59 and Lu et al.60.
We first show the case where Alice and Bob send the states

shown in Eq. (1) with a squeezing coefficient of γ= 0.26 for each
distance with nmax ¼ 7 photons. The squeezing level of γ= 0.26
was determined based on the shortest distance that the protocol
exceeds the PLOB bound (refer to Coefficients of the optimised
states, Table 4 for the details). With these states, the PLOB bound
and the CV-MDI protocol are surpassed at 144 km and 114 km,
respectively, while the protocol is performing worse than the TF-
QKD protocol. We also demonstrate the key rates of the same
states where the values of γ are optimised to give the maximum
secret key rate at the corresponding distance. For distances
greater than 50 km, there is not much difference compared to the
states with γ= 0.26 and the PLOB bound is still surpassed at the
same distance as the case of γ= 0.26. However, the key rates are
now higher at short distances below 50 km. This indicates that in
the short distance regime, the contribution of the higher order
photons to the key rate is significant while at larger distances, the
main contribution comes from the the first few photons of the
state as the majority of the photons are lost to the environment at
such distances. This can also be seen from the optimal squeezing
level given in Table 4, which is higher for short distances and
lower for larger distances.
When Alice and Bob send the optimised states shown in Eq. (2)

and (3), these states outperform the results of the states with
optimised γ by surpassing the repeaterless bound and the CV-MDI
protocol at 108 km and 75 km, respectively. These states also do
considerably better than the TF-QKD protocol as the TF-QKD
protocol exceeds the PLOB bound at only 130 km and its key rates
are lower than our protocol at each distance. It is important to
note that this result can also be achieved by using the optimised
states with nmax ¼ 1 photon in the form of

ffiffiffiffiffi
a0

p
00j i þ ffiffiffiffiffi

a1
p

11j i as
shown in Fig. 2a since both states reach the PLOB bound at the
same distance and the key-rates converge beyond 10 km. In
Fig. 2a, both high-dimensional and single-photons states have the
same gradient, scaling like the single-repeater bound with Oð ffiffiffi

τ
p Þ.

The probability of receiving n-photons in this case is given by
ð ffiffiffi

τ
p Þn. Therefore, the main scaling of the key rates comes from the
single-photon level, while the remaining photons help the key
rate incrementally. As the loss gets higher, the probability of
receiving higher photons drops. Therefore, beyond 10 km, we are
only interested in 1 or 2 photons. This is further emphasised in Fig.
3a where we show the probability of sending each Fock-number
state of the optimised states given in Eq. (2) and (3) for each
transmission distance. At short distances, the high-dimensional
states have contribution from each photon number. It is important
to note that at 0 km, the probability of sending each Fock-number
state is not equal due to key rate being equal to zero when Charlie
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receives 0 or 14 photons in total. Therefore, the coefficients of the
Fock states 0j i and 7j i are minimised accordingly. As the distance
increases, the high-dimensional states reduce down to the single-
photon level as the coefficients of the Fock states above one
photon approach zero. The probabilities of sending zero and one
photon, denoted as a0 and a1, of these high-dimensional states
shown in Fig. 3a converge to the coefficients of the optimised
states with nmax ¼ 1 photon shown in Fig. 3b beyond approxi-
mately 50 km. However, the main advantage of using the
optimised states with nmax ¼ 7 is the ability of obtaining higher
key rates at shorter distances. This is shown in Fig. 4, as the secret
key rate increases when the number of encoded photons changes
from 1 to 7 photons.
As the key rates of the optimised states with nmax ¼ 7 converge

with the results of the states with optimised γ below 10 km and
with the optimised states with nmax ¼ 1 photon, one can use the
combination of the states with optimised γ and optimised states
with nmax ¼ 1 photon beyond this distance to achieve the same
results of the states given in Eq. (2) and (3).
As mentioned previously, the maximum key rate achievable by

QKD for the point-to-point and single-repeater communication is
bounded by the PLOB and single-repeater bounds, respec-
tively26,28. These bounds are determined by the maximum amount

Fig. 3 Simulation results of the optimised coefficients. a The optimised coefficients of the states shown in Eq. (2) and (3) with nmax ¼ 7
photons, where the coefficients are explicitly shown in Table 2. b The optimised coefficients of the states shown in Eq. (2) and (3) with nmax ¼ 1
photon (refer to Table 3 for the optimised coefficients for each distance).

