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Synthesizing efficient circuits for Hamiltonian simulation
Priyanka Mukhopadhyay 1,2✉, Nathan Wiebe3,4 and Hong Tao Zhang5

We provide an approach for compiling quantum simulation circuits that appear in Trotter, qDRIFT and multi-product formulas to
Clifford and non-Clifford operations that can reduce the number of non-Clifford operations. The total number of gates, especially
CNOT, reduce in many cases. We show that it is possible to implement an exponentiated sum of commuting Paulis with at most m
(controlled)-rotation gates, where m is the number of distinct non-zero eigenvalues (ignoring sign). Thus we can collect mutually
commuting Hamiltonian terms into groups satisfying one of several symmetries identified in this work. This allows an inexpensive
simulation of the entire group of terms. We further show that the cost can in some cases be reduced by partially allocating
Hamiltonian terms to several groups and provide a polynomial time classical algorithm that can greedily allocate the terms to
appropriate groupings.
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INTRODUCTION
One main reason that led Feynman1 and others to propose the
idea of quantum computers was the fact that problems like
simulating the dynamics of quantum systems are intractable on a
classical computer. Starting from the seminal work of Lloyd2,
much research3 has been done to develop algorithms for
simulating Hamiltonians, culminating in various techniques like
product formulas4,5, quantum walks6, linear combination of
unitaries7, truncated Taylor series8, and quantum signal proces-
sing9. Special techniques have been developed for simulating
particular physical systems10–17, which might find applications in
developing new pharmaceuticals, catalysts and materials. Phase
estimation can be combined with quantum simulation to find the
ground state energy18 and excited state energies19–21 of the
Hamiltonian. This is called the electronic structure problem14,
which is important in chemistry and material science. Research in
quantum simulation has also inspired the development of
quantum algorithms for various other problems22–26.
One main challenge for digital quantum simulation is the

implementation of efficient circuits that can produce reliable
results. Without it, a theoretical exponential speedup may not lead
to a useful algorithm if a typical practical application requires an
amount of time and memory that is beyond the reach of even a
quantum computer. There are a number of factors that can affect
the efficiency of a quantum circuit i.e. its running time and error,
for example, the number of qubits, depth, gate count, etc. So
depending upon the applications or other hardware constraints,
one can design algorithms that optimize or reduce the count/
depth of one particular type of quantum gate or other resources.
For example, there are algorithms that do T-count and T-depth-
optimal synthesis27–29 given a unitary or does re-synthesis of a
given circuit with reduced T-count, T-depth30–32 or CNOT-
count33–35. The non-Clifford T gate has known constructions in
most of the error correction schemes and the cost of fault-
tolerantly implementing it exceeds the cost of the Clifford group
gates by as much as a factor of hundred or more36–38. Quantum
error correction and fault tolerance are especially significant for
large quantum circuits, else the accumulation of errors will make

any output highly unreliable and hence useless. The minimum
number of T-gates required to implement certain unitaries is a
quantifier of difficulty in many algorithms39,40 that try to classically
simulate quantum computation. So, even though alternative fault-
tolerance methods such as completely transversal Clifford+T
scheme41 and anyonic quantum computing42 are also being
explored, minimization of the number of T gates in quantum
circuits remain an important and widely studied goal. Multi-qubit
gates like CNOT introduce more error than single qubit gates, so
reducing CNOT gate is important and especially relevant for the
noisy intermediate scale quantum (NISQ) computers.

Our contributions
(I) One main result in this paper is Lemma 2.4, which shows that it
is possible to implement an exponentiated sum of commuting
Paulis with at most m (controlled)-rotation gates, where m is the
number of distinct non-zero eigenvalues (ignoring sign). For
illustration, we consider the Hamiltonian for the Heisenberg model
and we show that it is possible to achieve about 50% reduction in
the rotation gate cost and for certain underlying graphs this
reduction can be about 75%. However, the cost of Toffolis may
increase. We have given explicit circuits for 4-qubit and 6-qubit
chain (or cycle), where we attempt to reduce both the rotation
and Toffoli gate cost.
(II) In most previous works, circuits for individual exponentiated

Paulis are synthesized and combined. We show that it is possible
to reduce the gate count (not only non-Clifford gates) if we
instead consider groups of commuting Paulis. To give some
practical demonstration, we consider the qDRIFT Hamiltonian
simulation algorithm43. We call the error introduced due to the
algorithm as ‘simulation error’. We take the 1-D 4 qubit and 6
qubit Heisenberg Hamiltonians (Fig. 7) and also 4-qubit Hamilto-
nians for H2 and LiH (with freezing in the STO-3G basis) (Fig. 8),
and compare the case where a single Pauli term is selected with
the case where a set of commuting Pauli terms is selected for
implementation at each iteration of qDRIFT. We observe that the
error accumulation is less for multiple terms and also the rotation
gate cost is less in this error regime. The number of Toffoli pairs is
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roughly equal to the number of Rz/cRz used, in case of multiple
terms. So overall, we have less T-count when implementing
multiple commuting Paulis per iteration of qDRIFT. This adds to
the motivation of building efficient circuits for such Hamiltonians.
(III) In subsection ‘Optimized Circuits for Quantum Chemistry’

we derive explicit quantum circuits for the two-body excitation
terms appearing in the Coulomb Hamiltonian in quantum
chemistry. We mainly use the Clifford+T universal fault-tolerant
gate set to implement unitaries. We design efficient circuits for a
different grouping of commuting Pauli operators. It is evident
(Table 2) that the rotation gate cost depends on the coefficients of
the Pauli summands. For some combination of coefficients the
circuits derived here are optimal, in the sense, that they have the
minimum (i.e. 1) number of cRz gates. Though our focus is on
reducing the non-Clifford gate count, but most of the quantum
circuits derived here have an overall reduced gate count,
including a reduction in the 2-qubit gates like CNOT. In Table 1
we have compared the number of gates required to implement
one of the Hamiltonians considered in this paper with a previous
construction. For the remaining Hamiltonians we did not find any
compact previous construction to compare with. In short, our
approach can be useful not only in the fault-tolerant regime, but
also in the NISQ era.
(IV) In Algorithm 1, we describe a greedy method of grouping

into commuting Paulis, but the objective is to optimize the
number of non-Clifford gates. There have been a host of work that
tackles the question of how to group the commuting Paulis and to
the best of our knowledge most (if not all) of them has the
objective to reduce the number of measurements required to
make an estimation44. The latter problem is especially important
for variational quantum eigensolvers. The grouping that optimizes
the non-Clifford gates may not optimize the number of
measurements. In most cases, finding the optimal grouping is
difficult. But we can always ask the question that given a grouping
(for whatever objective), is it possible to compile efficient circuits.
In this case, we can use our techniques (Lemma 2.4) to reduce the
gate count. Thus our methods can also be used to design circuits
for the measurement problem.
In this paper, we use the Jordan–Wigner (JW) transformation45

to map from the fermionic to the qubit space. And then we group
into commuting Paulis. Other transformations like Bravyi–Kitaev
and parity transformations46 can also be used and may be
beneficial in circumstances where Clifford operations are costly or
inherent quantum error correction is desirable. We focus on
Jordan–Wigner for two reasons. First, in this paper, we focus on
the synthesis of efficient quantum circuits for exponentiated
commuting Paulis and the techniques hold no matter whichever
mapping is considered. Second, previous work has not shown
obvious advantages for Bravyi–Kitaev transformations within the
domain of fault-tolerant quantum computing.

How we compare the cost of non-Clifford resources
In all the constructions discussed in this paper, two approximately
implementable gates are used—Rz and controlled Rz (cRz), whose
T-count varies inversely with precision or synthesis error. From the
results given in29 and from the implementations performed here
until the error 10−6, we believe that T-count of cRz can be less than
that of Rz for most modestly small rotation angles. However, for
convenience, we assume these have equal cost and with some
abuse of terms, we refer to the T-count of Rz/cRz as the ‘(non-
Clifford) rotation gate cost’. The only exactly implementable non-
Clifford unitary/gate considered in the constructions is Toffoli with
T-count 727 or 447. For low error regime, the T-count of
approximately implementable Rz/cRz will dominate, while in a high
error regime the T-count of Toffoli may matter, if we use a lot of
them. To reduce the T-count of compute-uncompute Toffoli pairs,
we can use the temporary logical AND gadget, proposed by
Gidney48. In fact, in our circuits, we use Rz gates controlled on n
qubits (n > 1), each of which can be decomposed into
(compute–uncompute) pairs of NOT gates controlled on n qubits
and a cRZ gate. Each such multi-controlled NOT can be
implemented with n−1 Toffoli or 4n−4 T-gates48. If we combine
compute-uncompute pairs then the overall T-count of the circuit
can reduce further, by using logical AND gadget. We must keep in
mind that the implementations in47,48 use classical resources and
measurements, and it is not straightforward to argue that it will
give advantage, inspite of using less number of T-gates. We can
also use the construction in49 that implements an n-controlled NOT
gate using 4n−4 T, 4n−3 CNOT and n−1 ancillae qubits. In our
paper, we have expressed the non-Clifford T-gate cost in terms of
the rotation gate cost and the number of Toffoli pairs used.

Related work
In ref. 50 the authors studied the non-Clifford resource cost
required to simulate the chemical process of biological nitrogen
fixation by nitrogenase. In ref. 51 the authors developed algorithms
to synthesize circuits for the Clifford operators that diagonalize a
group of commuting Paulis. The goal was to reduce the two-qubit
CNOT gate count because of its low fidelity and limited qubit
connectivity of near-term quantum computer architectures. A
similar diagonalization algorithm has been used in52 for efficient
simulation of Hamiltonian dynamics. Much work has been done
for the construction of quantum circuits for the evolution of
molecular systems16,53–59 and the Heisenberg model60.

RESULTS
Notation
In many places we write G(q) to denote that the gate or operator G
acts on qubit q. For multi-qubit gates we write CNOT(c, t) to denote
a CNOT with control at qubit c and target at qubit t. For
convenience, we have removed the parenthesis in the subscript
whenever there is less ambiguity. We write [K]= {1, 2,…, K}. We
denote the n × n identity matrix by In or I if dimension is clear
from the context. We denote the set of n-qubit unitaries by Un.
The size of an n-qubit unitary is N × N where N= 2n. We have
given detailed description about the n-qubit Pauli operators (Pn),
Clifford group (Cn) and the group (J n) generated by the Clifford
and T gates in Supplementary Note 1.

Optimizing Trotter-decompositions
The time evolution of a quantum system, described by a
Hamiltonian H is e−iHt. Most often the Hamiltonian H can be
decomposed as the sum H ¼Pm

j¼1 αjHj , where each Hj is Hermitian.
There can be more than one decomposition of H and we select the
one such that for each Hj the unitary e�iτHj is efficiently
implementable on a quantum computer, for any τ. The goal of

Table 1. Comparison of gate counts required to simulate e−iHt (Eqs.
(19), (20)) using the circuit synthesized by us with the circuit in ref. 50.

Case I Case II Case III [50]

CNOT 6 10 8 38

H 2 2 2 2

X 2 6 6 0

(c)Rz 1 1 3 8

#Toff. pair 2 2 4 0

Total 15 23 27 42

The gate counts have been given for the three different cases considered
in this work.
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the Hamiltonian simulation problem is to find an approximation of
e−itH into a sequence of e�iτHj , up to some desired precision. For
example, using the Lie-Trotter formula5 we have that

e�iHt ¼ lim
k!1

Y
j

e�iðt=kÞαjHj

 !k

:

In the non-asymptotic regime, the Trotter scheme provides a first-
order approximation, with the norm of the difference between the
exact and approximate time evolution scaling as O(t2/k). More
advanced higher order schemes3,4 are also available. Alternatively,
a randomized approach called qDRIFT can be used in place of a
Trotter formula wherein the quantum state is evolved according
to the probabilistic channel

ρ 7!
X
j

αj
jαj1

e�ijαj1Hjtρeijαj1Hjt: (1)

Note the error here is also O(t2); however, in this case, a single
exponential is performed rather than O(m) as would be needed
for the comparable Trotter formula. The cost of such an
approach scales as Oðjαj21t2=ϵÞ for error ϵ and does not directly
depend on m.
The approximation errors arising in the use of product formulas

are caused by non-commuting terms in the Hamiltonian. For
example, see ref. 61 for a detailed exposition on Trotter errors.
Given any set of mutually commuting operators P1,…, Pm we have
the following:

e
�it
Pm

j¼1
Pj ¼

Ym
j¼1

e�itPj (2)

Thus, the operators are partitioned into mutually commuting
subsets. Time evolution for the sum of mutually commuting
operators in each such subset is trivial, and the product formulas
can be applied to the sum of Hamiltonians formed as the sum of
each subset. This approach becomes especially applicable in
scenarios where the Hamiltonian can be expressed as a sum of
Pauli operators, for which the commutation relations can easily be
evaluated.
As a specific example, consider the case where H= aZ⊗ Z⊗ Z.

