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Towards practical and massively parallel quantum computing
emulation for quantum chemistry
Honghui Shang 1,6✉, Yi Fan2,6, Li Shen2, Chu Guo3✉, Jie Liu 2✉, Xiaohui Duan4, Fang Li5 and Zhenyu Li 2

Quantum computing is moving beyond its early stage and seeking for commercial applications in chemical and biomedical
sciences. In the current noisy intermediate-scale quantum computing era, the quantum resource is too scarce to support these
explorations. Therefore, it is valuable to emulate quantum computing on classical computers for developing quantum algorithms
and validating quantum hardware. However, existing simulators mostly suffer from the memory bottleneck so developing the
approaches for large-scale quantum chemistry calculations remains challenging. Here we demonstrate a high-performance and
massively parallel variational quantum eigensolver (VQE) simulator based on matrix product states, combined with embedding
theory for solving large-scale quantum computing emulation for quantum chemistry on HPC platforms. We apply this method to
study the torsional barrier of ethane and the quantification of the protein–ligand interactions. Our largest simulation reaches 1000
qubits, and a performance of 216.9 PFLOP/s is achieved on a new Sunway supercomputer, which sets the state-of-the-art for
quantum computing emulation for quantum chemistry.
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INTRODUCTION
Computation is revolutionizing chemistry and materials science.
Computing the electronic structure by approximately solving the
Schrödinger equation enables us to explore chemicals and
materials at the atomic scale. However, the pursuit for chemical
accuracy in numerical simulations of quantum many-body
systems is a longstanding problem since the computational
complexity grows exponentially with the system size. For example,
even with the help of supercomputers, the exact solution of the
Schrödinger equation is limited to a complete active space
problem of (24 electrons, 24 orbitals), which corresponds to a
diagonalization problem of size 7.3 trillion1. Richard Feynman
suggested quantum computing as a potential solution for
simulating quantum systems, as he marked ‘if you want to make
a simulation of nature, you’d better make it quantum
mechanical’2.
Significant advances in quantum computing technologies over

the past two decades are turning Feynman’s vision into reality. As
a milestone, quantum advantage in the random circuit sampling
(RCS) problem has been demonstrated on noisy intermediate-
scale quantum (NISQ) computers3–5. Toward practical applications,
the ground-state energies of diamonds have been estimated with
the quantum Monte Carlo (QMC) method using 16 qubits and 65
circuit depths, which is the largest quantum chemistry calculation
using a quantum computer6. However, the quantum resource
used in this experiment is far away from that required to realize
the quantum advantage in quantum chemistry, which is expected
to appear at around 38 to 68 qubits (under the assumption of
error-corrected qubits)7. Besides, the variational quantum eigen-
solver (VQE) is an appealing candidate for solving quantum
chemistry problems on NISQ devices8, which has great flexibility in
choosing quantum circuit ansatzes and mitigating errors9.

However, compared to the RCS and QMC experiments, the VQE
simulations with tens of qubits would be significantly more
challenging for quantum hardware in that: (1) the circuit depth
scales quickly up to 103 or even more as the number of qubits
increases10 and (2) the nonlinear optimization with a large number
of parameters remarkably increases the computational cost. As
such, the largest VQE experiment performed on a quantum
computer has only used 12 qubits11, and the current VQE
emulation with classical simulators is also mostly limited to
relatively small molecules with 10–20 qubits, as shown in Table 1
for the typical simulations of chemical and material systems using
classical simulators.
To explore practical applications of quantum computing in

quantum chemistry, one can resort to the development of
quantum technologies, e.g. advanced quantum algorithms in
combination with error mitigation techniques or fault-tolerant
quantum computers as a long-term target. Another way is the
combination of state-of-the-art simulators with high-performance
computing (HPC), which enable us to emulate large-scale
quantum computation of the electronic structure on classical
computers. In the current stage, simulators are expected to play a
fundamental role in algorithm design or verification. In the RSC
experiments, classical simulators are used for both calibrating the
fidelity of individual gate operation and the whole random
quantum circuit and extrapolating the fidelity of simpler quantum
circuits to the most difficult ones3–5. In most quantum algorithm
designs, simulators are employed as the numerical emulating
platform to benchmark new algorithms.
Classical simulators suffer from the notorious exponential wall

when the many-body systems are simulated exactly. As such,
approximation algorithms are often used to realize large-scale
emulations of quantum chemistry calculation. For example, the
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excited states of iridium complexes have been computed with up
to 72 qubits12, which is the largest classical emulation of the VQE
in terms of the number of qubits up to date. However, to achieve
such a large emulation scale, a very shallow quantum circuit
ansatz was employed to reduce the computational cost.
Additionally, a 28-qubit VQE emulation of the C2H4 molecule has
been reported by using point symmetry to significantly reduce the
total number of gate operations13. A classical emulation of the C18
molecule (a model system consisting of 144 spin molecular
orbitals and 72 electrons) has been reported by combining VQE
with the density matrix embedding theory (DMET), where DMET is
used to break the molecule into small fragments and the VQE is
used as the solver for the electronic structure of each fragment.
While the maximum number of qubits used in the VQE
calculations is only 1614.
In this work, we demonstrate a high-performance and massively