Fig. 4 Simulation results of the secret key rate when the number
of encoded photons varies from 1 to 7 photons at 5 km. The states
are in the form of Eq. (2) and (3) where the coefficients of each state
are optimised.

Fig. 2 Simulation results of our repeater protocol for a pure-loss channel with a loss of 0.2 dB/km. a Solid orange and red dashed lines
show the key rates of our protocol using the states shown in Eq. (1) with nmax ¼ 7 photons with optimised squeezing coefficients and a
squeezing coefficient of γ= 0.26, respectively. Blue dashed line shows the results of the optimised states with nmax ¼ 1 photon given in Eq. (2)
and (3) and using Charlie’s POVM with an outcome of 1 and 2 photons. The solid blue line shows our protocol using the optimised states with
nmax ¼ 7 photons given in Eq. (2) and (3). Black solid lines show the single-repeater and repeaterless bounds. Solid grey line represents the CV-
MDI protocol30 with a variance of 1000 and relay positioned at 0.01 m away from Alice, while the solid green line shows the TF-QKD protocol
with no phase post-selection (NPP-TF-QKD)60 using optimised coherent states and infinite decoy states. b The comparison of the reverse
coherent information of the optimised states with nmax ¼ 7 and nmax ¼ 1 photons in the form of Eq. (2) and (3) in point-to-point
communications between Alice and Bob and with a single-repeater. The faint blue and orange lines represent the RCI of the single-repeater
and point-to-point communications of the optimised states with nmax ¼ 7 photons correspondingly, while the blue and red dashed lines show
the RCI of the single-repeater and point-to-point communications of the optimised states with nmax ¼ 1 photon. The black solid line shows
the reverse coherent information of an infinitely squeezed TMSV state denoted as PLOB.
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of entanglement that a channel can sustain, also known as the
entanglement flux, which coincides with reverse coherent
information (RCI) of a maximally entangled TMSV state for the
pure-loss channel26,61,62. RCI is used to lower bound the distillable
entanglement of a given channel62 and is a measure of the
transmission of quantum information. While the key rates above
demonstrate that our protocol surpasses the PLOB bound and acts
as a repeater, the secret key rate is a measure of the transmission
of classical information. The key rates are also bounded by the
amount of entanglement that Alice and Bob can distill. Therefore,
we also compute the RCI of our quantum states to verify the
distillable entanglement between Alice and Bob after Charlie’s
measurement using

RCI ¼
X2nmax

c¼0

Pc max
�
0; SðρAjcÞ � SðρABjcÞ


; (35)

where SðρABjcÞ and SðρAjcÞ are the von Neumann entropies of the
joint state between Alice and Bob ρABjc and Alice’s state Tr2½ρABjc�,
respectively.
In Fig. 2b, we show the RCI of the optimised states with nmax ¼

7 and nmax ¼ 1 when Alice and Bob perform point-to-point and
single-repeater communications. We compare these results with
the PLOB bound as it coincides with the RCI of a maximally
entangled TMSV state in the pure-loss channel. Note that when
Alice and Bob communicate directly using the optimised states
with nmax ¼ 7, they cannot saturate the PLOB bound due to
sending states with a limited number of photons. However, they
can reach the PLOB bound if they send infinitely squeezed TMSV
states with an infinite number of photons3. In Fig. 2b, when Alice
and Bob perform point-to-point communication, they can distill
more entanglement at short distances. However, with the use of a
repeater, they are able to distill more entanglement beyond 47 km
and surpass the RCI of an infinitely squeezed TMSV state at
108 km. Note that they also surpass the PLOB bound at this
distance when we calculate their secret key rate as shown in
Fig. 2a and the key rates coincide with the reverse coherent
information of Alice and Bob’s conditional joint state on Charlie’s
measurement outcome. This indicates that after Charlie’s mea-
surement, Alice and Bob’s PNRD measurement is optimal as Alice

and Bob achieve the same key rates as the distillable entangle-
ment of their joint state.

