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Continuous-mode quantum key distribution with digital
signal processing
Ziyang Chen 1, Xiangyu Wang 2, Song Yu2, Zhengyu Li3✉ and Hong Guo1✉

Continuous-variable quantum key distribution (CVQKD) offers the specific advantage of sharing keys remotely by the use of
standard telecom components, thereby promoting cost-effective and high-performance metropolitan applications. Nevertheless,
the introduction of high-rate spectrum broadening has pushed CVQKD from a single-mode to a continuous-mode region, resulting
in the adoption of modern digital signal processing (DSP) technologies to recover quadrature information from continuous-mode
quantum states. However, the security proof of DSP involving multi-point processing is a missing step. Here, we propose a
generalized method of analyzing continuous-mode state processing by linear DSP via temporal modes theory. The construction of
temporal modes is key in reducing the security proof to single-mode scenarios. The proposed practicality oriented security analysis
method paves the way for building classical compatible digital CVQKD.
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INTRODUCTION
Quantum key distribution (QKD)1–3 promises an information-
theoretically secure symmetric key distribution for distant
partners. The past three decades have witnessed rapid develop-
ment of QKD technologies and the growth of QKD network
deployment globally, which have been employed in various
security applications4–11. Within the QKD family, continuous-
variable (CV) QKD benefits from the use of off-the-shelf
commercial telecom components12,13 and provides a cost-
effective alternative in metropolitan networks. Twenty years
since the pioneering GG02 protocol14 was proposed, the
theory15–20 and experimentation21–23 of CVQKD have made
remarkable progress.
Moreover, the tremendous breakthroughs of local oscillator (LO)

schemes since 201524,25 have pushed CVQKD into a new stage, in
which techniques from modern digital coherent communication
have been brought in26–29. We call this stage digital CVQKD.
Specifically, digital signal processing (DSP) significantly improves
the signal-to-noise ratio (SNR) by compensating for channel
drifting and device impairments, which greatly simplifies physical
systems. This paves the way for an ultra-high secret key rate with
tens of GHz of bandwidth in the CVQKD system. However, this
phenomenon also complicates the security analysis.
Two barriers exist in the security analysis of a digital CVQKD

system. One is the discrete modulation format, and the other is
DSP. The former results from the destruction of estimating the
covariance matrix directly from the measurement results and
was recently solved with the semidefinite programming30–32 or
other novel methods33,34. The other barrier is the difficulty of
constructing an appropriate measurement operator to describe
the output of DSP.
Specifically, a single-point quadrature measurement of each

state in one ensemble is sufficient for reliable tomography of
single-mode states. However, for the tomography of continuous-
mode states, the extraction of quadrature information involves
multi-point sampling and processing. Therefore, a time-domain

description of system’s behavior should be introduced, which is
beyond the traditional single-mode description.
Here, to narrow the gap between practical systems and

theoretical models, we develop a generalized security proof
framework for continuous-mode systems processed by linear
DSP algorithms. The key step is the temporal-mode (TM)
construction using DSP results, which is suitable for the analysis
of high-speed, multi-point sampling systems. Specifically, in
continuous-mode formalism, time-domain field operators can be
introduced by Fourier transformation, based on which the
generalized receiver can be well modeled. By properly calibrat-
ing the shot-noise unit (SNU), we model the linear processing of
sampled data by recombination of time-domain field operators,
which defines a specific TM field operator35–37. Consequently, the
security of DSP is reduced to the security of a specific single TM
measurement. Then, the rest of the analysis is compatible with
traditional methods.
Moreover, the results show that the mismatch between the

measured state’s TM and the receiver’s TM leads to inefficiency in
detection. The mission of the DSP algorithm is to merge this
mismatch, thus improving the detection efficiency, which coin-
cides with improving SNR in its classical correspondence.
Our work provides a feasible way of analyzing the security

and performance of a continuous-mode system processed by
linear DSP algorithms, so it could provide important guidance
for the DSP design of digital CVQKD. Linear DSP toolboxes are
expected to be directly employed in CVQKD, reinforcing the
importance of our work.