parallel VQE simulator using the matrix product state (MPS)
representation of the quantum state, as illustrated in Fig. 1. Our
simulator maximally utilizes the power of tensor network methods
and supercomputers in order to overcome the exponential
memory bottleneck and realize the largest classical emulation of
quantum computational chemistry. The major computational
bottleneck of the MPS-VQE algorithm (see the section “MPS
algorithm for quantum circuit simulation” for more details) on HPC
is the implementation of high-level linear algebra solvers, such as
singular value decomposition (SVD) (see the section “SVD and
Jacobi-based method”). Here, we overcome this bottleneck with
the optimized SVD and tensor operation algorithm. As discussed
in the section “Speedup and scaling with MPS-VQE simulator”, our
one-sided Jacobi SVD is more than 60 times faster than the non-
optimized version on average for matrix sizes from 100 to 500. As
a result, our largest simulation which uses the MPS-VQE simulator
scales up to 1000 qubits for one-shot energy evaluation and to 92
qubits for fully converged VQE emulation, with a two-qubit gate
count of up to 105. In combination with DMET (see section “The
DMET method” for more details), our simulator is applied to study
practical quantum chemistry systems containing 103 atoms and
achieves comparable accuracy with state-of-the-art computational
methods.

RESULTS
Optimization strategies
Emulating quantum computing on a classical computer is difficult
due to the exponential runtime and memory requirement. Such
difficulties can be leveraged with tensor network methods and by
utilizing many-core and multi-node computers. Heterogeneous
many-core systems are efficient for handling runtime issues but
have limited total accessible memory space. Meanwhile, the
memory of a multi-node computer can be scaled to the petabytes
order, but its bandwidth for access from host computers (CPUs) is
narrow. To simultaneously accelerate simulations and enlarge the
total memory space, the heterogeneous parallelization approach15

(see sections “Heterogeneous parallelization strategy” and section
“Julia programming language” for more details) can be adopted.
Our simulator allocates memory to each computation node and
then accelerates simulations by utilizing the full capabilities of the
heterogeneous many-core processors.
The new-generation Sunway supercomputer that is the

successor of the Sunway TaihuLight supercomputer is used for
performance assessment in this work. Similar to the Sunway
TaihuLight system, the new Sunway supercomputer adopts a new
generation of domestic high-performance heterogeneous many-
core processors (SW26010Pro) and interconnection network chips
in China. The architecture of the SW26010Pro processor is shown
in Fig. 2a. Each processor contains 6 core groups (CGs), with 65
cores in each CG, making a total number of 390 cores. Each CG
contains one management processing element (MPE), one cluster
of computing processing elements (CPEs), and one memory
controller. Each CPE has a 32 KB L1 instruction cache, and a 256 kB
scratch pad memory (SPM, also called the Local Data Memory
(LDM)), which serves the same function as the L1 cache. Data
transfer between LDM and main memory can be realized by direct
memory access (DMA).
The hotspots of our simulator are mainly the tensor contrac-

tions and SVD functions. In the tensor contraction, the first step is
the index permutation of the tensors, followed by one of the BLAS
(basic linear algebra subprograms)16 routine that performs
matrix–matrix multiplications (ZGEMM) to accomplish the calcula-
tion. Here we use the fused permutation and multiplication
technique17. For the ZGEMM calculation, we perform
matrix–matrix multiplications based on the optimization strate-
gies, including a balanced block that we choose optimized block
for the matrix A and B to make balanced computations with CPEs,
and diagonal broadcasting method where we use CPEs on the
diagonal to perform a broadcast to forward its data to its
corresponding row or column, to realize efficient parallel
computing for matrix multiplications, matrix transpose multi-
plications and conjugate transpose multiplications on the Sunway
many-core system. First, we need to decompose the matrices A
and B into smaller blocks to fit into the computing size of the
kernel. Second, we transmit the blocks of the input matrix into the
LDM from the main memory. If we need to permute the input
matrix, we should load the data that need to be transposed to the
LDM of each CPE in blocks by DMA_get, and the data stored on its
own LDM using the single instruction multiple data (SIMD) ‘vshuff’
instruction (the interface of the shuffle between two vectors); A
diagonal broadcast optimization method is used to greatly reduce
the memory access overhead to ensure the overall performance of
matrix multiplication. Third, SIMD is used to implement eight 64-
bit double-precision floating-point operations at a time. One SIMD
instruction is equivalent to a small loop, so the number of
instructions can be reduced, thereby reducing the requirement for
bandwidth, and reducing the number of loops caused by induced
control-related time overhead, as shown in Fig. 2b.
For the SVD calculation, there are mainly two classes of

algorithms. The first class of the SVD algorithms is the QR-based
two-phase approach18, in which the matrix A is transformed into a

Table 1. Typical simulations of molecular and material systems with
classical simulators.

Work System Na Nq NCNOT Reference

Microsoft QDK H2 2 4 696 41

Cirq CH2O 4 6 1.8 × 103 42

Qulacs He crystal 1 8 1.6 × 103 43

Qiskit N2 2 16 1.9 × 104 44

Yao.jl C18 18 16 5.4 × 104 14

VQEChem H chain 2 16 5.4 × 104 45

QCQC Si crystal 2 16 1.1 × 105 46

Tequlia BH 2 22 6.2 × 103 47

HiQ C2H4 6 28 1.2 × 105 13

iQCC-VQE IrIII complexes ~60 72 ~96 12

MPS-VQE H2 2 92 1.4 × 105 This work

MPS-VQE C2H6 8 32 4.4 × 105

MPS-VQE (one shot) H2 chain 500 1000 1.0 × 106

DMET-MPS-VQE Atazanavier 103 16 1.8 × 106

Number of atoms (Na), number of qubits (Nq), and the estimated number of
CNOT gates (NCNOT) are listed for comparison.
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bidiagonal matrix using an orthogonal transformation, and then
the bidiagonal matrix is diagonalized using the bidiagonal divide-
and-conquer method or the QR algorithm. The complete SVD is
then determined during the backward transformation. This

method is efficient for large matrices while suffering from loss
of relative accuracy19. The second class of the SVD algorithms is
the Jacobi-based algorithm, which has recently attracted a lot of
attention because it has a higher degree of potential