Since the Hamiltonian is diagonal, e−iaZ⊗Z⊗Zt has computational
basis vector b1; b2; b3j i and eigenvalues e�ið�1Þb1�b2�b3 at . Thus the
eigenvalues are determined by the parity of the bit strings, which
can be computed using CNOT gates. From this reasoning the
following quantum circuit will perform the simulation of this Pauli
operator exactly.

ð3Þ

As every Pauli operator of weight 3 can be diagonalized by Clifford
conjugation, this circuit up to an elementary basis transformation,
will simulate any weight 3 Pauli Hamiltonian. The exact same
strategy of diagonalizing and simulating the Pauli operator in the
eigenbasis shows that each exponential of a weight ν Pauli
operator Hamiltonian requires 2(ν−1) CNOT operators and one
rotation gate. This strategy is at the heart of most elementary
networks for simulating chemistry and spin models53,62.
The work of50 provided another way of thinking about these

decompositions by showing an explicit method that can
diagonalize sums of commuting operators that appear in
chemistry simulations by transforming into a simultaneous
eigenbasis of such terms. In full generality, such transformations
reduce the circuit depth but need not reduce the circuit size.
However, we will see here that for some Hamiltonians these
transformations can reduce the circuit size as well.

As a motivating example, consider the Hamiltonian H= XX+
YY+ ZZ. This Hamiltonian can be simulated, up to a global
phase, by

ð4Þ

This can be implemented using two Toffoli gates and a single
qubit rotation. In contrast, the standard approach from53,62

would use three single qubit rotations and no Toffoli gates. As
rotation synthesis often is 10 times more expensive than Toffoli
gates27,29,50, this will almost always be a favorable way of
performing the simulation. In contrast, if this symmetry is
broken then the Hamiltonian term will be more expensive to
simulate. Thus it can be favorable to introduce such symmetries
as needed artificially. For example, consider

H ¼ XX þ YY þ ð3=2ÞZZ ¼ ðXX þ YY þ ZZÞ þ ZZ=2: (5)

Such a simulation can be performed using two rotation gates
rather than the 3 naïvely needed and so it makes sense to compile
the Hamiltonian terms this way to reduce the overall complexity.
As another example, not all rotations are equally expensive and

so we should also combine terms in such a way as to minimize the
cost. For example consider the time-evolution operator

UðtÞ ¼ e�iðπ=4 ffiffi2p �ϵÞZ�iðπ=4 ffiffi2p þϵÞX � e�iπ=4ðXþZÞ= ffiffi2p
e�iðX�ZÞϵ: (6)

While the first operation in this Trotterization is not a Clifford
operation, it is a simulation of a Hadamard gate for time π/4. As
this corresponds to a special angle and since the Hadamard gate
can be diagonalized using a constant size H and T circuit, the cost
of implementing this first term is O(1) and thus the dominant cost
is the remaining rotation. In contrast, if this property were not
used then we would have two arbitrary rotations in the
Trotterization which would be nearly twice the cost of this
simplified approach. These ideas can further be used in concert:
remainder terms that arise from inexactly rounding a Hamiltonian
evolution to a known cheap simulation can be absorbed into
other terms or even other Trotter steps.

Algorithm 1. Hamiltonian compilation using Greedy 1-norm
minimization

We propose an algorithm in Algorithm 1 that exploits this
intuition through a greedy decomposition of the Hamiltonian into
sums of commuting terms. These mutually commuting terms, or
fragments, are chosen such that the ratio of the fraction of the
Hamiltonian that is simulated by the term to the cost of the term is
maximized. This choice is motivated in part by the fact that the
query complexity of a quantum simulation is lower bounded by
Ω(∣α∣1t)63 and thus designing circuits that simulate as large of a
fraction of this one-norm as possible per quantum gate operation

P. Mukhopadhyay et al.

3

Published in partnership with The University of New South Wales npj Quantum Information (2023)    31 



is a sensible optimization heuristic for our greedy algorithm.
Unlike traditional approaches to partitioning the Hamiltonian, our
approach allows partial allocation of Hamiltonian terms to
multiple commuting sets. Further, the allocation can be negative
in our approach. This negative allocation is important because we
will see that in some cases the introduction of more Hamiltonian
weights on some terms can be more than offset by the reduced
costs of simulating the fragment.
The number of optimization steps required for our greedy

algorithm is at most O(m2). To see this, assume that the optimal
strategy involves μ iterations of the outer loop for μ∈Ω(m) and
assume that the inner loop optimization requires ν iterations. Since
COST≥ 1 it holds that Γmax �

P
jjα0j j �

P
jjα0j � βjj. Assume thatP

jjα0j j �
P

jjα0j � βjj<jα0j1. In this case, by assumption there exists a
trivial solution that outperforms this where the largest term is
simulated in isolation at cost 1. Therefore we must have thatP

jjα0j j �
P

jjα0j � βjj � jα0j1. Then from standard norm inequalities
we have that jα0j1 � jα0j1=m. Thus the one-norm of the vector is
given by a first-order difference equation of the form ∣α(j+1)∣1≤ (1− 1/
m)∣α(j)∣1. The general solution to this is (1−1/m)j∣α∣1 which is ϵ for
j 2 Oðlogð1=ϵÞ= logð1=ð1� 1=mÞÞÞ 2 Oðm logð1=ϵÞÞ. This implies
that μ 2 O m logð1=ϵÞð . Next ν is the maximum number of iterations
for the inner loop. Since each iteration continues until the total
number of terms remaining is reduced by one we have that ν∈O(m).
Thus the total number of iteration steps is μν 2 Oðm2 logð1=ϵÞÞ. This
shows that the algorithm scales polynomially with the number of
terms if the optimization process is also efficient.
The cost of optimization can vary strongly depending on the

continuity/convexity of the objective function and without making

further assumptions we cannot assume that the optima over β
!

can be found in polynomial time. If we assume, however, that the
optimizer works by considering one of a polynomial number of
potential circuits for simulating the terms and then uses linear

programming to find the optimal value of β
!
, we have that the

optimization problem can be solved in polynomial time on a
classical computer. Such a choice corresponds exactly to the
discussion in the next sections, where we propose the use of a
discrete set of optimization strategies for simulating chemistry
that can then be used within Algorithm 1 to greedily find the best
possible simulation circuit given these discrete set of optimiza-

tions for the value of β
!

chosen.

Truncating Hamiltonian. We can terminate Algorithm 1 before all
terms are allocated i.e. we output {Hj= hj∑iPi: j= 1,…,m″} such
that

Pm00
j¼1 Hj ¼ ~H ≠H. This leads to truncation errors in our

simulation algorithm that will be present even if an algorithm
such as qDRIFT is used for the simulation. We show here that if we
truncate some terms of the Hamiltonian, then the error incurred is
at most twice the error incurred from the complete Hamiltonian
simulation by qDRIFT, given that the distance of the truncated and
given Hamiltonian is at most square root of the qDRIFT simulation
error. We do this because in some cases we may be able to
simulate the truncated Hamiltonian with less number of gates.
Suppose we write the given Hamiltonian as follows.

H ¼
XM
j¼1

wjHj þ δH ¼ ~H þ δH ½kHk � 1� (7)

Here each Hj is a Hermitian matrix for which an efficient simulation
circuit exists. The protocol working with the truncated Hamilto-
nian ~H, samples each Hj independently with probability pj ¼ wj

λ
(where λ= ∑i∣wi∣), in each iteration.
The error per iteration of qDRIFT, i.e. ϵN, is given by bounding

the diamond distance between the channel UNðρÞ correspond-
ing to the Hamiltonian H and the channel ~EðρÞ implemented by
the protocol.

Lemma 2.1. The error observed when there are N time-steps taken
using a qDRIFT channel, ϵN, as quantified by the diamond distance
as a function of the truncation error in the Hamiltonian δ is

ϵN � k~EðρÞ � UNðρÞk � ϵqDRIFT þ 2δ
ffiffiffiffiffiffiffiffiffiffiffiffi
ϵqDRIFT

p

where ϵqDRIFT⪅ 2λ2t2

N2 and λ= ∑i∣wi∣.
The proof has been given in Supplementary Method 4

(Lemma 8). Thus the total error after all repetitions is as follows.

ϵ � NϵN⪅N
2λ2t2

N2 þ 2
ffiffiffi
2

p
δN

λt
N
¼ 2λ2t2

N
þ 2

ffiffiffi
2

p
δλt (8)

This shows that if δ 2 Oð ffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵqDRIFT

p Þ then the asymptotic scaling is
not impacted by the exclusion of the terms from the Hamiltonian.

Expected cost. Let the cost of implementing the unitary eitwjLj=N

be cj. Cost can be defined in many ways, like total number of
gates, number of non-Clifford gates like T or Toffoli gate, number
of multi-qubit gates like CNOT, etc. In our paper we focus mainly
on the number of non-Clifford gates. Let CN be the variable
denoting the cost per repetition of our protocol. Then the
expected cost and the variance per repetition is as follows.

E½CN� ¼
XM
j¼1

pjcj ¼
1
λ

XM
j¼1

wjcj ¼ μN and Var ½CN� ¼ 1

λ2
λ
XM
j¼1

wjc
2
j �

XM
j¼1

wjcj

 !2 !
¼ σ2N

(9)

By Chebyshev’s inequality (Supplementary Note 1) we have the
following for some real number k > 0.

Pr jCN � μNj � kσN½ � � 1

k2
(10)

The cost per repetition of our protocol is a bounded variable i.e.
a � CN � b, for some real numbers a, b. If C is the variable
denoting the cost of all repetitions of our protocol, then

E½C� ¼ NμN (11)

and since each repetition is independent, making the correspond-
ing cost variables per repetition distributed identically and
independently, so we apply Hoeffding’s inequality (Supplemen-
tary Note 1) and obtain the following.

Pr C � NμNj j � cNμN½ � � 2 exp � 2c2N2μ2N
Nðb� aÞ2

 !
¼ 2 exp � 2c2Nμ2N

ðb� aÞ2
 !

¼ ϵc ½c>0�

(12)

Thus with probability at least 1−ϵc, the cost of all repetitions of the

protocol is at most ðcþ1ÞN
λ

PM
j¼1 wjcj , where c ¼ b�a

μN
ffiffiffiffi
2N

p log 2
ϵc

� �
.

Error in simulation while sampling multiple Paulis. We consider the
qDRIFT protocol43 for simulating Hamiltonians. If H= ∑jhjHj, then in
each iteration we sample Hj with probability proportional to hj and
then simulate it for a short time period. Now Hj can be a single
Pauli operator or a sum of commuting Paulis, as is achieved in
Algorithm 1, to optimize the cost of simulation. Here we derive a
bound on the difference in simulation error for these two cases.
Let Hj ¼

PLj
ij¼1 Pij—sum over commuting Paulis and M be the

total number of Pauli operators. So the Hamiltonian can be written
as H ¼PL

j¼1 hjHj ¼
PL

j¼1

PLj
ij¼1 hjPij . We assume the most general

case where a single Pauli can be shared between multiple
commuting groups i.e. Hj.
In the first case, a group of commuting Paulis i.e one of the Hj is

selected independently with probability qj ¼ hjP
j
hj
. In the second

case, one single Pauli operator Pk is sampled independently with

probability p0k ¼
P

j0 hj0P
i
hi Li

, where in the numerator the sum is over all

the commuting Pauli groups in which Pk appears. Let λ= ∑jhj and
λ0 ¼PjhjLj . We define the Liouvillian that generates unitaries

P. Mukhopadhyay et al.
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under Hamiltonian Hj and Pij so that

Lj ¼ iðHjρ� ρHjÞ and Lij ¼ iðPijρ� ρPij Þ: (13)

Thus if L ¼ iðHρ� ρHÞ, then L ¼PL
j¼1 hjLj ¼

PL
j¼1 hj

PLj
ij¼1 Lij .