Realistic implementation of the MDI protocol with single-
photon states
The experimental realisation of the higher dimensional optimised
states and Charlie’s measurement is quite challenging with state
of the art technology. In this section, we present an experimentally
feasible implementation of our protocol, shown in Fig. 5, by using
single-photon states which can be performed with existing
technology. Fig. 2a demonstrates that beyond 10 km, the single-
photon states achieve the same key rates as the higher
dimensional states and the high-dimensional states reduce down
to the single-photon level as demonstrated in Fig. 3a and Fig. 3b.
When Alice and Bob send single-photon states, Charlie can

measure from 0 to 2 photons. However, as mentioned previously
in Calculation of the secret key rate, when Charlie measures 2
photons, the conditional secret key rate is zero as such the
contribution to the key rate comes from only the single-photon
detection events. This eliminates Charlie having to distinguish
between c= 2 photon outcomes, i.e., ϕ0

2

�� �
; ϕ1

2

�� �
and ϕ2

2

�� �
and

requires him to only distinguish between the single-photon
outcomes. Therefore, we can simplify our protocol to Fig. 5, where
Charlie interferes the single photons coming from Alice and Bob at
a 50:50 beamsplitter and uses two photon-number resolving
detectors up to the two-photon level. After Charlie’s measure-
ment, Alice and Bob can estimate their joint state to bound Eve’s
information using the statistics of their matched and unmatched
data of X, Y, and Z bases as mentioned in Calculation of the secret
key rate. This protocol is conceptually similar to Protocol 1 and
Protocol 2 of Curty et al.63. One of the main differences is that our
single-photon protocol uses PNRDs at Charlie’s station which
helps Alice and Bob to disregard any measurement that is a two-
photon click (i.e. Charlie receives no clicks at one detector and two
clicks on the other), resulting in a lower bit-error rate. Our protocol
also estimates Eve’s information more tightly as Alice and Bob
perform a full tomography of their joint state using the
eigenvectors of the X, Y, and Z bases, whereas ref. 63 only uses

Charlie

Alice Bob

A1 A2 B2 B1

EA EB

CB

(a)

(b)

CA 50:50

PNRDPNRD

Charlie

B2

EA EB

CBCA 50:50

PNRDPNRD
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A2

Bob

Z

X

Y

Z

X

Y

M
M
M

X

Y

Z

M
M
M

X

Y

Z

Check Check

Fig. 5 Equivalent representations of the protocol with single photons. a Entanglement-based scheme where both Alice and Bob send the
optimised states in the form of

ffiffiffiffiffi
a0

p
00j i þ ffiffiffiffiffi

a1
p

11j i and ffiffiffiffiffi
b0

p
00j i þ ffiffiffiffiffi

b1
p

11j i to Charlie while keeping one arm of their states to themselves
denoted as modes A1 and B1. They perform a measurement in the X, Y, and Z bases to compute the statistics of their matched and unmatched
results. This measurement also projects the arm they sent to Charlie onto a single-mode state in the corresponding basis as shown in b.
Charlie interferes modes A2 and B2 coming from Alice and Bob, respectively, at a 50:50 beamsplitter and performs single-photon detection
with PNRDs. A successful outcome occurs when Charlie’s left (10 event) or right detector (01 event) registers a single click only. Alice and Bob
ignore the instances of 02, 20 and 11 photon events. b Prepare-and-measure scheme where Alice and Bob send single-mode states to Charlie
where they encode the key information in the Z basis. They send the states 0j i and 1j i with probabilities a0, b0 and a1, b1, respectively. They
randomly switch to X and Y bases to send check states to estimate Eve’s information (refer to Alice and Bob’s check states for security for the
details of the check states). Charlie’s measurement is the same as the one in the entanglement-based scheme shown in a.
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the measurement results of the X and Z bases. These two
differences yield a higher key rate than the results of ref. 63.
Additionally, we consider the detrimental effects of the detector