(b) VQE
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Fig. 1 Framework of our quantum computational chemistry simulator. a The conceptual illustration of the quantum computing emulation
for quantum chemistry. b The VQE simulator using the matrix product states (MPS) representation of the quantum state for each fragment
within DMET. c The DMET calculation procedures for the realistic chemical systems.
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parallelism20–22. There are two varieties of the Jacobi-based
algorithm (see section “SVD and Jacobi-based method”), one-
sided and two-sided algorithms. The one-sided Jacobi algorithm is
computationally more efficient than the two-sided algorithm23

and suitable for vector pipeline computing. Thus, to achieve
efficient parallel SVD computation on Sunway heterogeneous
many-core architectures, the best choice is the Hestenes one-
sided Jocobi transformation method24, where all pairs of columns
are repeatedly orthogonalized in sweeps using Jacobi rotations25

until all columns are mutually orthogonal. When the convergence
is reached, the right singular vectors can be computed by
accumulating the rotations, the left singular vectors are the
normalized columns of the modified matrix, and the singular
values are the norms of those columns. Since each pair of columns
can be orthogonalized independently, the method is also easy to
parallelize over the CPEs, as shown in Fig. 2c. It should be noted
that another scalable SVD algorithm called cross-product SVD26 is
also widely used in the principal component analysis. However,
numerical issues may appear since the condition number is
squared in the intermediate step to orthogonalize ATA. To simulate

quantum systems in which the superposition of states is quite
arbitrary, the cross-product SVD may be not as stable as other
approaches.

Validation results with MPS-VQE simulator (92 qubits)
As a pilot application, Fig. 3 shows the potential energy curves
(PECs) of the hydrogen molecule computed with the MPS-VQE
simulator. The unitary coupled cluster with single and double
excitations (UCCSD) ansatz that is able to accurately describe this
two-electron system is employed for single-point energy calcula-
tions. The implementation of the UCCSD ansatz with MPS is
described in the “Methods” section (see the section “The
implementation of UCCSD with matrix produce states” for more
details). The STO-3G, cc-pVDZ, cc-pVTZ, and aug-cc-pVTZ basis
sets are used to extend these emulations from 4 to 92 qubits. The
BOBYQA optimizer is used for the variational optimization, with a
convergence threshold set to 10−6 for the minimum allowed value
of the trust region radius. Note that the hydrogen molecule can be
simulated without supercomputer resources even in aug-cc-pVTZ
basis since only two electrons are involved. However, this 92-qubit

Fig. 2 Algorithm details for linear algebra routines. a Architecture of the SW26010Pro processor. b Matrix multiplication on the Sunway
many-core processor. c One-sided Jacobi SVD algorithm on the Sunway many-core processor.
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case involves 1.4 × 105 CNOT gates (161 variational parameters),
which is the largest quantum circuit simulation up to date in terms
of the number of qubits and circuit depth. The simulations are
carried out using 512 processes, and the computation times are
given in Table 2. The results from MPS-VQE are in excellent
agreement with the full configuration interaction (FCI) results as
shown in Table 3. For all four basis sets, chemical accuracy is
achieved with a maximum error of 0.82 kcal mol−1 at
R(H–H)= 2.4 Å; for the aug-cc-pVTZ results. We also show results
obtained with FCI in the complete basis set (CBS) limit, which can
be considered as the exact potential energy curve of the hydrogen
molecule. The results of aug-cc-pVTZ show an average deviation
of 1.42 kcal mol−1 from the complete basis set limit. We can see
that using a larger basis set makes the potential energy curve
much closer to the exact dissociation limit.

Speedup and scaling with MPS–VQE simulator
One major bottleneck of the MPS–VQE simulator is the SVD function
(technical details shown in the section “SVD and Jacobi-based
method”), which takes around 85% of the CPU time on average. In
Fig. 4, we show the performance improvement of the two optimized
versions of SVD, including the QR-based method implemented in
SW_xmath (QR_SW_xmath) and the optimized one-sided Jacobi in
this work (one-sided-Jacobi_SW), compared to the QR-based SVD
method running on MPE (QR_MPE), for different matrix sizes. We use
the performance of the QR_MPE as the baseline, which we set as 1
in Fig. 4b. We can see that the optimized SVD using the one-sided
Jacobi method produces an overall speedup ranging from 1.5 × to
62.2 × compared to QR_MPE, and achieves a speedup of 2× to 6×

compared to QR_SW_xmath version. For the one-sided Jacobi SVD
(one-sided-Jacobi_SW), we use the Athread library routines provided
by the Sunway architecture for the many-core acceleration, and we
use 64 threads for the actual computation. The Jacobi-based
method for SVD used in this work has potentially better accuracy
than other methods. For example, if the SVD routine in the MPS
simulator is replaced with cross-product SVD26, the energy error with
respect to FCI will raise from 1.1 × 10−2 to 1.5 × 10−1 kcal mol−1 for
the simplest H2 molecule (cc-PVTZ basis set) even if more than 2.5
times the number of VQE steps are performed.
For the tensor contraction using the optimization method listed