We define two channels E1 ¼
PL

j¼1 qje
τLj and

E2 ¼
PL

j¼1 pj
PLj

ij¼1 e
τ0Lij , where pj ¼ hj

λ0 , that evolves the super-

operators Lj and Lij for time interval τ ¼ λt
N and τ0 ¼ λ0t

N respectively.
Here we note that for the second channel, for each Pauli Pk, we

have expanded the sum pk0 ¼
P

j0
hj0
λ0 to reflect the commuting

groups in which it belongs. Thus
PM

k¼1 pk0 ¼
PL

j¼1

PLj
ij¼1 pj . Then

we can prove the following.

Lemma 2.2. The distance between the qDRIFT channel with single
and grouped Hamiltonian terms for simulation time t using N time
steps obeys

kE2 � E1k � 4t2λ02

N2

The proof has been given in Supplementary Method 4 (Lemma 7).

Optimized circuits for quantum chemistry
In this section we review quantum algorithms for quantum
chemistry and design efficient circuits that are useful for quantum
chemistry simulation within the Trotter–Suzuki formalism. The
electronic structure problem has emerged as a central application
of quantum computers in recent years, with quantum algorithms
providing potential exponential speedups relative to the best
known classical algorithms50,53. The electronic structure problem
more specifically is, for a fixed set of positions of the nuclei, find
the configuration of electrons that minimizes the total energy for a
fixed number of electrons. The properties of materials, molecules
and atoms at low temperatures emerge from these energies. In
the non-relativistic case, the dynamics of these electrons are
governed by the Coulomb Hamiltonian.

H ¼ �
X
i

∇2
i

2
�
X
i;j

ζ j
jRj � ri j þ

X
i<j

1
jri � rj j þ

X
i<j

ζ iζ j
jRi � Rj j

where we have used atomic units, ri represent the positions of
electrons, Ri represent the positions of nuclei, and ζi are the
charges of nuclei.
Following the strategy outlined in13, we select the second

quantization and discretize the Hamiltonian by representing it
within some canonical basis such as a Gaussian basis or a planewave
basis. Under the above assumptions, the electronic Hamiltonian can
be represented in terms of creation and annihilation operators as
follows64,65. Each spin orbital is assigned a (distinct) qubit where the
state 1j i corresponds to an occupied orbital and 0j i an unoccupied
orbital. Specifically, let ayp and ap be the fermionic raising and
lowering operators acting on spin-orbital p satisfying the anti-
commutation relation fayp; aqg ¼ δpq and fap; aqg ¼ fayp; ayqg ¼ 0,

H ¼
X
p;q

hpqa
y
paq þ

1
2

X
p;q;r;s

hpqrsa
y
pa

y
qaras (14)

where the coefficients hpq, hpqrs are determined by the discrete
basis set chosen, and the sums run over the number of
discretization elements or basis set for a single particle. From
inspection, we can see that the number of terms in Equation (14) is
O(N4), where N is the size of the discrete representation. The
molecular orbitals are one widely used basis set. These, in turn, can
be expressed as linear combinations of atomic basis functions66,67.
The coefficients of this expansion are obtained by solving the set of
Hartree–Fock equations that arise from the variational minimization

of the energy using a single determinant wave function. Thus in this
representation the location of (indistinguishable) electrons are
specified by the occupations of the discrete basis.
The Jordan–Wigner45 or Bravyi–Kitaev46 transformations are

commonly used to convert the fermionic creation and annihila-
tion operators into Pauli operators. For example, within the
Jordan–Wigner encoding, a and a† can be written in terms of
qubit operators as follows.

ap ¼ QðpÞ
Yp�1

j¼0

ZðjÞ ¼ 1
2
ðXðpÞ þ iY ðpÞÞ

Yp�1

j¼0

ZðjÞ and ayp ¼ Qy
ðpÞ
Yp�1

j¼0

ZðjÞ ¼ 1
2
ðXðpÞ � iYðpÞÞ

Yp�1

j¼0

ZðjÞ

Here Qy
ðpÞ ¼ 1

2 ðXðpÞ � iYðpÞÞ and QðpÞ ¼ 1
2 ðXðpÞ þ iYðpÞÞ are the qubit

creation and annihilation operators respectively. ∏jZ(j) acts as an
exchange-phase factor, accounting for the anti-commutation
relations of a and a†.
With these tools in place, the second-order Trotter–Suzuki

approximation reads

e�iHt ¼
Y
p;q

e�itðhpqaypaqþhqpa
y
qa

y
qapÞ=2

Y
p;q;r;s

e�itðhpqrsaypayqarasþhsrqpa
y
s a

y
r aqapÞ=4 þ Oðt2Þ

(15)

Such a simulation can then be performed by substituting in the
Pauli representation yielded by the Jordan–Wigner transforma-
tion. Higher order versions of this are also known63 that can
achieve error scaling O(t2k+1); however, we do not focus on such
cases here since the optimizations to the operator exponentials
that we consider here will apply in all such cases.

Optimizing two-body operator exponentials. The two-body terms
are the most common, and often the most significant, contribu-
tion to the complexity of a simulation of the Coulomb Hamiltonian
in second quantization10. In this section, we consider the general
two-body double excitation terms to reduce this dominant cost
for simulation of chemistry, which when expressed using the
Jordan–Wigner transformation, can be written as product of X, Y, Z
operators as follows53. We have removed the parentheses in the
subscripts, for convenience.

hpqrsa
y
pa

y
qaras þ hsrqpa

y
sa

y
r aqap ¼

Or�1

k¼sþ1

Zk

 ! Op�1

k¼qþ1

Zk

 !
<fhpqrsg

8
Hr þ =fhpqrsg

8
Hi

� �

(16)

whereHr ¼ XsXrXqXp � XsXrYqYp þ XsYrXqYp þ YsXrXqYp

þ YsXrYqXp � YsYrXqXp þ XsYrYqXp þ YsYrYqYp

andHi ¼ YsXrXqXp þ XsYrXqXp � XsXrYqYp � XsYrYqYp

� YsXrYqYp þ YsYrXqXp þ YsYrXqYp þ YsYrYqXp

(17)

Note that if a Gaussian orbital basis is chosen then the values of
hpqrs are typically real, resulting in Hi= 0. We will assume in the
remainder of the discussion that such terms are zero and focus our
attention on only the real part of the Hamiltonian.
If we define h1 ¼ ðhpqrsδXpXsδXqXr � hqprsδXpXrδXqXsÞ, h2 ¼

ðhpsqrδXpXrδXqXs � hspqrδXpXqδXrXsÞ and h3 ¼ ðhprsqδXpXqδXrXs�
hprqsδXpXsδXqXr Þ, for distinct p, q, r, s then we have the following53.

1
2

P
p;q;r;s

hpqrs aypa
y
qaras þ aysa

y
r aqap

� �

¼ 1
8

Nq�1

k¼pþ1

Ns�1

k¼rþ1
Zk

 !
ðXpXqXrXs þ YpYqYrYsÞð�h1 � h2 þ h3Þ
�

þðXpXqYrYs þ YpYqXrXsÞðh1 � h2 þ h3Þ þ ðYpXqYrXs þ XpYqXrYsÞð�h1 � h2 � h3Þ
þðYpXqXrYs þ XpYqYrXsÞð�h1 þ h2 þ h3Þ

�
(18)

Thus conventionally, the part of the Hamiltonian which can be
expressed in the form of Equation (16), are broken down into
groups of at most 8 commuting operators that act on the qubits in
question. Each term is diagonalized by a Clifford circuit and the
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evolution is performed based on this, with some Rz gates. In50 the
authors diagonalize all 8 terms in the simultaneous eigenbasis and
parallelizes all 8 Rz gates. This reduces the number of Clifford gates,
depth, but comes at the cost of using extra 4 ancillae. Excluding the
diagonalizing circuits on both sides they use 32 CNOTs and 8 RZ.
Each diagonalizing circuit uses 3 CNOT and 1 H gate. Our goal in
this section is to design more efficient quantum circuits for the
double excitation terms. In Table 1 we have compared the gate
costs of the circuit in50 with the circuits derived by us in each of the
3 cases considered by us. Fermionic SWAP gates55,68 can be used to
make the orbitals neigboring and hence get rid of the tensor
product of Z terms. So from here on, we ignore these terms.
Let q1, q2, q3, q4 be the qubits to which the fermions in

the orbitals p, q, r, s are mapped respectively. We follow the
technique used in50. W= CNOT(1, 2)CNOT(1, 3)CNOT(1, 4)H(1) is the
unitary diagonalizing the 8 terms in the simultaneous eigen-
basis. We rewrite the Hamiltonian H with general coefficients
a0; ¼ ; a7 � R. Unless mentioned, the leftmost operator acts on
qubit q1, next ones on q2, q3 and the rightmost on qubit q4.

H ¼ a0XXXX þ a1YYXX þ a2YXYX þ a3YXXY

þ a4XYYX þ a5XYXY þ a6XXYY þ a7YYYY
(19)

Then following the arguments in50 we have the following.

e�iHt ¼ W e�ia0ZIIIteia1ZZIIteia2ZIZIteia3ZIIZteia4ZZZIteia5ZZIZteia6ZIZZte�a7ZZZZt
� �

Wy

¼ Weið�a0ZIIIþa1ZZIIþa2ZIZIþa3ZIIZþa4ZZZIþa5ZZIZþa6ZIZZ�a7ZZZZÞtWy

(20)

The terms in between W and W† add an overall phase ϕ. We
denote the state of the qubits q1,…, q4 after application of W by
variables x1,…, x4 respectively. It is sufficient to analyse the phase
when the state is in the standard basis. Consider e�ia0ZIIIt - this
term contributes a phase of− a0t if x1= 0 and a0t if x1= 1. Similarly
eia1ZZIIt contributes a phase of a1t if x1⊕ x2= 0 and vice versa. Thus
we can have the following expression for the overall phase.

ϕ ¼ �ð�1Þx1a0 þ ð�1Þx1�x2a1 þ ð�1Þx1�x3a2 þ ð�1Þx1�x4a3 þ ð�1Þx1�x2�x3a4 þ ð�1Þx1�x2�x4a5
�
þð�1Þx1�x3�x4a6 � ð�1Þx1�x2�x3�x4a7

�
(21)

For different values of a0,…a7 we get different value of overall
phase and different circuits. We consider the following three

cases. It is easy to see that ϕx1¼1 ¼ �ϕx1¼0. So in all the cases
below it is sufficient to calculate the phase while setting x1= 0.

Case I. Let a1t= a6t=− θ and the remaining a0t= a2t=…=
a5t= a7t= θ. Then we can verify that ϕ= 8θ if x1= 1, x2= 0, x3=
x4= 1, ϕ=− 8θ if x1= 0, x2= 0, x3= x4= 1 and ϕ= 0 for the
remaining values of x1,…, x4. Then the quantum circuit simulating
e−iHt is shown in Fig. 1a and b.

Case II. Let a0t=…= a7t= θ. If x2= 1, x3⊕ x4= 0 then ϕ= 0
and if x2= 0, x3⊕ x4= 0 then ϕ ¼ ð�1Þx34θ. When x3⊕ x4= 1
then ϕ ¼ �2θþ ð�1Þx22θ. This is equal to− 4θ if x2= 1. The
quantum circuit simulating e−iHt is shown in Fig. 1c.

Case III. Let a0t= a7t=− h1− h2+ h3, a1t= a6t= h1− h2+ h3,
a2t= a5t=− h1− h2− h3 and a3t= a4t=− h1+ h2+ h3, as
shown in Equation (18). It can be verified that ϕx2¼x3¼1;x4¼0 ¼
8h2, ϕx2¼0;x3¼x4¼1 ¼ 8h1 and ϕx2¼x4¼1;x3¼0 ¼ �8h3. For every other
values of x2, x3, x4, ϕ= 0. The corresponding quantum circuit
simulating e−iHt has been shown in Fig. 1d, e, f.
We already remarked that we can ignore the product of Z terms

in Equations (16) and (18) by using fermionic SWAP gates. Now if
we take two Hamiltonians of the form (19) having some
overlapping qubits, then we can get different Hamiltonians by
rearranging the commuting Paulis. In the next few subsections we
design circuits for the corresponding exponentials of these
Hamiltonians. We must keep in mind that in the following
subsections P0= X and P1= Y, i ¼ i þ 1mod 2. Table 2 summarizes
the number of non-Clifford gates used to implement the various
circuits. All rotation gates with n ( >1) controls, can be decomposed
into cRz (single control) and NOT with n controls, each of which can
be decomposed into n− 1 Toffolis (as shown in Fig. 1b). We have
discussed in ‘Introduction’ about special gadgets that can be used
to further reduce the T-count of the circuits. In Fig. 1e, 1f we show
how Toffolis can be reduced in segments of the circuits. Our circuits
have less gates (even the Clifford gates), compared to50 or the
approaches where we synthesize circuit for each exponentiated
Pauli and then concatenate them. In fact, we show the dependence
of the circuit size or Clifford and non-Clifford gate cost on the
coefficients of the commuting Paulis in the Hamiltonian expression.