inefficiency and dark counts to the key rates. The single-photon
states are optimised for a detector with an efficiency of 85% and a
dark count rate of 5 × 10−8, where the coefficients of the zero and
single photons are shown in Table 5 and in Fig. 3b. In a lossless
channel, the probability of sending a single-photon initially is half.
However, as the channel becomes more lossy, it is likely that the
single-photon will be lost during transmission. When Charlie
receives no photons, this corresponds to a large bit-error rate
reducing the key rates. This is compensated by reducing the
probability of sending single-photons to decrease the bit-error
rates and increase the key rates64. With realistic dark count rates
and detector efficiencies, our protocol using perfect single-photon
sources surpasses the PLOB bound at 116 km while the NPP-TF-
QKD with infinite decoy states surpasses at 137 km as shown in
Fig. 6. The NPP-TF-QKD protocol drops to zero beyond 518 km
whereas our protocol drops to zero beyond 542 km showing a 24
km advancement in the transmission distance.
To account for a more practical scenario, we simulate our

protocol with imperfect single-photon sources and compare it
with the NPP-TF-QKD protocol60 with a finite number of decoy
states. When the single-photon sources used by Alice and Bob are
heralded with imperfect detectors with a dark count rate of
5 × 10−8 and a detector efficiency of 0.85 for state preparation, the
single-photon protocol achieves a total transmission distance of
480 km assuming 0.2 dB loss per km. When NPP-TF-QKD proto-
col60 uses finite decoy states with two decoy modes with four
intensities and the same dark count rates and detector
efficiencies, the protocol achieves a total transmission distance
of 470 km. Using a more realistic experimental set-up our protocol
still performs better. However, as the heralding detectors used by
Alice and Bob for the state preparation get more lossy, our
protocol is likely to start performing worse than the TF-QKD
protocols as these protocols use coherent states. Current super-
conducting nanowire single-photon detectors can achieve detec-
tor efficiencies up to 90% with dark count rates as low as 10−9 as
demonstrated previously in ref. 40.
The improvements made to the total transmission distance in

our protocol are a result of several factors. Even though both the

single-photon and NPP-TF-QKD60 protocols use optimised states,
our protocol has more freedom over optimising the coefficients of
the single-photon state while the TF-QKD protocols need to
ensure that the intensities of the coherent states are still weak
enough while optimising the key rates. This is also one of the key
differences between our protocol and the Sending-or-Not-
Sending TF-QKD (SNS-TF-QKD) protocol65, where Alice and Bob
send weak coherent states and no states with a probability of ϵ
and 1− ϵ, respectively. However, the probability of the single-
photon detection is still determined by the intensity of the weak
coherent states in the SNS-TF-QKD protocol whereas in this
protocol, Alice and Bob send single-photon states with a
probability of ϵ which determines the probability of detection at
Charlie’s detectors. Our protocol also has the ability to distinguish
two-photon events occurring at a single detector at Charlie. For
example, if Charlie receives no photons on one detector and two
photons on the other, these events can be disregarded and do not
contribute to bit-error rates. However, in TF-QKD protocols with
single-photon detectors, this event would register as one click,
causing an increase in the bit-error rate. Therefore, the use of
PNRDs in Charlie’s station improves the bit-error rates. Further-
more, our protocol can estimate Eve’s information more accurately
due to the use of the probabilities of the matched and unmatched
bases. These are the main factors that distinguish our protocol
from the existing MDI and TF-QKD protocols.