in the section “Optimization strategies” (SW_zgemm), we can get
an overall speedup of around 1.3× to 7.2× compared with the
SW_xmath version (a vendor-provided linear algebra library on the
Sunway supercomputer), as shown in Fig. 4a.
Figure 4c shows the computational time of the MPS-VQE

simulator for implementing the VQE circuits of the hydrogen chain
using 512 processes, where the detailed information are given in
Table 4. The maximally allowed bond dimension is set to be
D= 128, as explained in the section “The wave function ansatz for
hydrogen chain simulations”. The one-shot energy estimation
means that only one step of energy evaluation is performed instead
of performing optimization of variational parameters until conver-
gence. In the one-shot energy evaluation, the parameters are set as
random numbers in order to keep the bond dimension at the upper
limit value (D= 128) during the circuit evolution. The number of
electrons/atoms ranges from 12 to 500, and the corresponding
number of qubits ranges from 24 to 1000. The scaling exponents of
the computation time (as a function of the total number of atoms N)
for each VQE iteration are fitted by the polynomial scaling formula
t= cNα (α is the exponent). We find the exponent α ≈ 1.6 for all of
the VQE circuits. This is because the number of terms in the
Hamiltonian approximately scales as N1.5 for the hydrogen chain.

Peak performance with DMET-MPS-VQE
We use the hydrogen chain to assess the scalability and
performance of our DMET–MPS–VQE simulator. The wave function
ansatz is adaptively built in order to reduce the circuit depth (see
section “The wave function ansatz for hydrogen chain simulations”
for more details). The system is divided into fragments with the
DMET method. A brief introduction of the DMET method used in
this work can be found in the section “The DMET method”. We
record the computational time with an increasing number of
fragments (2048 processes per fragment). The number of floating
point operations for tensor contractions is measured by counting
all the floating point arithmetic instructions needed for matrix
multiplications. For SVD, the number of floating-point operations
is measured using the profiler LWPF27 which can monitor the
floating-point operation hardware counters in the processor. The
quantum circuits containing CNOT gates acting on each pair of
neighbouring qubits. This building block serves as the entangle-
ment block in the hardware-efficient ansatz28. Evolving the circuit
requires to perform SVDs for Nq−3 matrices of size 2D × 2D and
3 × (Nq−3) matrix–matrix multiplications. The results are shown in
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Fig. 3 Potential energy curves in unit Hartree of the hydrogen
molecule computed with UCCSD. The basis sets are STO-3G, cc-
pVDZ, cc-pVTZ, and aug-cc-pVTZ, which correspond to 4, 20, 56, and
92 qubits, respectively. The results of full configuration interaction
calculations at the complete basis set limit are provided for
comparison.

Table 2. Wall time per VQE iteration in seconds and number of
iterations to converge for different basis sets.

Basis set STO-3G cc-pVDZ cc-pVTZ aug-cc-pVTZ

Wall time per iteration 0.12 3.67 190.63 1564.52

Number of steps 18 303 459 677

The data are collected from the geometry with the lowest energy of each
basis set in Fig. 3.

Table 3. The mean absolute errors (MAE) and maximum absolute
errors (MAX) (in kcal/mol) of the potential energy surfaces for H2

computed with the UCCSD-VQE method using different Gaussian
basis sets.

Basis set STO-3G cc-pVDZ cc-pVTZ aug-cc-pVTZ

MAE 9.4 × 10−13 2.7 × 10−3 8.1 × 10−2 3.3 × 10−1

MAX 6.3 × 10−12 1.3 × 10−2 1.8 × 10−1 8.2 × 10−1

The FCI results are taken as the reference values.
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Fig. 4d. We can see that a nearly linear scaling is obtained.
Sustained performance of 216.9 PFLOPS is achieved in double
precision with 606,208 processes (39,403,520 cores) for the system
with 2368 qubits.

Implications
In this section, we discuss applications of our MPS-VQE and DMET-
MPS-VQE simulators to study realistic chemical systems. One

example is the torsional barrier of ethane, which is one of the
most fundamental problems in biomacromolecule configuration
analysis. Figure 5 shows the results obtained by the MPS–VQE
simulator for the torsional barrier of the ethane molecule. The
bond lengths of C–C and C–H are set to be 1.512 and 1.153 Å;,
respectively. The STO-3G basis set with all 16 orbitals is used (32
qubits). The obtained torsional barrier is 0.29 eV which is higher
than the experimental value 0.13 eV. Using the 6-31G(d) basis set
will lower the barrier to 0.20 eV even if a small active space of only
6-orbital-6-electron is used. Therefore, It is expected that using a
larger basis set could further improve the simulation accuracy.
As an anticipated application, we apply the DMET-MPS-VQE

simulator to study the quantification of the protein–ligand
interactions, which is a large-scale practical biochemical problem.
Compared to classical calculations, quantum mechanical calcula-
tions can automatically include the effects of polarization, charge
transfer, charge penetration, and the coupling of the various
terms, thus offering more accurate and detailed information on
the nature of the protein–ligand interactions. This is highly
important in high-accuracy binding affinity prediction as well as in
drug design. The SARS-CoV-2 is the coronavirus behind the
COVID-19 pandemic, and its main protease (Mpro) is an enzyme
that cleaves the viral polyproteins into individual proteins required
for viral replication, so it is important to develop drugs targeting at
Mpro for SARS-CoV-2. In quantum mechanical studies, the

Table 4. The computational time per VQE iteration using 512 cores for
the hydrogen chain with the MPS-VQE simulator (without DMET).