Fig. 1 Quantum circuit simulating e−iHt. a Circuit when a1t= a6t=− θ and a0t= a2t=…= a5t= a7t= θ. (b) Circuit in a with the multi-
controlled rotation implemented with Toffoli and controlled rotation. c Circuit when a0t=…= a7t= θ. d Circuit when the coefficients are as in
Equation 18. e Circuit in d with the multi-controlled rotations in the boxed section implemented with Toffolis and controlled rotations.
f Circuit in e with some further reduction of the intermediate Toffoli gates.
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Overlap on 1 qubit. Previously, we provided an analysis of the
circuits for cases where many of the Hamiltonian coefficients
are chosen to follow regular patterns and see that the costs of the
simulation can be reduced through the use of these techniques.
Here we provide a more aggressive strategy wherein we combine
multiple commuting terms together and find particular combina-
tions of angles such that the simulation circuits are efficient. The
results are summarized in Table 2. We consider the case when
there is overlap on 1 qubit. We can have the following sets of
commuting Paulis.

G1y ¼ fPiPjPkYIII; IIIYPaPbPc : i þ j þ k 	 1mod 2; aþ bþ c 	 1mod 2g
(22)

G1x ¼ fPiPjPkXIII; IIIXPaPbPc : i þ j þ k 	 0mod 2; aþ bþ c 	 0mod 2g
(23)

Without loss of generality, we assume that the leftmost operator
acts on qubit q1, next one on q2 and so on - rightmost one acts on
qubit q7. We denote a state vector as Q1vQ2j i where Q1 ¼ q1q2q3j i,

Q2 ¼ q5q6q7j i and v, q1,…, q7∈ {0, 1}. We can have the following
Hamiltonian terms, expressed as sums of commuting Paulis from
the above two sets.

H1y ¼ a3YXXYIIIþ a5XYXYIIIþ a6XXYYIIIþ a7YYYYIII
þ b1IIIYYXX þ b2IIIYXYX þ b3IIIYXXY þ b7IIIYYYY

(24)

H1x ¼ a0XXXXIIIþ a1YYXXIIIþ a2YXYXIIIþ a4XYYXIII
þ b0IIIXXXX þ b4IIIXYYX þ b5IIIXYXY þ b6IIIXXYY

(25)

Circuit for simulating e�iH1y t . Let W1y be the unitary consisting of
the following sequence of gates. The rightmost one is the first to
be applied. With a slight abuse of notation we denote CNOT(4, 1)
CNOT(4, 2)CNOT(4, 3) by CNOT(4, I) and CNOT(4, 5)CNOT(4, 6)CNOT(4, 7) by
CNOT(4, II).

W1y ¼ CNOT ð4;IÞHð4ÞZð4ÞCNOT ð4;IÞCNOT ð4;IIÞHð4ÞCNOT ð4;IÞ

Table 2. The first table shows the number of Rz, cRz and Toffoli (Toff.) pairs used to design the circuits implementing e�iH0t , where H0 are the
Hamiltonians (Ham.) described in Section ‘Results’.

#qoverlap Ham. Case I Case II Case III

#cRz #Rz #Toff. pair #cRz #Rz #Toff. pair #cRz #Rz #Toff. pair

0 H 1 0 2 1 0 2 3 0 4

1 H1y 2 0 2 0 2 8 6 0 24

H1x 2 0 2 0 2 8 6 0 6

2 H21 - - - 2 0 2 4 0 4

H20 2 0 2 2 0 2 4 0 4

3 H3y 2 0 2 1 0 2 6 0 6

H3x 2 0 2 0 2 2 6 0 6

#qoverlap Ham.

0 H a0XXXX+ a1YYXX+ a2YXYX+ a3YXXY

+ a4XYYX+ a5XYXY+ a6XXYY+ a7YYYY

1 H1y a3YXXYIIIþ a5XYXYIIIþ a6XXYYIIIþ a7YYYYIII
þb1IIIYYXX þ b2IIIYXYX þ b3IIIYXXY þ b7IIIYYYY

H1x a0XXXXIIIþ a1YYXXIIIþ a2YXYXIIIþ a4XYYXIII
þb0IIIXXXX þ b4IIIXYYX þ b5IIIXYXY þ b6IIIXXYY

2 H21 a2YXYXIIþ a3YXXYIIþ a4XYYXIIþ a5XYXYII
þb2IIYXYX þ b3IIXYYX þ b4IIYXXY þ b5IIXYXY

H20 a0XXXXIIþ a1YYXXIIþ a6XXYYIIþ a7YYYYII
þb0IIXXXX þ b6IIYYXX þ b1IIXXYY þ b7IIYYYY

3 H3y a1YYXXIþ a2YXYXIþ a3YXXYIþ a7YYYYI
þb3IYXXY þ b5IXYXY þ b6IXXYY þ b7IYYYY

H3x a0XXXXIþ a4XYYXIþ a5XYXYIþ a6XXYYI
þb0IXXXX þ b1IYYXX þ b2IYXYX þ b4IXYYX

Case Coefficients

I a1t= a6t=− θ1; a0t= a2t=…= a5t= a7t= θ1; b1t= b6t=− θ2; a0t= a2t=…= a5t= a7t= θ2

II a0t=…= a7t= θ1; b0t=…= b7t= θ2

III a0t= a7t=− h1− h2+ h3; a1t= a6t= h1− h2+ h3; a2t= a5t=− h1− h2− h3; a3t= a4t=− h1+ h2+ h3
b0t= b7t=− g1− g2+ g3; b1t= b6t= g1− g2+ g3; b2t= b5t=− g1− g2− g3; b3t= b4t=− g1+ g2+ g3

#qoverlap is the number of overlapping qubits. Pairs of Toffoli gates are cited here, since [46] can be used in these cases to uncompute the action of the Toffoli
gates in these cases. The second table summarizes the Hamiltonians and the third table summarizes the value of the coefficients for the different cases. When
#qoverlap= 0 then θ1= θ, since there are no b-coefficients.
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In the following theorem we show that this is a diagonalizing
circuit for the set of Paulis in G1y.

Theorem 2.1. For each i; j; k; l; a; b; c 2 Z2, such that
PiPjPkYIII; IIIYPaPbPc 2 G1y we have the following.ffiffiffiffiffiffiffi�1

p iþjþkþ1
W1y Zi

ð1ÞZ
j
ð2ÞZ

k
ð3ÞZð4ÞIII

� �
Wy

1y ¼ PiPjPkYIII

and
ffiffiffiffiffiffiffi�1

p aþbþcþ1
W1y IIIZð4ÞZi

ð5ÞZ
j
ð6ÞZ

k
ð7Þ

� �
Wy

1y ¼ IIIYPaPbPc

We prove this theorem by showing that the operators on the
LHS and RHS have equivalent actions on the eigenstates
corresponding to an eigenbasis for the Paulis in G1y. The proof
of this theorem has been given in Theorem 1 of Supplementary
Method 1. The eigenbasis has been shown in Lemma 1 of
Supplementary Method 1.
Thus we have the following.

e�iH1y t ¼ e�ið�a3W1yðZIIZIIIÞWy
1y�a5W1yðIZIZIIIÞWy

1y�a6W1yðIIZZIIIÞWy
1yþa7W1yðZZZZIIIÞWy

1yÞt


e�ið�b1W1yðIIIZZIIÞWy
1y�b2W1yðIIIZIZIÞWy

1y�b3W1yðIIIZIIZÞWy
1yþb7W1yðIIIZZZZÞWy

1yÞt

¼ W1yeia3ZIIZIIIteia5IZIZIIIteia6IIZZIIIte�ia7ZZZZIIIteib1IIIZZIIteib2IIIZIZIteib3IIIZIIZte�ib7IIIZZZZtWy
1y

The state of the qubits q1,…, q7 after the application of W1y is
denoted by variables x1,…, x7 respectively. We have the following
expression for the overall phase incurred between W1y and Wy

1y .

ϕ ¼ ð�1Þx4�x1a3t þ ð�1Þx4�x2a5t þ ð�1Þx4�x3a6t � ð�1Þx4�x1�x2�x3a7t

þð�1Þx4�x7b3t þ ð�1Þx4�x6b2t þ ð�1Þx4�x5b1t � ð�1Þx4�x5�x6�x7b7t

It is easy to check that ϕx4 ¼ �ϕx4 . We consider the following
three cases and it is sufficient to check the phase values when
x4= 0.

Case I. Let a6t=− θ1, b1t=− θ2, a3t= a5t= a7t= θ1 and b2t=
b3t= b7t= θ2. Following the conventions and explanations given
for Case I we have the following overall phase after the application
of W1y. We can write ϕ= f1(θ1)+ f2(θ), for two functions f1 and f2.
The following can be verified.

1. If x1= x2= 0 and x3= 1 then ϕ= 4θ1+ f2(θ2). Analogously,
if ϕ= f1(θ1)+ 4θ2 when x7= x6= 0, x5= 1.

2. If x1= x2= 1 and x3= 0 then ϕ=− 4θ1+ f2(θ2) and if
x7= x6= 1, x5= 0 then ϕ= f1(θ1)− 4θ2.

3. For any other values of x1, x2, x3, ϕ= f2(θ2) and analogously,
for any other values of x7, x6, x5, ϕ=f1(θ1).

A quantum circuit simulating e�iH1y t is shown in Fig. 2a.

Case II. Now we consider the case when a6t= a3t= a5t= a7t=
θ1 and b1t= b2t= b3t= b7t= θ2. Here also ϕ can be written as

sum of two functions : ϕ= f1(θ1)+ f2(θ2). We can make the
following observations.

1. If only one of x1, x2, x3 is 1 then ϕ= 2θ1+ f2(θ2) and
analogously, if any one of x5, x6, x7 is 1 then ϕ= f1(θ1)+ 2θ2.

2. If any two of x1, x2, x3 is 1 then ϕ=− 2θ1+ f2(θ2). Similarly, if
any two of x5, x6, x7 is 1 then ϕ= f1(θ1)− 2θ2.

3. If x1= x2= x3= 0 then ϕ= 2θ1+ f2(θ2) and similarly, if
x5= x6= x7= 0 then ϕ= f1(θ1)+ 2θ2.

4. If x1= x2= x3= 1 then ϕ=− 2θ1+ f2(θ2) and analogously, if
x5= x6= x7= 1 then ϕ= f1(θ1)− 2θ2.

A circuit simulating e�iH1y t in this case, has been shown in
Fig. 2b.

Case III. Let a3t=− h1+ h2+ h3, a5t=− h1− h2− h3, a6t= h1−
h2+ h3, a7t=− h1− h2+ h3 and b3t=− g1+ g2+ g3, b2t=− g1−
g2− g3, b1t= g1− g2+ g3, b7t=− g1− g2+ g3(Equation (18)). Let
h= (h1, h2, h3) and g= (g1, g2, g3). We can write ϕ= f1(h)+ f2(g). We
can make the following observations.

1. If x1= x2= x3 then ϕ= f2((g)) and analogously, if x5= x6= x7
then ϕ= f1(h).

2. Suppose xi= xj and xk ≠ xi, where i, j, k∈ {1, 2, 3} and i ≠ j ≠ k.
Then flipping the values changes the sign. For example, if
ϕx1¼x2¼0;x3¼1 ¼ f 1ðhÞ þ f 2ðgÞ, then ϕx1¼x2¼1;x3¼0 ¼ �f 1ðhÞþ
f 2ðgÞ. Similar phenomenon occurs if i, j, k∈ {7, 6, 5}, except
this time sign of f2(g) flips.. So it is sufficient to consider the
case when two variables are 1.

ϕx1¼x2¼1;x3¼0 ¼ 4h1 þ f 2ðgÞ; ϕx7¼x6¼1;x5¼0 ¼ f 1ðhÞ þ 4g1
ϕx2¼x3¼1;x1¼0 ¼ 4h2 þ f 2ðgÞ; ϕx6¼x5¼1;x7¼0 ¼ f 1ðhÞ þ 4g2
ϕx3¼x1¼1;x2¼0 ¼ �4h3 þ f 2ðgÞ; ϕx5¼x7¼1;x6¼1 ¼ f 1ðhÞ � 4g3

A circuit simulating e�iH1y t in this case, has been shown in
Fig. 2c.