DISCUSSION
In this paper, we introduced an MDI protocol using higher
dimensional states that surpasses the repeaterless bound without
the need of quantum memories as it scales like the single-repeater
bound. However, for large distances, the states required in this
protocol reduce down to the single-photon level due to the losses
in the channel. Based on this, we proposed an experimentally
feasible implementation of this protocol just using single-photons
and photon-number resolving detectors which performs better
than the existing protocols such as NPP-TF-QKD protocol59,60.
Furthermore, we investigated whether the single-repeater

bound can be saturated with a simple protocol by using only
single copies of the states sent by Alice and Bob and without
collective measurements performed by Charlie. Our results show
that unlike the repeaterless bound, this is probably not possible
with single copies of the states and likely to require many copies
of the states sent by Alice and Bob and collective measurements
as previously shown by García-Patrón et al.62 and a protocol
proposed by Winnel et al.66.
The results presented in this work refer to the asymptotic key

rates, and the security of this protocol with finite-size effects needs
to be considered in the future. In this protocol, there are no
misalignment errors in the Z basis due to sending single-photons.
However, the misalignment errors are likely to impact the statistics
of the check states in the X and Y bases which can be investigated
in future work. The feasibility of extending this protocol to a
network of multiple users can also be studied.
Note that there are two challenges in our protocol which are

the implementation of the states that Alice and Bob prepare and
Charlie’s coherent total photon number measurement. Ref. 51

managed to implement the states we require for this protocol up
to the two-photon level. We would like to motivate the
community with a possible extension of the work presented in
ref. 51 to higher dimensions for state preparation and exploring
ways to implement Charlie’s measurement as they are likely to
contribute to many areas in quantum information not only QKD,
but also quantum metrology, entanglement swapping, entangle-
ment distillation, optical quantum computing and error correction.

Fig. 6 Simulation results of our repeater protocol using single-
photon states with experimental parameters. The blue dashed line
shows our protocol using the single-photon states in the form offfiffiffiffiffi
a0

p
00j i þ ffiffiffiffiffi

a1
p

11j i and
ffiffiffiffiffi
b0

p
00j i þ ffiffiffiffiffi

b1
p

11j i with optimised coeffi-
cients and perfect single-photon sources. The solid green line and
black lines are the NPP-TF-QKD protocol60 with infinite decoy states
and the PLOB bound, respectively. We assume a dark count rate of
5 × 10−8 with a detector efficiency of 0.85 for both protocols.
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METHODS
Estimating Eve’s information using quantum tomography
with single-photon states
In this section, we show how Alice and Bob can estimate their joint
state conditioned on Charlie’s measurement outcome to bound
Eve’s information.
Alice and Bob measure their joint state in the X, Y, and Z bases

in the entanglement-based scheme as introduced in Alice and
Bob’s check states for security to construct the statistics of their
matched and unmatched results. From the probabilities measured
in these bases, Alice and Bob can estimate their joint state. Writing
their joint state as

ρ̂ABjc¼1 ¼
1
4

I4 þ s!a � σ!a þ s!b � σ!b þ
X
j;k

rjkðσj � σkÞ
 !

; (36)

where s!a � σ!a and s!b � σ!b describe Alice and Bob’s reduced
states calculated from their local measurements, while rjk(σj⊗ σk)
gives the correlations between Alice and Bob determined from
their measurements performed in the bases j= {X, Y, Z} and
k= {X, Y, Z}, where rjk is the correlation coefficient and σj and σk

are the standard Pauli matrices σX, σY and σZ. The terms s!a � σ!a
and s!b � σ!b can be expressed as

s!a � σ!a ¼ aXðσX � I2Þ þ aYðσY � I2Þ þ aZðσZ � I2Þ; (37)

s!b � σ!b ¼ bXðI2 � σXÞ þ bYðI2 � σYÞ þ bZðI2 � σZÞ; (38)

where {aX, aY, aZ} and {bX, bY, bZ} represent the coefficients given in
Eq. (42) and (43) when Alice and Bob measure in the bases
j= {X, Y, Z}.
When Alice and Bob measure their own qubits in any basis

j= {X, Y, Z}, their measurement outcomes can be expressed as

Π± j ¼ ± jj i ± jh j; (39)

which can be calculated using the eigenvectors of the X, Y and Z
bases as defined previously in Eq. (12), (13) and (14). The
probability of their measurement then can be calculated from