System Na Nq Nc Wall time (s) CPU Time (core ⋅ s)

(H2)3 6 12 1811 1.23 559.64

(H2)6 12 24 15,905 4.20 2133.08

(H2)12 24 48 60,723 10.67 5443.94

(H2)25 50 100 193,607 29.90 14,923.02

(H2)50 100 200 544,549 86.74 43,520.58

(H2)100 200 400 1,426,637 304.25 154,234.77

(H2)250 500 1000 5,059,403 1961.03 999,432.92

The number of atoms (Na), number of qubits (Nq), the estimated number of
circuits (Nc) are listed in the table. The bond dimension D is set to be 128.

Fig. 5 Simulated results for chemical applications. a Torsional barrier of the ethane molecule simulated with MPS–VQE using STO-3G (32
qubits) and 6-31G(d) (12 qubits using a (6e,6o) active space) basis set. b Binding energy ranking score versus experimental binding free
energies. The overall R2 value for all points is 0.44. The results are computed with MPS–VQE integrated with DMET.
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protein–ligand binding energy is calculated by Eb= Ecomplex−-

Eprotein−Eligand, where Ecomplex is the energy of the complex, Eprotein
is the energy of the protein and Eligand is the energy of the
unbound ligand. The energy of the complex, protein and ligand
bounded in the complex are calculated using density functional
theory with the PBE+MDB functional to account for many-body
van der Waals interactions, which is important to obtain accurate
potential-energy surfaces29. After that, the energy differences
between bounded and unbounded geometries of ligands are
estimated with DMET-VQE30. We use the geometries of the 14
neutral ligands from ref. 31, and then we optimize the geometries
of the ligands at the Hartree–Fock level to account for the
geometric distortion needed for the ligand to occupy the active
site. Similar to ref. 30, we use STO-3G basis set in the DMET-VQE
calculation. We plot the ranking score against the experimental
binding free energies in a correlational plot as shown in Fig. 4. The
ranking score is defined as the difference between the binding
energy and the average value of 14 ligands. Ideally, the simulated
ranking score should reproduce the experimental trends. We use
the coefficients of determination, denoted as R2, of the simulated
ranking score and the experimentally measured free energy to
access the quality of our simulation. It can be seen the correlation
between our simulation and the experiment is fairly good, with R2

of 0.44, which is better than the FEP-based approach (with R2 of
0.29)32. The dipyridamole falls off the correlation line, but the fact
that candesartan cilexetil binds best to the protein agrees with the
experiment. By removing dipyridamole and hydroxychloroquine
from the set, we get an R2 of 0.59. However, we are fully aware of
the necessity to consider the basis set, environment, and
temperature effects, as well as DMET subsystem size when
applying the DMET-MPS-VQE to drug design in the following
studies. The largest molecule we calculated is Atazanavir which
contains 103 atoms and 378 electrons, this is the largest system
that has been investigated with simulators to our knowledge.

DISCUSSIONS
As a heuristic quantum algorithm, the accuracy and performance
of VQE should be verified in practical applications. The problems
that VQE aims to solve, namely finding the ground state of a
quantum many-body Hamiltonian, have a computational com-
plexity growing exponentially with the problem size in general.
Therefore, small-scale simulations for simple molecules using
around 20 qubits are hard to demonstrate the powerfulness of
VQE in practical applications. In this work, the MPS-VQE simulator
scales up to 1000 qubits for one-shot energy evaluation and to 92
qubits for converged VQE emulation, moreover, the DMET-MPS-
VQE simulator scales up to 39 million cores on the New Sunway
supercomputer. The quantification of the protein-ligand interac-
tions for SARS-CoV-2 is studied with the DMET-MPS-VQE as an
application in drug discovery. Particularly, we can obtain decent
results using VQE, which are comparable with the experimental
observations.
The development of quantum computers requires the inter-

twining and contribution of classical supercomputers, which
enables us to benefit from much more mature classical comput-
ing. The simulation scale we have reached in this work, in terms of
both the number of qubits and the circuit depths, is far beyond
the simulations that have been done in existing literature, and the
capability of existing quantum computers. Although we have
limited ourselves to the physically motivated UCCSD ansatz, our
simulator could also be straightforwardly used with any other
circuit ansatz, such as those hardware-efficient ones, which are
more friendly to current quantum computers. Our simulator would
be an excellent benchmark and validation tool for the develop-
ment of next-generation quantum computers, as well as a flexible
platform for quantum researchers to explore industrially related
applications with tens of qubits.