Circuit for simulating e�iH1x t . An eigenbasis for the Paulis in G1x has
been given in Lemma 2 of Supplementary Method 1. But we are
unable to find out (by hand) a unitary (analogous to W1y) that
diagonalizes the set of commuting Paulis in G1x, as we did in the
previous subsection for G1y. So we divide the commuting Paulis into
two groups of 4-qubit Paulis, i.e. we consider the following two sets.

G1x1 ¼ fPiPjPkXIII : i þ j þ k 	 0mod 2:g
G1x2 ¼ fIIIXPaPbPc : aþ bþ c 	 0mod 2:g

and the following two Hamiltonians

H1x1 ¼ a0XXXXIIIþ a1YYXXIIIþ a2YXYXIIIþ a4XYYXIII
H1x2 ¼ b0IIIXXXX þ b4IIIXYYX þ b5IIIXYXY þ b6IIIXXYY

Fig. 2 Quantum circuit for e�iH1y t and e�iH1x1t . a–c: Circuit simulating e�iH1y t a when a6t=− θ1, b1t=− θ2, a3t= a5t= a7t= θ1 and
b2t= b3t= b7t= θ2; b when a0t=…= a7t= θ1 and b0t=…= b7t= θ2; c when the coefficients are as in Equation 18. d–f: Circuit simulating
e�iH1x1t d when a1t=− θ1, b6t=− θ2, a0t= a2t= a3t= θ1 and b0t= b4t= b5t= θ2; e when a0t=…= a7t= θ1 and b0t=…= b7t= θ2; f when
the coefficients are as in Equation 18.
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We can use the diagonalizing circuit of50 and have the following.

e�iH1x1t ¼ W1x1e�ia0IIIZIIIteia1ZZIZIIIteia2ZIZZIIIteia4IZZZIIItWy
1x1

e�iH1x2t ¼ W1x2e�ib0IIIZIIIteib4IIIZZZIteib5IIIZZIZteib6IIIZIZZtWy
1x2

where W1x1= CNOT(4, 1)CNOT(4, 2)CNOT(4, 3)H(4) and W1x2=
CNOT(4, 5)CNOT(4, 6)CNOT(4, 7)H(4), where the rightmost gate is the
first one to be applied. We denote the state of the qubits q1,…, q4
after the application of W1x1 by the variables x1,…, x4 respectively.
Also, the variables x04; ¼ ; x07 denote the state of the qubits
q4,…, q7, respectively, after the application of W1x2. We have the
following expression for the overall phase incurred between W1x1,
Wy

1x1 and between W1x2, W
y
1x2.

ϕ1 ¼ �ð�1Þx4a0t þ ð�1Þx4�x1�x2a1t þ ð�1Þx4�x1�x3a2t þ ð�1Þx4�x2�x3a4t

ϕ2 ¼ �ð�1Þx04b0t þ ð�1Þx04�x05�x06b4t þ ð�1Þx04�x05�x07b5t þ ð�1Þx04�x06�x07b6t

We consider the following three cases, in each of which ϕ1;x4 ¼�ϕ1;x4 and ϕ2;x04
¼ ϕ2;x04

.

Case I. Let a1t=− θ1, b6t=− θ2, a0t= a2t= a4t= θ1 and b0t=
b4t= b5t= θ2. It is easy to verify that a non-zero phase ϕ1=− 4θ1
exists if and only if x1= x2 ≠ x3. Analogously, ϕ2=− 4θ2 if
x07 ¼ x06≠x

0
5, else it is 0.

Case II. Now we consider the case when a0t= a1t= a2t= a4t=
θ1, b0t= b4t= b5t= b6t= θ2. If x1= x2= x3 then ϕ1= 2θ1, else it
is− 2θ1. Similarly for ϕ2.

Case III. Next we consider the case where a0t=− h1− h2+ h3,
a1t= h1− h2+ h3, a2t=− h1− h2− h3, a4t=− h1+ h2+ h3, and
b0t=− g1− g2+ g3, b4t=− g1+ g2+ g3, b5t=− g1− g2− g3,
b6t= g1− g2+ g3. Here, non-zero phase exists if any two of the
variable have same value.
ϕ1ðx1 ¼ x2 ≠ x3Þ ¼ 4h1; ϕ1ðx2 ¼ x3 ≠ x1Þ ¼ 4h2; ϕ1ðx1 ¼ x3 ≠ x2Þ ¼ �4h3;

ϕ2ðx05 ¼ x06 ≠ x07Þ ¼ 4g2; ϕ2ðx06 ¼ x07 ≠ x05Þ ¼ 4g1; ϕ2ðx05 ¼ x07 ≠ x06Þ ¼ �4g3;

Circuits simulating e�iH1x1t in Case I, II and III have been shown in
Fig. 2d, e and f respectively. Circuits for e�iH1x2t are similar. Circuit
for e�iH1x t in each case is obtained by concatenating the
corresponding circuits.

Overlap on 2 qubits. In general, the more options that we have
for grouping mutually commuting terms the more effective our
compilation strategy will be. While the most natural case to
examine is the case where all of the Hamiltonian terms act on
disjoint sets of qubits, Hamiltonian terms can commute if they
overlap on only two qubits as well. For example, we can have the
following sets of commuting Pauli operations

G21 ¼ fPkPlPiPjII; IIPiPjPkPl : i þ j 	 1mod 2; k; l ¼ i; j or i; j respectively g
(26)

G20 ¼ fPkPlPiPjII; IIPiPjPkPl : i þ j 	 0mod 2; k; l ¼ i; j or i; j respectively g
(27)

Without loss of generality, we assume that the leftmost operator
acts on qubit q1, next one on q2 and so on - rightmost one acts on
qubit q6. We denote a state vector as Q1Q2Q3j i where Q1 ¼ q1q2j i,
Q2 ¼ q3q4j i and Q3 ¼ q5q6j i are the first, second and third pairs of
qubits respectively. We can have the following Hamiltonian terms,
expressed as sums of commuting Paulis from the above two sets.

H21 ¼ a2YXYXIIþ a3YXXYIIþ a4XYYXIIþ a5XYXYII
þ b2IIYXYX þ b3IIXYYX þ b4IIYXXY þ b5IIXYXY

(28)

H20 ¼ a0XXXXIIþ a1YYXXIIþ a6XXYYIIþ a7YYYYII
þ b0IIXXXX þ b6IIYYXX þ b1IIXXYY þ b7IIYYYY

(29)

Circuit for simulating e�iH21t . As before our simulation strategy
involves diagonalizing the Hamiltonian using a Clifford circuit and
then build Let W1 be the unitary consisting of the following
sequence of gates. The rightmost one is the first to be applied.

W1 ¼ CNOT ð3;1ÞCNOT ð3;4ÞHð3ÞZð3ÞCNOT ð3;1ÞCNOT ð3;5ÞHð3ÞCNOT ð3;1Þ
The following theorem shows that this is a diagonalizing circuit for
the set of Paulis in G21.

Theorem 2.2. For each i; j; k; l 2 Z2, such that
PkPlPiPjII; IIPiPjPkPl 2 G21 we have the following.ffiffiffiffiffiffiffi�1

p iþjþkþl
W1 Zk

ð1ÞZ
l
ð2ÞZð3ÞZ

j
ð4ÞII

� �
Wy

1 ¼ PkPlPiPjII

and
ffiffiffiffiffiffiffi�1

p iþjþkþl
W1 IIZð3ÞZ

j
ð4ÞZ

k
ð5ÞZ

l
ð6Þ

� �
Wy

1 ¼ IIPiPjPkPl

The proof is similar to Theorem 2.1 and has been given in
Supplementary Method 2. Theorem 2.2 then gives us the
following.

e�iH21t ¼ e�ið�a2W1ðZIZIIIÞWy
1�a3W1ðZIZZIIÞWy

1�a4W1ðIZZIIIÞWy
1�a5W1ðIZZZIIÞWy

1Þt


e�ið�b2W1ðIIZIZIÞWy
1�b3W1ðIIZZZIÞWy

1�b4W1ðIIZIIZÞWy
1�b5W1ðIIZZIZÞWy

1Þt

¼ W1eia2ZIZIIItea3ZIZZIItea4IZZIIItea5IZZZIIteib2IIZIZIteb3IIZZZIteb4IIZIIZteb5IIZZIZtW
y
1

We denote the state of the qubits q1,…, q6 after the application of
W1 by the variables x1,…, x6 respectively. We have the following
expression for the overall phase incurred between W1 and Wy

1.

ϕ ¼ ð�1Þx3�x1a2t þ ð�1Þx3�x2a4t þ ð�1Þx3�x4�x1a3t þ ð�1Þx3�x4�x2a5t

þð�1Þx3�x5b2t þ ð�1Þx3�x6b4t þ ð�1Þx3�x4�x5b3t þ ð�1Þx3�x4�x6b5t

It is easy to check that ϕx3 ¼ �ϕx3 . We consider the following
cases and it is sufficient to check the phase values when x3= 0.

Case I (II). We consider the case when a2t= a3t= a4t= a5t= θ1,
b2t= b3t= b4t= b5t= θ2. There are no a1, a6, b1, b6 in the expres-
sion of the Hamiltonian. So, for consistency with the previous and
following subsection, we can consider this as either Case I or II.
We can write ϕ= f1(θ1)+ f2(θ2). We can verify that when

q1⊕ q2= q4= 0 then ϕ ¼ ð�1Þq14θ1 þ f 2ðθ2Þ and analogously,
when q5⊕ q6= q4= 0 then ϕ ¼ f 1ðθ1Þ þ ð�1Þq54θ2. For all other
values of q1, q2, q4, ϕ= f2(θ2) and for all other values of q5, q6, q4,
ϕ= f1(θ1). A quantum circuit for simulating e�iH21t in this case has
been shown in Fig. 3a.

Case III. Let a2t= a5t=− h1− h2− h3 and a3t= a4t=− h1+
h2+ h3, b2t= b5t=− g1− g2− g3 and b3t= b4t=− g1+ g2+ g3.
We can write ϕ= f1(h)+ f2(g), where h= (h1, h2, h3) and g= (g1,
g2, g3). When q1⊕ q2= q4= 0, then ϕ ¼ �ð�1Þq14h1 þ f 2ðgÞ and
when q1⊕ q2= q4= 1, then ϕ ¼ �ð�1Þq14ðh1 þ h3Þ þ f 2ðgÞ. For
every other values of q1, q2, q4, ϕ= f2(g). Similarly, when q5⊕
q6= q4= 0, then ϕ ¼ f 1ðhÞ � ð�1Þq54g1 and when q5⊕ q6=
q4= 1, then ϕ ¼ f 1ðhÞ � ð�1Þq54ðg1 þ g3Þ. For every other values
of q5, q6, q4, ϕ= f1(h). A quantum circuit simulating e�iH21t in this
case has been shown in Fig. 3b.

Circuit for simulating e�iH20t . An eigenbasis for the Paulis in G20

has been shown in Lemma 4 of Supplementary Method 2. But
since we have been unable to derive a diagonalizing circuit, so we
divide the commuting Paulis into two groups of 4-qubit Paulis as
follows.

G201 ¼ fPkPlPiPjII : i þ j; k þ l 	 0mod 2:g
G202 ¼ fIIPiPjPkPl : i þ j; k þ l 	 0mod 2:g
We get the following two Hamiltonians.

H201 ¼ a0XXXXIIþ a1YYXXIIþ a6XXYYIIþ a7YYYYII
H202 ¼ b0IIXXXX þ b6IIYYXX þ b1IIXXYY þ b7IIYYYY
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Using the diagonalizing circuit of50 and have the following.

e�iH201t ¼ W01e�ia0IIZIIIteia1ZZZIIIteia6IIZZIIte�ia7ZZZZIItWy
01

e�iH202t ¼ W02e�ib0IIZIIIteib6IIZZIIteib1IIZIZZte�ib7IIZZZZtWy
02

where W01= CNOT(3, 1)CNOT(3, 2)CNOT(3, 4)H(3) and W02= CNOT(3, 4)
CNOT(3, 5)CNOT(3, 6)H(3), where the rightmost gate is the first one to
be applied. We denote the state of the qubits q1,…, q4 and
q3,…, q6 after the application of W01 and W02 by the variables
x1,…, x4 and x03; ¼ ; x06 respectively. We have the following
expression for the overall phase incurred between W01, W

y
01 and

between W02, W
y
02.