Pað± jÞ ¼ Tr Π± j � I2

 �

ρABjc¼1 Π± j � I2

 �yh i

; (40)

Pbð± jÞ ¼ Tr I2 � Π± j

 �

ρABjc¼1 I2 � Π± j

 �yh i

; (41)

where ρAB∣c=1 is determined from Eq. (24).

Imperfect PNRD

Fig. 7 Diagram of the method used to simulate the effect of dark
counts in the PNRDs. ρin is the density matrix of the input state. The
grey box represents a realistic photon number resolving detector
with efficiency ηd and dark noise ð1� ηdÞn.

Table 3. The coefficients of the optimised states with nmax ¼ 1
photon.

Distance a0 a1
(km) b0 b1

0 0.5 0.5

0.5 0.5308 0.4692

1 0.5505 0.4495

2.5 0.5918 0.4082

5 0.6371 0.3629

10 0.6935 0.3065

15 0.7292 0.2708

20 0.7542 0.2458

30 0.7869 0.2131

50 0.8205 0.1795

100 0.8483 0.1517

200 0.8575 0.1425

Table 2. The coefficients of the optimised states with nmax ¼ 7 photons.

Distance a0 a1 a2 a3 a4 a5 a6 a7
(km) b0 b1 b2 b3 b4 b5 b6 b7

0 0.0823 0.1162 0.1432 0.1582 0.1582 0.1432 0.1162 0.0823

0.5 0.1073 0.1359 0.1557 0.1603 0.1496 0.1267 0.0968 0.0676

1 0.1226 0.1472 0.1616 0.1600 0.1438 0.1174 0.0868 0.0605

2.5 0.1550 0.1705 0.1710 0.1567 0.1307 0.0994 0.0691 0.0477

5 0.1967 0.2012 0.1786 0.1483 0.1129 0.0787 0.0508 0.0329

10 0.4468 0.3137 0.1410 0.0601 0.0245 9.4433 × 10−3 3.3895 × 10−3 1.1308 × 10−3

15 0.6654 0.2955 0.0366 2.4273 × 10−3 1.1213 × 10−4 3.9036 × 10−6 9.8873 × 10−8 0

20 0.7230 0.2608 0.0160 2.8606 × 10−4 2.1895 × 10−6 3.2584 × 10−9 0 0

25 0.7548 0.2366 8.5496 × 10−3 4.9545 × 10−5 6.2159 × 10−8 0 0 0

30 0.7760 0.2189 5.0283 × 10−3 1.0464 × 10−5 0 0 0 0

50 0.8176 0.1811 1.3468 × 10−3 1.2642 × 10−7 0 0 0 0

100 0.8477 0.1520 3.3582 × 10−4 0 0 0 0 0

200 0.8571 0.1427 1.9467 × 10−4 0 0 0 0 0
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The coefficients in Eq. (37) and (38) can be computed from Eq.
(40) and (41) where

aj ¼ PaðþjÞ � Pað�jÞ; (42)

bj ¼ PbðþjÞ � Pbð�jÞ: (43)

In order to determine the correlation coefficients rjk, Alice and
Bob construct a joint probability table of their measurements in all
the bases where these probabilities are calculated from

Pða¼ ± j; b¼ ± kÞ ¼ Tr Π± j � Π± k

 �

ρABjc¼1 Π± j � Π± k

 �yh i

: (44)

Using Eq. (44), the correlation coefficients become

rjk ¼ Pða ¼ þj; b ¼ þkÞ þ Pða ¼ �j; b ¼ �kÞ
�Pða ¼ þj; b ¼ �kÞ � Pða ¼ �j; b ¼ þkÞ: (45)

After Alice and Bob reconstruct their estimated joint matrix
ρ̂ABjc¼1, they can estimate Eve’s information using the Holevo
bound as given in Eq. (30).