METHODS
Unitary coupled cluster ansatz
The electronic Hamiltonian Ĥ of a chemical system is written in the
second-quantized form as Ĥ ¼Ppq h

p
qa

y
paq þ 1

2

P
pqrsg

pq
rs a

y
pa

y
qaras,

where hpq and gpqrs are one- and two-electron integrals in the
Hartree–Fock orbital basis. In the framework of the VQE, the total
energy is calculated by measuring the expectation values of the
qubit Hamiltonian obtained by Fermion-to-Qubit transformations,
such as Jordan–Wigner or Bravyi–Kitaev, of the fermionic Hamilto-
nian. One of the most widely used wave function ansatz is the
unitary coupled cluster9 in the form of ΨðθÞj i ¼ eT̂ðθÞ�T̂

yðθÞ Φ0j i.
Here, Φ0j i is the Hartree–Fock state, which can be easily prepared
on a quantum computer. When the UCC operator is truncated to
the single and double excitations (UCCSD), namely

T̂ðθÞ ¼
X
ai

θai â
y
aâi þ

1
4

X
abij

θabij â
y
aâ

y
bâi âj; (1)

where {i, j,⋯}, {a, b,⋯} and {p, q,⋯} denote the occupied, virtual,
and general spin molecular orbitals, respectively. The UCCSD
ansatz does not have an exact finite truncation of the
Baker–Campbell–Hausdorff expansion such that an approximation
should be introduced in its classical implementation.
The UCCSD ansatz can be implemented on a quantum platform

with a parametric quantum circuit generated from Suzuki–Trotter
decomposition of the unitary exponential operator into one- and
two-qubit gates33. In such a case, the UCCSD ansatz can be
mapped to a W-shaped ansatz circuit with a quartic number of
two-qubit gates. For example, restricting to the minimal basis set,
the number of CNOT gates of a full UCC circuit reaches 8.6 × 105

for the simple C2H4 molecule, which is usually far beyond the
capability of current NISQ devices and can hardly be simulated on
most of existing quantum circuit simulators.
We note that UCCSD is inadequate for describing many strongly

correlated systems. Here, we focus on exhibiting the performance
of our simulator. The accuracy of the wave function ansatzes can
be improved by introducing adaptive VQE algorithms34.

MPS algorithm for quantum circuit simulation
The correlated wave function in quantum chemistry considering
all configuration states can be written as

Ψj i ¼
X
i1:::iN

ci1 i2 i3 ¼ iN i1i2i3 ¼ iNj i (2)

where i1i2i3 ¼ iNj i refers to the computation basis, ci1 i2 i3 ¼ iN is a
rank-N tensor of 2N complex numbers. This state can be
represented with matrix product states (MPS), decompose the
correlated wave function into a set of low-rank tensors:

ci1 i2 i3 ¼ iN ¼
X
α0:::αN

Bi1α0α1B
i2
α1α2

Bi3α2α3 ¼ BiNαN�1αN
; (3)

where in ∈ {0, 1} refers to “physical” indices and αn the “virtual”
index related to the partition entanglement entropy. α0 and αN at
the boundaries are trivial indices added for notational
convenience.
In our MPS simulator, we keep the tensors to be right-canonical,

namely the site tensors of the MPS in Eq. (3) satisfy:X
in ;αn

Binα0n�1;αn

� ��
Binαn�1;αn

¼ δαn�1;α0n�1
: (4)

A single-qubit gate operation acting on the nth qubit, denoted as
Qini0n can be simply applied onto the MPS as

~B
in
αn�1αn

¼
X
i0n

Qini0nB
i0n
αn�1αn : (5)

The new site tensor ~B
in
αn�1αn

satisfies Eq. (4) since Qini0n is unitary and
Bi

0
n
αn�1αn satisfies Eq. (4). For the operation of a two-qubit gate on qubits
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n and n+ 1 (the nth bond), denoted as Qin ;inþ1

i0n ;i
0
nþ1

, we use the technique
from ref. 35 to keep the underlying MPS in the right-canonical form,
which is shown in the following. We first contract the two-site tensors
Bi

0
n
αn�1;αn and B

i0nþ1
αn;αnþ1 with Qin;inþ1

i0n;i
0
nþ1

to get a two-site tensor

Cin ;inþ1
αn�1 ;αnþ1

¼
X

αn ;i0n ;i
0
nþ1

Qin ;inþ1

i0n ;i
0
nþ1

Bi
0
n
αn�1;αnB

i0nþ1
αn ;αnþ1 ; (6)

then we contract Cin ;inþ1
αn�1;αnþ1

with the singular matrix formed by the
singular values at the n−1th bond (denoted as λαn�1 ) to get a new
two-site tensor as

~C
in ;inþ1

αn�1 ;αnþ1
¼ λαn�1C

in;inþ1
αn�1;αnþ1

: (7)

We perform singular value decomposition onto the tensor
~C
in ;inþ1

αn�1;αnþ1
and get

SVD ~C
in ;inþ1

αn�1;αnþ1

� �
¼
X
αn

Uin
αn�1;αn

~λαnV
inþ1
αn ;αnþ1

; (8)

during which we will also truncate the small singular values below
a certain threshold or simply reserve the largest few singular
values to control the memory overhead. Finally the new site
tensors ~B

in
αn�1;αn

and ~B
inþ1

αn;αnþ1
can be obtained as

~B
in
αn�1 ;αn

¼
X

inþ1;αnþ1

Cin ;inþ1
αn�1;αnþ1

Vinþ1
αn;αnþ1

� ��
; (9)

~B
inþ1

αn ;αnþ1
¼ Vinþ1

αn;αnþ1
; (10)

and the new singular values ~λαn is used to replace the old λαn at
the nth bond. Since

P
αn
~B
in
αn�1 ;αn

~B
inþ1

αn ;αnþ1
¼ Cin ;inþ1

αn�1;αnþ1
, they indeed

represent the correct site tensors after the two-qubit gate
operation. ~B

inþ1

αn;αnþ1
is right-canonical by the definition of SVD.