ϕ1 ¼ �ð�1Þx3a0t þ ð�1Þx3�x1�x2a1t þ ð�1Þx3�x4a6t � ð�1Þx3�x4�x1�x2a7t

ϕ2 ¼ �ð�1Þx03b0t þ ð�1Þx03�x04b6t þ ð�1Þx03�x05�x06b1t � ð�1Þx03�x04�x05�x06b7t

In all the cases considered below it is easy to verify that ϕ1;x3 ¼�ϕ1;x3 and ϕ2;x03
¼ �ϕ2;x03

. So it is enough to consider x3 ¼ x03 ¼ 0.

Case I. Assume a1t= a6t=− θ1, b1t= b6t=− θ2, a0t= a7t= θ1
and b0t= b7t= θ2. If x1⊕ x2= x4= 0 then ϕ1=− 4θ1, else it is 0.
Similar conclusions follow for ϕ2 if we replace x1, x2, x3, x4 by
x06; x

0
5; x

0
3; x

0
4 respectively.

Case II. Let a0t= a1t= a6t= a7t= θ1, b0t= b1t= b6t= b7t= θ2. If
x1⊕ x2= x4= 1 then ϕ1=− 4θ1, else it is 0. Similar conclusions
follow for ϕ2 if we replace x1, x2, x3, x4 by x06; x

0
5; x

0
3; x

0
4 respectively.

Case III. Let a0t= a7t=− h1− h2+ h3, a1t= a6t= h1− h2+ h3
and b0t= b7t=− g1− g2+ g3, b1t= b6t= g1− g2+ g3. If x1⊕
x2= x4= 0 then ϕ1= 4h1 and if x1⊕ x2= x4= 1 then
ϕ2= 2(h2− h3). Similar conclusions follow for ϕ2 if we replace
x1, x2, x4 by x06; x

0
5; x

0
4 respectively.

Circuits simulating e�iH201t in Case I, II and III have been shown in
Fig. 3c, d and e respectively. Circuits for e�iH202t are similar. Circuit
for e�iH20 in each of these cases is obtained by concatenating the
corresponding circuits.

Overlap on 3 qubits. Now we consider the case when there is
overlap on 3 qubits. We can have the following sets of commuting
Paulis.

G3y ¼ fYPiPjPkI; IPiPjPkY : i þ j þ k 	 1mod 2g (30)

G3x ¼ fXPiPjPkI; IPiPjPkX : i þ j þ k 	 0mod 2g (31)

Without loss of generality, we assume that the leftmost operator
acts on qubit q1, next one on q2 and so on - rightmost one acts on

qubit q5. We denote a state vector as Q1q2q3q4Q2j i where
Q1 ¼ q1j i, Q2 ¼ q5j i and q1,…, q5∈ {0, 1}. We can have the
following Hamiltonian terms, expressed as sums of commuting
Paulis from the above two sets.

H3y ¼ a1YYXXIþ a2YXYXIþ a3YXXYIþ a7YYYYI
þ b3IYXXY þ b5IXYXY þ b6IXXYY þ b7IYYYY

(32)

H3x ¼ a0XXXXIþ a4XYYXIþ a5XYXYIþ a6XXYYI
þ b0IXXXX þ b1IYYXX þ b2IYXYX þ b4IXYYX

(33)

Circuit for simulating e�iH3y t . Let W3y be the unitary consisting of
the following sequence of gates. The rightmost one is the first
to be applied. With a slight abuse of notation we denote
CNOT ðc;t1ÞCNOT ðc;t2ÞCNOT ðc;t3Þ ¼ by CNOT ðc;t1;t2;t3;¼ Þ (multi-tar-
get CNOT).

W3y ¼ CNOT ð2;1;3;4ÞHð2ÞZð2ÞCNOT ð2;1;5ÞHð2ÞCNOT ð2;1Þ

Theorem 2.3. For each i; j; k 2 Z2, such that YPiPjPkI; IPiPjPkY 2
G3y we have the following.ffiffiffiffiffiffiffi�1

p iþjþkþ1
W3y Zð1ÞZð2ÞZ

j
ð3ÞZ

k
ð4ÞI

� �
Wy

3y ¼ YPiPjPkI

and
ffiffiffiffiffiffiffi�1

p iþjþkþ1
W3y IZð2ÞZ

j
ð3ÞZ

k
ð4ÞZð5Þ

� �
Wy

3y ¼ IPiPjPkY

The proof is similar to Theorem 2.1 and has been shown in
Supplementary Method 3. Thus we have the following.

e�iH3y t ¼ e�ið�a1W3yðZZIIIÞWy
3y�a2W3yðZZZIIÞWy

3y�a3W3yðZZIZIÞWy
3yþa7W3yðZZZZIÞWy

3yÞt


e�ið�b3W3yðIZIIZÞWy
3y�b5W3yðIZZIZÞWy

3y�b6W3yðIZIZZÞWy
3yþb7W3yðIZZZZÞWy

3yÞt

¼ W3yeia1ZZIIIteia2ZZZIIteia3ZZIZIte�ia7ZZZZIteib3IZIIZteib5IZZIZteib6IZIZZte�ib7IZZZZtWy
3y

We denote the state of the qubits q1,…, q5 after the application of
W3y by the variables x1,…, x5 respectively. We have the following
expression for the overall phase incurred between W3y and Wy

3y .

ϕ ¼ ð�1Þx2�x1a1 þ ð�1Þx2�x1�x3a2 þ ð�1Þx2�x1�x4a3 � ð�1Þx2�x1�x3�x4a7
þð�1Þx2�x5b3 þ ð�1Þx2�x5�x3b5 þ ð�1Þx2�x5�x4b6 � ð�1Þx2�x5�x3�x4b7

It is easy to verify that ϕx2 ¼ �ϕx2 . We consider the following
cases and it is sufficient to check the phase values when x2= 0.

Case I. We consider the case when a1t=− θ1, b6t=− θ2,
a2t= a3t= a7t= θ1 and b3t= b5t= b7t= θ2. We can write

Fig. 3 Quantum circuit for e�iH21t and e�iH201t . (a, b): Circuit simulating e�iH21t (a) when a2t= a3t= a4t= a5t= θ1 and b2t= b3t= b4t= b5t= θ2;
(b) when the coefficients are as in Equation 18. (c–e) Circuit simulating e�iH201t (c) when a1t= a6t=− θ1, b1t= b6t=− θ2, a0t= a7t= θ1 and
b0t= b7t= θ2; (d) when a0t=…= a7t= θ1 and b0t=…= b7t= θ2; (e) when the coefficients are as in Equation 18.
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ϕ= f1(θ1)+ f2(θ2). It can be verified that ϕx1 ;x5 ¼ �f ðθ1Þ þ f ðθ2Þ
and ϕx1;x5 ¼ f ðθ1Þ � f ðθ2Þ. So we concentrate on x1= x5= 0. If
x3= x4= 1 then ϕ=− 4θ1 and if x3= 0, x4= 1 then ϕ= 4θ2. A
quantum circuit simulating e�iH3y t has been shown in Fig. 4a. If
θ1= θ2 then we can have a further reduction of controlled
rotation gates, as shown in Fig. 4b.

Case II. Next we consider the case when a1t= a2t= a3t= a7t= θ1,
b6t= b3t= b5t= b7t= θ2. In this case ϕ= 0 whenever x1⊕ x5= 1.
Else, as before ϕx1;x5 ¼ �f ðθ1Þ þ f ðθ2Þ and ϕx1;x5 ¼ f ðθ1Þ � f ðθ2Þ.
So it is enough to consider x1= x5= 0. When x3= x4= 1 then
ϕ=− 2(θ1+ θ2), else ϕ= 2(θ1+ θ2). Thus we can have a quantum
circuit simulating e�iH3yt , as shown in Fig. 4c.

Case III. Now we consider the case when a1t= h1− h2+
h3, a2t=− h1− h2− h3, a3t=− h1+ h2+ h3, a7t=− h1− h2+ h3
and b3t=− g1+ g2+ g3, b5t=− g1− g2− g3, b6t= g1− g2+ g3,
b7t=− g1− g2+ g3. If we denote h= (h1, h2, h3) and g= (g1, g2,
g3), then we can write ϕ= f(h)+ f(g). Here too, ϕx1;x5 ¼ �f ðhÞ þ
f ðgÞ and ϕx1 ;x5 ¼ f ðhÞ � f ðgÞ. So let us consider x1= x5= 0. Then
we have the following phase values.

ϕx3¼x4¼0 ¼ 0; ϕx3¼0;x4¼1 ¼ �4ðh2 þ g1Þ; ϕx3¼1;x4¼0 ¼ 4ðh3 þ g3Þ; ϕx3¼x4¼1 ¼ 4ðh1 þ g2Þ

A circuit simulating e�iH3yt in this case has been shown in Fig. 4d. If
h2= g1, h3= g3, h1= g2 then we can have a simpler circuit, as
shown in Fig. 4e.

Circuit for simulating e�iH3x t . The diagonalizing transformation for
the Pauli operators in G3x is shown in Lemma 6 of Supplementary
Method 3. Since we have been unable to find a diagonalizing
circuit, so we divide the commuting Paulis into two groups of
4-qubit Paulis,

G3x1 ¼ fXPiPjPkI : i þ j þ k 	 0mod 2:g
G3x2 ¼ fIPiPjPkX : i þ j þ k 	 0mod 2:g
and have the following two Hamiltonians.

H3x1 ¼ a0XXXXIþ a4XYYXIþ a5XYXYIþ a6XXYYI
H3x2 ¼ b0IXXXX þ b1IYYXX þ b2IYXYX þ b4IXYYX

Using the diagonalizing circuit of50 and have the following.

e�iH3x1t ¼ W3x1e�ia0IZIIIteia6IZZZIteia5IZIZIteia4IZZIItWy
3x1

e�iH3x2t ¼ W3x2e�ib0IZIIIteib1IZZIIteib2IZIZIteib4IZZZItWy
3x2

where W3x1= CNOT(2; 1, 3, 4)H(2) and W3x2= CNOT(2; 3, 4, 5)H(2), where
the rightmost gate is the first one to be applied. We denote the
state of the qubits q1,…, q4 and q2,…, q5 after the application of
W3x1 and W3x2 by the variables x1,…, x4 and x02; ¼ ; x05 respec-
tively. We have the following expression for the overall phase
incurred between W3x1, W

y
3x1 and between W3x2, W

y
3x2.

ϕ1 ¼ �ð�1Þx2a0t þ ð�1Þx2�x3�x4a6t þ ð�1Þx2�x4a5t þ ð�1Þx2�x3a4t

ϕ2 ¼ �ð�1Þx02b0t þ ð�1Þx02�x03b1t þ ð�1Þx02�x04b2t þ ð�1Þx02�x03�x04b4t

In all the cases considered below it is easy to verify that ϕ1;x2 ¼�ϕ1;x2 and ϕ2;x02
¼ �ϕ2;x02

. So it is enough to consider x2 ¼ x02 ¼ 0.

Case I. We consider the case when a6t=− θ1, b1t=− θ2,
a0t= a5t= a4t= θ1 and b0t= b4t= b2t= θ2. ϕ1=− 4θ1 when
x3= x4= 1, else it is 0. And ϕ2=− 4θ2 when x03 ¼ 0; x04 ¼ 1, else
it is 0.

Case II. Let a0t= a6t= a5t= a4t= θ1, b0t= b4t= b2t= b1t= θ2.
ϕ1= 2θ1 when x3= x4= 0, else ϕ1=− 2θ1. Similarly for ϕ2.

Case III. Assume a0t=− h1− h2+ h3, a6t= h1− h2+ h3, a5t=−
h1− h2− h3, a4t=− h1+ h2+ h3, and b0t=− g1− g2+ g3, b4t=
− g1+ g2+ g3, b2t=− g1− g2− g3, b1t= g1− g2+ g3. We have
the following phases.
ϕ1ðx3 ¼ 0; x4 ¼ 1Þ ¼ 4h2; ϕ1ðx3 ¼ 1; x4 ¼ 0Þ ¼ �4h3; ϕ1ðx3 ¼ x4 ¼ 1Þ ¼ 4h1;

ϕ2ðx03 ¼ 0; x04 ¼ 1Þ ¼ 4g1; ϕ2ðx03 ¼ 1; x04 ¼ 0Þ ¼ �4g3; ϕ2ðx03 ¼ x04 ¼ 1Þ ¼ 4g2;

Circuits simulating e�iH3x1t in Case I, II and III have been shown in
Fig. 4f, g and h respectively. Circuits for e�iH3x2t are similar. Circuit
for e�iH3x t in each case is obtained by concatenating the
corresponding circuits.