RESULTS
Temporal modes of continuous-mode states
We start by introducing the basics of continuous-mode formalism
of quantum optics and then describing the state preparation
phase. Recall that in traditional CVQKD analysis, the coherent state
is represented by the creation and annihilation operators in terms
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of a single-mode field, given by âyi ; âi . By contrast, in a practical
system, high-speed modulation inevitably introduces a nonuni-
form temporal waveform, so continuous-mode formalism of field
operators35,37,38 should be introduced, which is widely used in
studying continuous-mode quantum optics. By transforming the
annihilation and creation operators from their discrete-mode
counterparts, the continuous-mode field operators are defined as

âi ! Δωð Þ12â ωð Þ and âyi ! Δωð Þ12ây ωð Þ, where Δω denotes the
mode spacing, which satisfies the commutation relation
½âðωÞ; âyðω0Þ� ¼ δðω� ω0Þ. In the time domain, it is useful to
define the Fourier transforms of â ωð Þ, namely â tð Þ, given by
â tð Þ ¼ 1ffiffiffiffi

2π
p

R
dωâ ωð Þ exp �iωtð Þ. The creation operator ây tð Þ fol-

lows a similar definition.
Based on this, the photon-wavepacket creation operator Â

y
ξ i
35,39

can be defined as

Â
y
ξ i
¼

Z
dtξ i tð Þây tð Þ; (1)

in which the wavepacket ξ i tð Þ usually reads ξ0i tð Þe�iωt , as an
envelope ξ0i tð Þ with a carrier e−iωt. It is also known as the TM field
operator36,37 if ξ i tð Þ meets the orthonormalization thatR
dtξ�i tð Þξ j tð Þ ¼ δij , for different i, j. The TM operators also obey

the commutation relation, which reads

Âξ i ; Â
y
ξ j

h i
¼ δij: (2)

It is then important to define the photon-wavepacket coherent
state γij iξ i on ξi-TM, as35

γij iξ i ¼ D̂ξ i γið Þ 0j i ¼ exp γi Â
y
ξ i
� γ�i Âξ i

� �
0j i; (3)

where γi denotes the displacement parameter, and γij j2 represents
the average photon number. The photon-wavepacket coherent
state obeys the eigenvalue equation Âξ i γij iξ i ¼ γi γij iξ i . Under this
notation, the quadrature operator with the phase angle θ can be
defined as

X̂
θ

ξ i
¼ Â

y
ξ i
exp iθð Þ þ Âξ i exp �iθð Þ: (4)

In a digital CVQKD system, coherent states are generated by
widely used in-phase/quadrature (I/Q) modulation. As shown in
Fig. 1(a), assuming that γ0j iξL is the photon-wavepacket coherent
state fed to the I/Q modulator, γmj iξL are then the state of the I or

Q arm after the balanced beam splitter (BS), where γm ¼ γ0=
ffiffiffi
2

p
.

Then, each arm performs the intensity modulation with a certain

waveform, which is modeled by a time-dependent BS with
transmitivity η tð Þ related to modulation40,41. Assuming that the
data encoded on the I and Q components in the i-th period are
xif g and pif g and that their normalized waveform envelopes
are ξ I tð Þ and ξQ tð Þ, we can rewrite

ffiffiffiffiffiffiffiffiffi
ηI tð Þ

p
ξ0L tð Þ ¼ xiξ I tð Þ on the I

path and
ffiffiffiffiffiffiffiffiffiffiffi
ηQ tð Þp

ξ0L tð Þ ¼ piξQ tð Þ on the Q path. Then, the I and Q
path’s output states are transformed into xiγmj iξ I and piγmj iξQ .
Finally, after passing through another balanced BS and a proper
attenuator, the output photon-wavepacket coherent state is
xi þ ipij iξout if ξ I tð Þ ¼ ξQ tð Þ ¼ ξout tð Þ with properly calibrated
modulation. This means that in the entanglement-based scheme,
the output coherent states can be seen as two-mode squeezed
states, with ξout-TM being measured on one mode with a
heterodyne measurement. As for ξ I tð Þ≠ξQ tð Þ, the output state
can be decomposed into two orthogonal TMs with different but
correlated displacement parameters, which we leave for further
investigations.