Moreover, one can verify that ~B
in
αn�1;αn

is also right-canonical by
substituting Eqs. (7), (8) into Eq. (9):

~B
in
αn�1 ;αn

¼ Uin
αn�1;αn

~λαn=
~λαn�1 ; (11)

The above equation transforms a left-canonical site tensor Uin
αn�1;αn

into a right-canonical site tensor ~B
in
αn�1;αn

.

The implementation of UCCSD with matrix produce states
As discussed in section “Unitary coupled cluster ansatz”, the
implementation of the UCCSD ansatz in this work includes three
steps:

● We perform the Jordan–Wigner transformation of the cluster
operator. Here, the Hartree–Fock state is employed as a
reference state. The cluster operator is defined as a linear
combination of single and double excitations from occupied

orbitals to virtual orbitals (see Eq. (1)).
● We perform a Suzuki–Trotter decomposition of the unitary

exponential operator into one- and two-qubit gates. Because
the excitation operators are not commutative, we use first-
order Trotter decomposition to approximate the UCCSD
ansatz as products of exponential operators, which can be
further decomposed into products of one- and two-
qubit gates.

● We apply these quantum gates to a reference wave function.
The intermediate wave functions after applying quantum
gates to the initial wave function are represented by matrix
product states.

Steps 1 and 2 are done using the Q2Chemistry package36.
Step 3 is one of the most important parts of this work. Applying
a single qubit gate to an MPS can be done without
approximation by multiplying the gate with a single MPS
tensor. To apply a two-qubit gate to qubits n and n+ 1, we first
perform tensor contractions of the corresponding gates and
tensors and then apply the gate to the contracted state. To
restore the MPS form, the resulting tensor is decomposed with
an SVD truncated to keep the largest X singular values, and the
matrix of singular values is multiplied into one of the unitary
factors X or Y.
With a right-canonical form of MPS, there is a very efficient way

to compute the expectation of a single Pauli string. Taking the
expectation value of a single-qubit observable Oini0n as an example,
it can be simply computed asX
αn�1;αn;in ;i0n

λ2αn�1
Oini0nB

i0n
αn�1;αn Binαn�1;αn

� ��
; (12)

while a generic two-qubit observable Oim;in
i0m;i

0
n
(assuming m < n) can

be computed asP
αn:m�1;in:m;i0n;m

λ2αm�1
Oimin
i0mi

0
n
Bi

0
m
αm�1;αm Bimαm�1 ;αm

� ��

´ � � � ´ Bi0nαn�1;αn Binαn�1;αn

� ��
;

(13)

where we have used xj:i= {xi, xi+1,⋯ , xj} as an abbreviation for a
list of indices. The expectation value of a general n-qubit Pauli
string could be computed similarly.

The wave function ansatz for hydrogen chain simulations
When hydrogen chains containing hundreds of atoms are studied,
it is impossible to implement a full UCCSD ansatz even with a
supercomputer. As such, we construct approximate wave function
ansatzes to perform such large-scale simulations using our
simulator. The ansatzes are constructed following four steps:

● The generalized single and double (GSD) excitation operators
are generated using every 5 consecutive orbitals. For
example, if there are 100 Hartree–Fock orbitals obtained
from the Hartree–Fock calculation, we first build GSD
excitation operators using orbital 1–5, and then orbital
2–6, etc.

● After the fermionic operator pool has been constructed, the
Jordan-Wigner transformation is used to generate an initial
operator pool {P} in the form of Pauli strings.

● All the Pauli-Zs are removed from the Pauli strings in order to
reduce the quantum circuit depth. Because the Hamiltonian
is real, all Pauli strings with an even number of Pauli-Ys are
removed from {P}.

● The parametric circuit is adaptively constructed as a product
of the exponential of Pauli strings

Q
j expðiθjPjÞ, where Pi ∈ {P}

and {θ} are variational parameters to be optimized. Here, we
follow the strategy suggested in the qubit-ADAPT-VQE
method37. While we did not iteratively build the wave
function ansatz until convergence, high accuracy can be
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Fig. 6 The MPS-VQE optimized energies of H8 molecule using
different bond dimension settings. The energy different ΔE is
calculated by ΔE ¼ jEDi � EDiþ1 j, where Di∈ {16, 32, 64, 96, 128, 160, 192}.
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achieved if more iterations are performed to improve the
wave function ansatz.

The above steps are performed by interfacing our MPS-VQE
simulator with the Q2Chemistry package15,36. In this way, an
approximate wave function ansatz that entangles every neigh-
bouring 5 orbitals (10 qubits) is constructed for the hydrogen
chain simulations. Another important factor that affects the
simulation accuracy is the maximum allowed bond dimension of
the MPS simulator. In order to choose a reasonable bond
dimension, we performed a benchmark on the converged energy
with respect to different bond dimension settings using a smaller
molecule (H8, 16 qubits). The results are given in Fig. 6 and the
bond dimension is selected such that ΔE ¼ jEDi �
EDiþ1 j<1:0 ´ 10�3 Hartree which is slightly more strict than
chemical accuracy (1.6 × 10−3 Hartree).