Circuit for arbitrary exponentiated Hamiltonians
Our previous discussion focuses on the case of fermionic simulation
within a Jordan–Wigner representation using Hamiltonian terms

Fig. 4 Quantum circuit for e�iH3y t and e�iH3x1t . a–e: Circuit simulating e�iH3y t (a) when a1t=− θ1, b6t=− θ2, a2t= a3t= a7t= θ1 and
b3t= b5t= b7t= θ2; (b) with the coefficient values in (a), except here θ1= θ2; (c) when a1t= a2t= a3t= a7t= θ1 and b3t= b5t= b6t= b7t= θ2;
(d) when the coefficients are as in Equation 18; (e) Circuit with the coefficients in (d), except in this case h2= g1, h3= g3, h1= g2. f–h: Circuit
simulating e�iH3x1t (f) when a6t=− θ1, b1t=− θ2, a0t= a5t= a4t= θ1 and b0t= b2t= b4t= θ2; (g) when a0t=…= a7t= θ1 and b0t=…=
b7t= θ2; (h) when the coefficients are as in Equation 18.

P. Mukhopadhyay et al.

11

Published in partnership with The University of New South Wales npj Quantum Information (2023)    31 



that are fermionically swapped to be adjacent to each other. While
these simulation circuits are among the most important for
applications in chemistry, it does not necessarily represent all cases
of physical interest let alone chemistry. Here we address this by
discussing ways to synthesize circuits for arbitrary exponentiated
Hamiltonians in C2n ´ 2n , expressible as sum of Pauli operators, with
an aim to reduce the number of non-Clifford resources. For reasons
discussed previously, it is enough to consider a Hamiltonian H
expressed as sum of commuting Pauli operators.

H ¼
X
i

αiPi Pi 2 Pn

In most cases one synthesizes circuit for each e�iαiPi t using a
number of CNOT and one Rz gate. Thus the number of Rz gates
required is equal to the number of summands. Here we describe
procedure to synthesize circuit for e−iHt i.e. considering multiple
summands or Pauli operators.
We diagonalize H, for example, by using the algorithms in51. In

the previous section we have constructed explicit eigenbases for
the diagonalization of some specific Hamiltonians. Then we get
the following.

H ¼ W
X
i

α0iQi

 !
Wy

Here Qi ¼ �n
j¼1Qij , a tensor product of Z and I i.e. Qij 2 fZ; Ig.W is

a diagonalizing Clifford circuit. Thus we get the following.

e�iHt ¼ We
P

i
α0i QiWy (34)

Lemma 2.3. Let H ¼Piα
0
iQi , such that Qi ¼ �n

j¼1Qij , where
Qij 2 fZ; Ig. With each Qi we associate an n-length vector
yi= (yi1,…, yin)∈ {0, 1}n such that yið Þj ¼ yij ¼ 1 if Qij= Z,
else yij= 0. Let x1,…, xn ∈ {0, 1} and 0j i ¼ 1; 0½ �T , 1j i ¼ 0; 1½ �T .
The eigenvectors of H are of the form vj i¼Nn

j¼1 xj
		 
 and the

corresponding eigenvalue is

ϕv ¼
X
i

α0ið�1Þ�n
j¼1yij xj

(35)

Proof. The summands in H are mutually commuting and so they
have a common eigenbasis. Let us first consider Qi. Since Qij xj i ¼
xj i if Qij ¼ I and Qij xj i ¼ ð�1Þx xj i if Qij= Z, where x ∈ {0, 1}, so we
have the following.

Qi vj i ¼
On
j¼1

Qij

 ! On
j¼1

xj
		 
 !

¼
On
j¼1

Qij xj
		 
 ¼ ð�1Þ�n

j¼1yij xj

This implies that

H vj i ¼
X
i

α0iQi

 !
vj i ¼

X
i

α0ið�1Þ�n
j¼1yij xj vj i:

We can also interpret ϕ as the overall phase incurred between
W and W†. For given values of α0i , ϕ is an n-variable Boolean
function where xj are the Boolean variables. We can evaluate a
truth table and get all the 2n values of ϕ for different values of
(x1,…, xn)∈ {0, 1}n. For each distinct non-zero absolute phase
value ∣θ∣ (ignoring sign), we can have a sub-circuit Cjθj that has
only one controlled rotation cRz(2θ) gate. The complete circuit can
be obtained by combining these different sub-circuits (one for
each ∣θ∣ ≠ 0), in between the diagonalizing Clifford circuits W,W†.
The ordering of the sub-circuits do not matter.
Now we discuss how to synthesize sub-circuit Cjθj, for one such

distinct absolute value of ϕ. Let Mθ be the set of binary values for

variables x1, x2,…, xn, such that ϕ computes to θ in Equation (35).

Mθ ¼ fðx1; ¼ ; xnÞ 2 f0; 1gn : ϕx1;¼ ;xn ¼ θg (36)

Analogously we can define M�θ. We can also associate Mθ and
M�θ with Sθ and S−θ, the sets of eigenvectors with eigenvalues θ
and− θ respectively, as obtained from Lemma 2.3. We define the
following operators, which acts on the input vector space and the
space of two ancillae - c and r, the latter being initialized to 0.

Vθ ¼ P
vj i2Sθ

v; c � 1; 0j i v; c; 0h j þ P
wj i∉Sθ

w; c; 0j i w; c; 0h j

V�θ ¼ P
vj i2S�θ

v; c � 1; 1j i v; c; 0h j þ P
wj i∉S�θ

w; c; 0j i w; c; 0h j (37)

The circuit Cjθj ¼ VθV�θ cRZð2θÞð ÞcrVy
�θV

y
θ. If the input vector is in Sθ

or S−θ then both these operators flip a control ancilla qubit (c).
Additionally, if the vector is in S−θ then the second ancilla r is
flipped. We apply a cRz(2θ) gate on r, controlled on c. Thus if the
input vector is in S−θ then we actually apply cRz(− 2θ). The ancillae
c, r can be controlled by multi-controlled X gates, that can be further
decomposed in terms of Toffoli and CNOT gates69,70. For example,
let Mθ ¼ fð0; 0; 1; 1Þ; ð0; 1; 1; 1Þg and M�θ ¼ fð1; 1; 0; 0Þg. The
two Boolean min-terms of Mθ can be compressed to have a single
term because when x1= 0, x3= x4= 1 then ϕ= θ, irrespective of
the value of x2. We call it the ‘don’t care condition’ for x2. So,
equivalently we can write Mθ ¼ fð0; �; 1; 1Þg, where * denotes the
don’t-care condition. In general, algorithms like Karnaugh map71,
ESPRESSO72 can be used to get compact set of Boolean min-terms.
A circuit Cjθj has been shown in Fig. 5.
Hence, due to the invariance of the point spectrum of unitarily

equivalent operators we have the following.

Lemma 2.4. Let H= ∑iαiPi, where Pi are mutually commuting
n-qubit Pauli operators. We can implement a circuit for e−iHt with
at mostm (controlled)-rotations, wherem is the number of distinct
non-zero eigenvalues (ignoring sign) of H.

Illustration—Quantum Heisenberg and quantum Ising model. We
consider the problem of designing quantum circuits for simulating
the quantum Heisenberg and Ising model with Hamiltonians HH

and HI respectively. The Heisenberg Hamiltonian is widely used to
study magnetic systems, where the magnetic spins are treated
quantum mechanically60,73–76. Let G= (E, V) be the underlying
graph with the vertex and edge set being V and E, respectively.

HH ¼
X
ði;jÞ2E

JxXðiÞXðjÞ þ JyYðiÞYðjÞ þ JzZðiÞZðjÞ
� �þX

i2V
dhZðiÞ (38)

HI ¼
X
ði;jÞ2E

JzZðiÞZðjÞ þ
X
i2V

d0hZðiÞ (39)

Fig. 5 Circuit Cjθj. The circuit when Mθ ¼ fð1; 1; 0; 0Þ; ð1; 1; 1; 0Þg
and M�θ ¼ fð0; 0; 1; 1Þg.
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In the above Jx, Jy, Jz are coupling parameters, denoting the
exchange interaction between nearest neighbor spins along
the X,Y,Z-direction respectively. dh; d

0
h is the time amplitude of

the external magnetic field along the Z-direction. One set of
commuting Paulis are {X(i)X(j): (i, j)∈ E}, {Y(i)Y(j): (i, j)∈ E}, {Z(i)Z(j): (i, j)∈
E} and {Z(i): i∈ V}.
Let us first consider the set {Z(i): i∈ V}. Following the previous

discussions and Lemma 2.3, the overall phase incurred or the
eigenvalues are as follows.

ϕ0 ¼ dh
X
i2V

ð�1Þxi xi 2 f0; 1g (40)

For x∈ {0, 1}∣V∣, one particular assignment of values to the Boolean
variables, let T0= {i∈ V: xi= 0} and T1= {i∈ V: xi= 1}. So ∣T0∣+
∣T1∣= ∣V∣ and

ϕ0
x ¼ dh jT0j � jT1jð Þ ¼ dh jV j � 2jT1jð Þ: (41)

So the number of distinct non-zero eigenvalues or absolute values
of ϕ0 can be ⌈∣V∣/2⌉. Implementing each e�idhZðiÞt would require ∣V∣
rotation gates. Thus, using Lemma 2.4, we have about 50%
reduction in the rotation gate cost.
Now, let us consider the other commuting sets. Since

H†XH= Z and (HSX)†Y(HSX)= Z, so each of the above sets can
be diagonalized and we can focus on the problem of simulating
a quantum circuit for the Hamiltonian : H= J∑(i, j)∈EZ(i)Z(j),
where J is a constant. Our aim is to derive an upper bound
on the number of controlled rotations required to simulate
e−iHt. Following the previous discussions, the overall phase
incurred between the diagonalizing Cliffords W,W† is as follows
(Lemma 2.3).

ϕ ¼ J
X
ði;jÞ2E

ð�1Þxi�xj
(42)

where xi, xj ∈ {0, 1} are variables denoting the state of the qubits
after application of W. The quantum circuit has ∣V∣ qubits,
corresponding to each vertex of G. Let x=∈ {0, 1}∣V∣ denote one
particular assignment of values to the variables x1,…, x∣V∣. S0=
{(i, j)∈ E: xi= xj= 1} and S1= {(i, j)∈ E : xi or xj is 1}. If
S0 ¼ fði; jÞ 2 E : xi ¼ xj ¼ 0g, then jS0j ¼ jEj � jS0j � jS1j. Let ϕx
be the value of the phase for this particular assignment.

ϕx ¼ J jS0j þ jS0j � jS1jð Þ ¼ J jEj � jS0j � jS1j þ jS0j � jS1jð Þ ¼ J jEj � 2jS1jð Þ
(43)

Let V1x= {i∈ V: xi= 1}, V0x= {i∈ V: xi= 0} and NðkÞ be the set of
neighbouring vertices of k in G. Then

jS1j ¼
X
k2V1x

NðkÞ n V1xf gj j (44)

Now for any assignment ∣S1∣ can vary from 1,…, ∣E∣. So the
number of distinct values of ϕ is at most ⌈∣E∣/2⌉. And hence we
need at most ⌈∣E∣/2⌉ controlled-Rz gates in the circuit simulating
e−iHt. Had we simulated each e�iJZðiÞZðjÞt , we would have required
∣E∣Rz gates. So we can achieve about 50% reduction in the rotation
gate cost under the assumption that controlled-Rz costs the same
to implement as a single Rz gate.

G is a cycle. This is basically the traslationally invariant 1-D spin
chain. Let GV1x be the subgraph induced by V1x, which is a union of
paths. For each path p, let S1p ¼

S
k2pfN ðkÞ n V1xg  S1 be the set

of vertices in this path. Each of the terminal vertices has one
neighbour in V⧹V1x. So ∣S1p∣= 2. Thus if P is the set of all such
paths in GV1x , then

ϕx ¼ J jEj � 2
X
p2P

jS1pj
 !