Measurement, sampling, and data processing
On the receiver side, the input state is first measured by a practical
homodyne detector with limited bandwidth and then sampled by
an analog-to-digital converter (ADC). After this, the sampled data
go through a series of DSP algorithms, and the final data output
from DSP are assumed to represent the quadrature measurement
result, which can be used to construct the covariance matrix and
then calculate the secret key rate. We only consider linear DSP
algorithms here because the transmitted quantum light is
extremely weak, so no obvious optical nonlinear effects occur.
Thus, linear compensation algorithms are sufficient to recover the
signal. When we use the above continuous-mode formalism
notation, mapping the outputs of linear DSP to quadrature
measurements is surprisingly natural; the crucial step is normal-
ization with properly calibrated SNU. To paint a clear picture of
this, we first ignore the imperfections of the homodyne detector
and finite-resolution issue of ADC, and we discuss the trusted
detection model considering the detector’s efficiency and noise in
the Methods section.
The receiver can be modeled as an ideal homodyne detector,

followed by a filter, as shown in Fig. 1b. Assuming the filter has an
impulse response function (IRF), namely, g tð Þ, the photocurrent
flux operator of a homodyne detector is given by35,39

f̂ tð Þ ¼ ây tð ÞâLO tð Þ þ âyLO tð Þâ tð Þ
h i

� g tð Þ; (5)

Fig. 1 Models of digital CVQKD. a The transmitter prepares a photon-wavepacket coherent state (PWCS) with an arbitrary form of envelope
ξL tð Þ; via the I/Q modulation, the quadratures of the PWCS are modulated by Gaussian distributed random numbers. The carrier can be either
a continuous wave or pulsed coherent state. b Measured states are fed to a practical receiver, interfering with the local oscillator (LO) at a
balanced beam splitter (BS) and detected by a band-limited homodyne detector (HD) (modeled by an ideal HD and a filter), followed by the
sampling and DSP devices. The mismatch between the measured state’s temporal mode (TM) and the receiver’s TM is equivalent to a BS with
a transmitivity of η. c In the experiment, channel transmission causes a transformation of TM, which, if ignored, will cause a degradation in
system performance. PM phase modulator.
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where * denotes the convolution. The photon wavepacket of the
local oscillator (LO) is given by αLO tð Þ ¼ μ

1=2
LO ξLO tð Þ exp �iωLOt þ iθð Þ,

where μLO denotes the average number of photons contained in an
envelope ξLO tð Þ for a pulsed LO, or a time period as defined. Because
LO is considered a classical field with enough photons, the
fluctuation in the measurement output mainly comes from the
signal quadrature measurement part. Therefore, the photocurrent
flux after taking the average over LO is more useful, given by
f̂ LO tð Þ ¼ αLO tð Þh ĵf tð Þ αLO tð Þj i.
Considering ADC as the integral sampling process with integral

time Δts, the sampled data at time t0 are

D̂t0 ¼
1
Δts

Z t0þΔts

t0

dtf̂ LO tð Þ; (6)

in which the electronics amplification is ignored.
Multiple sampling points may exist within one period Tr.

Generally, types of linear data processing exist: (i) directly
choose one sampled data of each period as final data of this
period, for instance, the sampling point near the peak of the
envelope of measured state; (ii) using the sampled data within
one period to define the final data of this period, for instance,
calculating the weighted averaging of all sampled data within
the same period; and (iii) generally, a DSP algorithm may use
the sampled data from multiple periods, for instance, the root
raised cosine (RRC) filter42 introduces a convolution over
multiple periods.
For a DSP algorithm involving N sampled data, the output data

at the time corresponding to the tj sampling time could be

D̂
N
tj ¼ f dsp D̂tj�kþ1 ; :::D̂tj�kþN

� � ¼
XN
i¼1

f idsp D̂tj�kþi (7)

with linear expansion, where f idsp and k are real numbers
determined by DSP algorithms. After simplification, Eq. (7) is
given by