Classical protocol used to optimise the coefficients of the high
dimensional states
This section describes how the states that Alice and Bob prepare
are chosen. The coefficients of these states are determined based
on the following classical protocol. We assume Eve taps off the
signal sent by Alice and Bob, and measures the number of
photons denoted as nea and neb . Then we maximise the average
difference in mutual information

max
fPðnaÞ;PðnbÞg

X2nmax

c¼0

PcðncÞ IABjc � IAEjc

 �" #

; (46)

where IAB∣c and IAE∣c are Alice and Bob’s mutual information and
mutual information between Alice and Eve conditioned on
Charlie’s measurement outcome, respectively. P(nc) represents
the probability of Charlie measuring nc photons in total. Note that
P(na) and P(nb) are related to the optimised coefficients from Eq.
(2) and (3) as they are the probability of sending n photons for the
corresponding Fock-number state nj i, also expressed as an and bn
throughout this paper.
In the classical protocol, Charlie measures the number of

photons coming from Alice and Bob individually with two
separate PNRDs. In Fock basis, both classical and quantum
simulations yield the same probabilities for Charlie’s measurement

outcome. The probability of Charlie measuring nca or ncb photons
on Alice’s and Bob’s mode individually can be computed as

PcaðncaÞ ¼
Xnmax

na¼0

na
nca

� �
τ
nca
A ð1� τAÞna�nca PðnaÞ; (47)

where nmax refers to the maximum number of photons Alice and
Bob are sending individually. τA is the probability of a photon
arriving at Charlie from Alice or Bob as a function of the fibre
distance with τA ¼ 10�0:02d . ð1� τAÞna�nca is the probability of
losing na � nca photons to Eve. The probability of the collective
photon number measurement performed by Charlie for a given
number of photons nc can be calculated using Eq. (47) as shown
below

PcðncÞ ¼
Xnc
nca¼0

PcaðncaÞPcbðnc � ncaÞ; (48)

where nc � nca gives the number of photons measured on
Bob’s mode.
Alice and Bob’s mutual information conditioned on Charlie’s

measurement outcome is obtained from the probability table

Table 4. The optimised squeezing parameters (γ) of the states shown
in Eq. (1) with nmax= 7 photons.

Distance (km) Squeezing Parameter (γ)

0 0.84

0.5 0.83

1 0.83

2.5 0.82

5 0.81

10 0.71

15 0.52

20 0.44

25 0.40

30 0.37

40 0.33

50 0.30

100 0.26

200 0.25

Table 5. The coefficients of the single-photon states when the
detector dark count rate is 5 × 10−8 and with a detector efficiency
of 0.85.

Distance a0 a1
(km) b0 b1

0.5 0.6697 0.3303

1 0.6751 0.3249

2.5 0.6896 0.3104

5 0.7100 0.2900

10 0.7405 0.2595

15 0.7624 0.2376

20 0.7790 0.2210

30 0.8020 0.1980

50 0.8275 0.1725

100 0.8499 0.1501

200 0.8576 0.1424

400 0.8588 0.1412

420 0.8591 0.1409

440 0.8598 0.1402

460 0.8609 0.1391

480 0.8630 0.1370

490 0.8647 0.1353

500 0.8669 0.1331

516 0.8721 0.1279

518 0.8730 0.1270

520 0.8739 0.1261

522 0.8749 0.1251

524 0.8760 0.1240

530 0.8796 0.1204

532 0.8810 0.1190

534 0.8825 0.1175

536 0.8841 0.1159

538 0.8859 0.1141

540 0.8878 0.1122

542 0.8898 0.1102
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between Alice and Bob which is as follows