¼ J jEj � 4jPjð Þ (45)

Now jPj can vary from 1,…, ⌈∣E∣/4⌉ to give ⌈∣E∣/4⌉ distinct values
of ∣ϕ∣. This implies a quantum circuit synthesizing e−iHt will require
at most ⌈∣E∣/4⌉cRz gates. This is about 75% reduction in the cost of
rotation gates, compared to synthesizing each e�iJZðiÞZðjÞt .

G is a complete graph. In this case for each k∈ V1x, we have
NðkÞ n V1x ¼ V0x. So we have,

ϕx ¼ J jEj � 2jV1xjjV0xjð Þ ¼ J jEj � 2kxk1ðjV j � kxk1Þð Þ (46)

So there can be ⌈∣V∣/2⌉ distinct values of ∣ϕx∣ as ∥x∥1 varies from
1,…, ⌈∣V∣/2⌉. And hence we require at most ⌈∣V∣/2⌉cRz gates for
simulating e−iHt. If we simulate each e�iJZðiÞZðjÞt then we require

jEj ¼ jV jðjV j�1Þ
2 Rz gates. This indicates about 100 1� 2

jVj�1

� �
%

reduction in the cost of rotation gates.
In Fig. 6 we have shown quantum circuits simulating

e
itθ
P

ði;jÞ2EZðiÞZðjÞ for some simple graphs G= (V, E). The circuits have
been designed to optimize the number of Toffoli gates, as well.

Reducing the number of Toffoli gates. We discussed before that
the T-count from the Toffolis may be a significant factor in high

Fig. 6 Quantum circuit simulating eitθ
P

ði;jÞ2EZðiÞZðjÞ . When the underlying graph G= (V, E) is (a) 4-point circle, (b) 3-point line, (c) triangle, (d)
4-point complete graph, (e) 6-point circle.
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error regime as the logarithmic cost of rotation synthesis may not
dominate the additive constant that arises from the Toffoli gates
needed. In order to reduce the number of Toffolis we can do the
following. We design circuits reducing Toffolis for Hamiltonians
over smaller graphs, such as in Fig. 6a–e. Then we decompose a
Hamiltonian over a large graph into Hamiltonians over these
smaller graphs. For example, consider a 1-D cycle on N points and
Hz= θ∑(i, j)∈EZ(i)Z(j). We break this cycle into smaller chains of length
3 i.e. Hz= θ(Z(1)Z(2)+ Z(2)Z(3))+ (Z(3)Z(4)+ Z(4)Z(5))+…= ∑iHzi. We
have a quantum circuit that synthesizes each eiHzi t with only one
cRz gate (Fig. 6b). So to synthesize eiHzt we require approximately
N/2cRz. This is about twice the number of controlled rotations
required, had we synthesized without decomposing. But it
does not require any extra Toffoli-pairs. We manage to get
approximately 50% reduction, compared to synthesizing each
summand i.e. eitZðiÞZðjÞ .
Now consider a large N × N lattice which has N2 vertices and

2N(N− 1) edges and the Hamiltonian Hz= θ∑(i, j)∈EZ(i)Z(j). We can
decompose this into (N−1)2 smaller interior cycles of 4-points
and a bigger outer circle with 2N+ 2(N− 2)= 4(N− 1) points.
From Fig. 6a, we know that we can design a circuit simulating
the exponentiated Hamiltonian corresponding to each interior
cycle with 1 cRz and 1 Toffoli pair. We can further decompose
the outer circle (as explained in the previous paragraph) and
have a circuit with approximately 2(N− 1)cRz gates. Thus we
require ≈ (N− 1)2+ 2(N− 1)= (N− 1)(N+ 1)cRz and (N− 1)2

Toffoli-pairs. We have discussed before that for general graphs,
number of cRz required is ≈ ∣E∣/2= N(N− 1), so we use ≈ (N− 1)
more cRz by decomposing, but the Toffoli cost reduces a lot.
Had we synthesized each eitZðiÞZðjÞ , we would have used 2N(N− 1)
Rz. Thus we manage to get a reduction of ≈ (N−1)2 in the
number of Rz/cRz.

In Fig. 6e we gave a circuit for simulating e
itθ
P

ði;jÞ2EZðiÞZðjÞ , when
the underlying graph is a 6-point cycle. We reduced the Toffoli-
pairs by decomposing the graph into smaller cycles.

Application : Simulating with qDRIFT
In this section we consider one simulation algorithm - qDRIFT. We
focus on qDRIFT rather than Trotter for our experiments because
qDRIFT is easier to analyze numerically. This is because Trotter
errors subtly depend on operator ordering. Specifically we
consider a Hamiltonian H ¼PL

j¼1 hjPj and sample Pauli operators
to apply in each short time step, as described earlier in the paper
and in43. We can assume each hj > 0, since the negation affects the
angles of the rotation gates. In qDRIFT, in each iteration one Pauli
term is sampled up to a total of N samples. The probability of
sampling Pj is hj/∑ihi and is then simulated for a short time period.
We consider another procedure where we re-write the Hamilto-
nian as H ¼PL0

j¼1 h
0
jHj , where each Hj= ∑iPi, is a sum of

commuting Paulis. In each iteration one Hj is sampled with

probability
h0jP
i
h0i
and simulated for a short time period. Then we

compare the growth of error, number of Rz/cRz, Toffoli gates used
in these two procedures - (i) one Pauli sampled in each iteration,
(ii) group of commuting Paulis sampled in each iteration.
For our first set of experiments we examine the case of

simulation of 4 and 6-qubit Heisenberg models. The coefficients
Jx, Jy, Jz, dh have been sampled from a 0 mean normal distribution
with variance 1. In Fig. 7 we show that we achieve better scaling of
Rz/cRz when multiple commuting Pauli operators are sampled and
evolved in each iteration. In fact, the error also scales well with the
number of iterations, i.e. we can achieve the same error in less

Fig. 7 Simulation of 4 and 6-qubit Heisenberg Hamiltonian. Log-log plots showing number of iterations (a, d), Rz/cRz (b, e), Toffoli-pairs (c, f)
as function of error, while simulating the 4 (a–c) and 6-qubit (d–f) quantum Heisenberg Hamiltonian (HH) with qDRIFT. The red and blue curve
shows the variation when sampling single and multiple commuting Paulis per iteration, respectively. The Y-axis label in all plots is log10 Error .
The X-axis label of (a), (d) is log10 Iterations , (b), (e) is log10 Rotations and (c), (f) is log10 Toffoli Cost .
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number of iterations, or in another way, it is possible to achieve
much lower error in the same time (iterations) when multiple
operators are sampled. We calculate error as:

Error ¼ EρðkE2ðρÞ � E1ðρÞkl2Þ
Where E1 ¼ eiHtρe�iHt , τ ¼ t 
 Pjhj

� �
=N and k 
 kl2 is the induced

Euclidean norm on matrices and Eρ is the Haar average over input
states. We obtain E2 through averaging M random qDRIFT
protocols, where M varies from 100 to 3000 for our purposes.
These values are chosen to ensure that the sampling error is small
at the scale of the plots generated.

Vk ¼
Y
jik

eiHjik
τ

E2 ¼ 1
M

XM
k¼1

VkρV
y
k

In our experiments ρ is randomly drawn rather than chosen to
maximize the diamond distance. As a result, this does not give a
tight upper bound on the error quantified by any induced
channel norm. Further, all evolution is done using t= 1 and the
groupings are hand optimized using counts given in Supple-
mentary Method 5. The data, tabulated in Fig. 7, shows that the
number of iterations of the qDRIFT channel needed to simulate
the dynamics to bound the error below a particular value, is
reduced by a factor of 2.34 and 2.8 through the use of grouping
commuting terms for the randomly chosen 4 and 6 qubit
Heisenberg Hamiltonian respectively. The number of rotations is
found to be reduced by a factor of roughly 2.34 for the 4 qubit
ensemble but 1.8 for the 6 qubit case. This suggests that the
groupings that we consider, while highly successful at reducing
the number of iterations of qDRIFT needed, the number of gates

per iteration increases from the 4 to 6 qubit examples. This
suggests that further computer aided optimization may be
needed in order to see the full benefit of such groupings as we
increase the size of models.
Similar observations can be made for our second set of

experiments where we simulate the Hamiltonian of H2 and LiH
(with freezing in the STO-3G basis). The plots in Fig. 8 show that in
case of H2, the number of iterations of the qDRIFT channel needed
to simulate the dynamics to bound the error below a particular
value, is reduced by a factor of 4 through the use of grouping
commuting terms. For LiH this factor is nearly 2.1. The number of
rotations is found to be reduced by a factor of roughly 3.2 for H2

and 2 for LiH.
For all the experiments that we consider the Toffoli-pair gate

count is comparable with the Rz/cRz count, so the Toffoli pairs do
not contribute significantly to the overall T-count, as compared to
the rotation gates. The number of gates depend on the
diagonalizing circuits and the grouping into commuting Paulis.
In this paper we have shown the set of results for the eigenbasis
or grouping that were better among the options considered by us.
In Supplementary Method 5 we have explicitly mentioned the
Hamiltonians, the groupings and given a short description of how
we obtained the rotation and Toffoli costs.
All plots, code, and data can be found online in our public

repository https://github.com/SNIPRS/hamiltonian. All code was
written in Python. Our results were obtained partly with computing
resources in the Cedar cluster of Compute Canada. Specifically, our
code was run on an Intel(R) Xeon(R) E5-2683 v4 CPU at 2.10 GHz,
utilizing 48 cores, up to 12GBs of RAM, and running Gentoo Linux
2.6. For the Heisenberg Hamiltonians, our results were obtained
using 12 cores of an Intel(R) Core(TM) i5-12600K CPU at 3.6 GHz
running Ubuntu 20.04.4 and up to 32GBs of RAM.

Fig. 8 Simulation of H2 and LiH Hamiltonian. Log-log plots showing number of iterations (a, d), Rz/cRz (b, e), Toffoli-pairs (c, f) as function of
error, while simulating the H2 (a–c) and LiH (d–f) Hamiltonians with qDRIFT. The red and blue dots show the variation when sampling single
and multiple commuting Paulis per qDRIFT iteration, respectively. The Y-axis label in all plots is log10 Error . The X-axis label of (a), (d) is
log10 Iterations , (b), (e) is log10 Rotations and (c), (f) is log10 Toffoli Cost .
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DISCUSSION
In this paper, we have considered the problem of designing
efficient quantum circuits for exponential of Hamiltonians that can
be expressed as sum of Paulis. In contrast with most previous
approaches, we synthesize circuit for a sum of exponentiated
commuting Paulis, rather than concatenate circuits for each
exponentiated Pauli. These resulting circuits are observed, for
some parameter combinations, to require far fewer non-Clifford
operations than the standard circuits. We therefore propose an
algorithm for greedily compiling a Trotter or qDRIFT simulation
into a sequence of such simulations and observe that when
multiple rotations are grouped we see at fixed error that a factor
of roughly 1.8−3.2 fewer rotations are needed to simulate 6 and
4-qubit Heisenberg models, LiH, H2. Also, for simulation protocols
like qDRIFT, it is possible to achieve a better performance, in the
sense that the error accumulated per iteration is less if we sample
multiple commuting Paulis. The overall non-Clifford gate cost of
the entire protocol is also less.
There are a number of interesting avenues that are revealed by

this work. The first is that a more complete set of rules for compiling
Hamiltonian terms into sets that can be easily exponentiated reveals
the potential for more efficient simulation compilation of Hamilto-
nians. These replacement rules, once identified, can be used inside a
more systematic Hamiltonian compiler package that would allow
more substantial optimizations of the Hamiltonian for the given
simulation method. This raises a second issue, while in this work we
focus on the case of optimizing Trotter and related simulation
methods, similar considerations could be performed for optimizing
the prepare and select circuits used in LCU/qubitization simulation
algorithms. Such procedures are harder to optimize as the
simulation algorithm does not factorize as nicely into independent
simulations; however, the importance of these simulation methods
makes the development of compilation strategies essential.
Finally, an important avenue hinted at by this work is the

possibility that approximate unitary synthesis methods can be
combined with quantum simulation routines to further reduce the
cost. If fermionic swaps are used, for example, simulation reduces
to implementing a series of 4-local Hamiltonians and optimal
circuits can be in principle constructed for such Hamiltonians
using existing approaches. The computational overheads required
for optimal (approximate) synthesis of these unitaries makes this a
daunting task; however, if a sufficient lexicon of cheap unitaries
are found for such simulation then it will not only lead to lower
costs for quantum simulation using Trotter/qDRIFT: it will also
unify Hamiltonian compilation with circuit synthesis into a single
conceptual framework.
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