D̂
N
tj ¼ μ

1=2
LO

Δts

Z
Gtj
dsp τð ÞX̂αLO

τð Þdτ; (8)

where

Gtj
dsp τð Þ ¼

XN
i¼1

f idsp

Z tj�kþiþΔts

tj�kþi

g t � τð Þdt (9)

is related to the detector’s IRF, sampling points, and the DSP
algorithm. In addition, XαLO τð Þ is the intermediate quadrature
operator related to the LO’s features, which is given by

^XαLO τð Þ ¼ ξLO τð Þe�i ωLOτ�θð Þây τð Þ þ h:c: (10)

SNU calibration and normalization
To normalize the output data from DSP, one key step is to define
and calibrate the SNU, which is the most distinguishable phase

from classical optical communication. Considering D̂
N
tj as the final

data for the period in which tj lies, we can easily verify that for the

vacuum input, the mean is 0h jD̂N
tj 0j i ¼ 0, and the variance σ2SNU ¼

0h jD̂N
tj D̂

N
tj 0j i is

σ2
SNU ¼ μLO

Δts2

Z
ξLO τð Þj j2 Gtj

dsp τð Þ
h i2

dτ: (11)

For normalization, the sampled data D̂
SNU
tj are divided by

σSNU ¼ ffiffiffiffiffiffiffiffiffi
σ2
SNU

p
, which gives

D̂
SNU
tj ¼ eiθ

Z
dτ

Gtj
dsp τð ÞξLO τð Þe�iωLOτ

σcal
ây τð Þ þ h:c:; (12)

where σcal ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
dτjξLOðτÞj2½Gtj

dspðτÞ�
2

q
is the rescaled factor when

calibrating output data by SNU. It can be verified that the
coefficient function of â τð Þ is a normalized photon-wavepacket
function, which is

Ξ
tj
DSP τð Þ ¼ 1

σcal
ξLO τð ÞGtj

dsp τð Þ exp �iωLOτð Þ; (13)

with the normalization condition
R
dτjΞtjDSPðτÞj

2 ¼ 1. This intro-
duces ΞtjDSP-TM, which is jointly defined by the LO, filter, sampling,
and DSP algorithms. Then, we can further define its creation
operator as

Â
y
Ξ
tj
DSP

¼
Z

dτΞtjDSP τð Þây τð Þ: (14)

Consequently, a simplified form of Eq. (12) in terms of the
Ξ
tj
DSP-TM operators is rewritten as

D̂
SNU
tj ¼ Â

y
Ξ
tj
DSP

exp iθð Þ þ Â
Ξ
tj
DSP

exp �iθð Þ ¼ X̂
θ

Ξ
tj
DSP
; (15)

which shares the same form as Eq. (4).
Therefore, the final data (output from DSP and being normal-

ized) can be treated as a quadrature measurement of ΞtjDSP-TM. As
long as the data represent a quadrature measurement result, they
can be used to construct the covariance matrix and are thus
compatible with traditional security analysis methods. The above-
mentioned analysis also highlights one key point of SNU
calibration, which is that the sampled data of vacuum input
should be processed by the same DSP as the usual signal input
case before the data are used to calculate the variance of
shot noise.
Another important issue is that for a DSP involving sampled

data exceeding one period, the possible crosstalk should be
avoided. In this case, the TMs related to different periods should
be orthogonal, that is,

R
ΞtiDSPΞ

tj�
DSP ¼ 0, where ti, tj belong to two

different periods. This also coincides with classical DSP’s purpose,
as crosstalk lowers the SNR. For instance, the RRC pulse shaping
and filtering methods are commonly used to improve spectrum
efficiency. Moreover, the RRC filter is designed with no
intersymbol interference for different optimal sampling points,
which is associated with the TMs related to different optimal
sampling points being orthogonal.
This completes our security analysis framework for linear DSP,

which can be summarized in two key points. One is properly
calibrating SNU, which naturally leads the final data to be a
quadrature measurement result with respect to the TM defined
jointly defined by LO, detector, sampling, and DSP. The second is
to avoid the complex measurement model introduced by
intersymbol crosstalk, where TMs corresponding to different
periods should be orthogonal. If these two conditions apply, the
final data can be directly used to construct the covariance matrix,
and then we can calculate the secret key rate through the current
security analysis method.
Below, two examples are given to analyze the performance after

considering the continuous-mode scenario, including the mode-
matching issue and transmission-dispersion issue.