Pðna; nbjncÞ ¼
na þ nb

nc

� �
τnc ð1� τÞnaþnb�nc PðnaÞPðnbÞ

PcðncÞ ; (49)

where na+ nb is equal to the total number of photons in the system
and τ in the equation above corresponds to the transmission
probability in one channel only. We evaluate Alice and Bob’s mutual
information conditioned on Charlie’s measurement outcome from
the same approach shown in Calculation of the secret key rate using
IABjc ¼ HðAjcÞ þ HðBjcÞ � HðABjcÞ and Eq. (27), (28) and (29).
We quantify Eve’s information conditioned on each photon

measurement in a similar fashion to Alice and Bob’s mutual
information using IEjc ¼ HðAjcÞ þ HðEjcÞ � HðAEjcÞ. Since Eve has
access to both channels between Alice and Charlie and Charlie and
Bob, we need to consider events where each party loses photons to
Eve. We compute the probability table between Alice, Bob and the
two modes of Eve conditioned on Charlie’s outcome as follows

Pðna; nb; nea ; neb jncÞ ¼ 1
PcðncÞ

na
nea

� �
nb
neb

� �
τnaþnb�ðneaþneb Þð1� τÞneaþneb PðnaÞPðnbÞ;

(50)

provided na þ nb � ðnea þ nebÞ ¼ nc , where nea and neb are the
photons lost to Eve by Alice and Bob, respectively, and na þ nb �
ðnea þ nebÞ corresponds to the total number of photons measured
by Charlie. Therefore, using the probability table between Alice,
Bob and Eve, we can calculate the entropies below to compute
Eve’s information

HðEAEBjcÞ ¼ � Pnmax

nea¼0

Pnmax

neb¼0

Pðnea ; neb jcÞlog2Pðnea ; neb jcÞ;
(51)

HðAEAEBjcÞ ¼ � Pnmax

na¼0

Pnmax

nea¼0

Pnmax

neb¼0
Pðna; nea ; neb jcÞ

log2Pðna; nea ; neb jcÞ:
(52)

Modelling dark noise and detector efficiency in the
entanglement swapping measurement and heralded single-
photon sources
This section describes how to model the dark noise and detector
efficiency at Charlie’s photon number resolving detectors to
achieve the results of Fig. 6 and the single-photon sources
heralded by these detectors. The effects of dark noise is modelled
by interacting the incoming state with a thermal state at a
beamsplitter as shown in Fig. 7.
The efficiency of the single photon detection in this framework

is the transmissivity of the beamsplitter (τ), i.e., ηd= τ. The density
matrix of the state to be detected can be written down as

ρout ¼ BðηdÞ


ρin � ρðnÞ�BðηdÞy; (53)

where ρðnÞ is the density matrix of the thermal state. The
beamsplitter transformation is shown in Eq. (19). The density
matrix of the thermal state is given by

ρðnÞ ¼
X1
n¼0

nn

ð1þ nÞnþ1 nj i nh j; (54)

where n ¼ Tr ½ρðnÞaya� is the mean photon number of the thermal
state. Consequently, the dark count is given by ð1� ηdÞn. For low
dark counts, the summation in Eq. (54) can be truncated accordingly.

Coefficients of the optimised states
In this section, we present some of the coefficients of the
optimised states with nmax ¼ 7 and nmax ¼ 1 photons used in

Fig. 2a, b for each distance in Tables 2 and 3, correspondingly.
These coefficients represent the probability of sending the
corresponding Fock-number state. We give the values of the
optimised squeezing parameters of the states given in Eq. (1) with
nmax ¼ 7 photons for each distance used in Fig. 2a in Table 4. In
Table 5, we present the coefficients of the optimised single-
photon states shown in Fig. 6.
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