The DMET method
In DMET, a high-level calculation for each fragment (e.g. VQE) is
carried out individually until the self-consistency criterion has
been met: the sum of the number of electrons of all of the
fragments agrees with the number of electrons for the entire
system. The DMET energy for the fragment is calculated using the
1-RDM and 2-RDM, that is,

EA ¼ P
p2A

PNA
orbþNB

orb

q
hpq þ 1

2

PNorb
rs ½ðpqjrsÞ � ðpsjrqÞ�Denv;A

rs

� �
DA
qp

 

þ1
2

PNA
orbþNB

orb

qrs
ðpqjrsÞPAqp

!
;

(14)

where hpq are the one-electron integrals, (pq∣rs) are two-electron
integrals, NA

orb is the number of orbitals in the fragment, NB
orb is the

number of the bath orbitals, Norb is the total number of the
orbitals in the entire molecule and p,q,r,s are orbital indices.
DA
qp ¼ hâypâqi) is 1-RDM and and PAqp ¼ hâypâyqâr âsi is 2-RDM, which

are evaluated with VQE method in this work. The number of
electrons in fragment A is calculated as NA ¼Pp2AD

A
pp, and the

DMET total energy is the sum of the fragment energies

Etotal ¼
X
A

EA (15)

The DMET cycle iterates until the number of electrons NDMET=
∑ANA converges to the total number of electrons in molecule (N) .

Heterogeneous parallelization strategy
For the DMET-MPS-VQE simulator, three levels of parallelization
are adopted: (1) The calculation of different fragments can be
performed in an embarrassingly parallel manner, that we split the
whole CPU pool into different sub-groups and sub-communica-
tors, and there is no communication between different fragment
calculations; (2) within each sub-group, the total energy of each
fragment is calculated with the MPS-VQE method. We adopted the
parallel simulation algorithm based on distributed memory over
the circuits, just “mimic” the actual quantum computers, so our
method can offer a good reference for VQE running on the
quantum computers; (3) within the simulations of a single
quantum circuit, we use low-level multi-threaded parallelism on
the CPEs to further boost the performance for the tensor
contraction and singular value decomposition. We refer the
reader to ref. 15 for more details.

Julia programming language
The Julia script language is used as the main programming
language in this study. Julia has the performance of a statically

compiled language while providing interactive dynamic beha-
vior and productivity38. The codes written in Julia can be highly
extensible due to its type system and the multiple dispatch
mechanism. In addition to its JIT feature and meta-
programming ability, its powerful foreign function interface
(FFI) makes it easy to use external libraries written in other
languages. In this study, the electronic structure libraries Pyscf39

and OpenFermion40 are linked to Julia through PyCall.jl, and the
optimized SVD routines written in C is called using the LLVM.jl
package which provides a high-level wrapper to the
LLVM C API.
Our parallel algorithm implemented in Julia is based on the

parallel libraries MPI.jl. MPI.jl is a basic Julia wrapper for the
Message Passing Interface (MPI). On the Sunway architecture, the
MPI libraries are versatile and highly optimized. MPI.jl can call this
MPI library through interfaces of Julia that are almost identical to
the C language, and provides similar performance.

SVD and Jacobi-based method
The singular value decomposition of a Matrix Am×n can be written
as

A ¼ UΣVT (16)

where the matrix Am×n is decomposed into three matrices. Matrix
Um×m and Vn×n are complex unitary matrices, and VT

n ´ n is the
conjugate transpose of Vn×n. Matrix Σm×n is a rectangular
diagonal matrix with the singular values of matrix Am×n on the
diagonal.
There are two classes of Jacobi-based SVD algorithms: one-

sided and two-sided. Two-sided Jacobi iteration algorithm trans-
forms a symmetric matrix into a diagonal matrix by a sequence of
two-sided Jacobi rotations (J).

J i; j; θð Þ ¼

1 � � � 0 � � � 0 � � � 0

..

. . .
. ..

. ..
. ..

.

0 � � � c � � � �s � � � 0

..

. ..
. . .

. ..
. ..

.

0 � � � s � � � c � � � 0

..

. ..
. ..

. . .
. ..

.

0 � � � 0 � � � 0 � � � 1

2
66666666666664

3
77777777777775

i

j

i j

(17)

Based on two-sided Jacobi algorithm, one-sided Jacobi SVD
calculates singular value decomposition with only one-sided
Jacobi rotations that modifies columns only. Algorithm 1 describes
the one-sided Jacobi method. The parameters c and s of the
Jacobi rotation matrix can be calculated by t and τ.

c ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2

p (18)

s ¼ t ´ c (19)

t ¼ signðτÞ
τj j þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ τ2
p (20)

τ ¼ aTi ai � aTj aj
2aTi aj

(21)

The algorithm converges when all rotations in a sweep are
skipped. Since each pair of columns can be orthogonalized
independently, the method is also easily parallelized over the
CPEs. The simplicity and inherent parallelism of the method make
it an attractive first choice for implementation on the many-core
system.
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Algorithm 1. One-sided Jacobi SVD method for m × n matrix A,
m ≥ n.

The quantum simulation time of hydrogen chain with MPS-
VQE
The quantum simulation time of the hydrogen chain using the
MPS-VQE simulator is tested. The number of atoms (Na), number of
qubits (Nq), and the estimated number of circuits (Nc) are listed in
Table 4. The geometry of the hydrogen molecule chain is set as
follows: the H2 moieties with R(H–H)= 0.741 Å were aligned, and
the distance between the closest atoms of different H2 fragments
was 1.322Å, as shown in Fig. 7. For all the calculations, we use 512
cores (8 nodes × 64 cores per node).

DATA AVAILABILITY
The data that support the findings of this study are available from the corresponding
authors upon reasonable request.
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