Projection on the measurement temporal mode
Besides security, our analysis also provides insights into imperfect
detection efficiency, related to the mismatch between the
measured state’s TM and the receiver’s TM. The whole measure-
ment process under the TM representation is equivalent to the
projection of the measured state’s TM to the receiver’s TM, and
vice versa.
Now, consider a case where the measured state is a coherent

state on ξA-TM, which is different from the receiver’s Ξ
tj
DSP-TM.
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Using the Gram–Schmidt orthogonalization, we can define a third
TM from Ξ

tj
DSP-TM and orthogonal to ξA-TM, denoted as Ψ⊥-TM,

which leads to the following decomposition of the creation
operator:

Â
y
Ξ
tj
DSP

¼ ffiffiffi
η

p
Â
y
ξA
þ

ffiffiffiffiffiffiffiffiffiffiffi
1� η

p
Â
y
Ψ? ; (16)

where η ¼ ½R dtΞtj ;�DSP tð ÞξA tð Þ�2 � 1 denotes the mode-matching
coefficient. With further examination of the first-order and second-
order moments, the abovementioned decomposition can be
modeled by an extra BS at the receiver side, with transmitivity η,
quantifying the matching degree between ξA-TM and Ξ

tj
DSP-TM. A

detailed derivation can be found in the Methods section. Here,
η < 1 means an extra loss induced by the mode mismatch, which
decreases the performance of the system. This degradation is
rather covert, different from the physical components introduced
by loss, that is, fiber coupling loss and the non-unit quantum
efficiency of photodiodes. The closer η is to 1, the better the
performance of a DSP algorithm.
Here, we take the weighted averaging scenario to further

illustrate the mode-matching issue in the time domain. In this
case, the DSP function is given by f idsp ¼ wi , where wi is the
weight of the i-th sampling point within one period. The
measurement results can be described by Fig. 2. A sampled data
point measures not only the signal at one time point but also
convoluted nearby signals around the sampling point. Therefore,
an intuitive understanding of mode matching is that the sum of all
sampled data covers a certain signal area. In Fig. 2a, the
bandwidth of the detector is large enough that the IRF is
approximate to the δ-function, and then ultra-dense sampling is
needed. By contrast, if the bandwidth gradually decreases, the IRF
becomes wider, and fewer sampling points are required to
achieve a similar mode-matching degree, as shown in Fig. 2b, c. If
the detector’s IRF is similar to the measured state’s envelope, a
single-sampling point is enough, as in Fig. 2d.
We also note that, the discussion of system’s side information is

an interesting research topic. We discuss it in two scenarios: (1)
Alice performs a good calibration of the modulation variance of
the transmitted signal; (2) Alice performs a poor calibration of the

modulation variance, for example, neglecting optical modes that
may exist on Alice’s side.
For the first scenario, all of the optical modes in the spectrum are

taken into account, including the part outside the bandwidth of
Bob’s detector. Because the information of the whole transmitter is
included in the variance of Alice’s TM, any energy that Bob does
not detect (either the energy beyond the detector’s bandwidth or
the energy loss caused by the mode mismatch) contributes to the
channel loss estimated from covariance matrix, which will be
considered as caused by the eavesdropper. Therefore, this is not a
side channel, but rather a performance degradation.
For the second scenario, Alice fails to perform a proper

calibration, which will open a source-flaw-related side channel.
For example, part of the signal’s energy of the sideband is not
included when calibrating the modulation variance of Alice. This
issue has been extensively studied in the single-mode case43–47.
Note that this is not caused by the continuous-mode model
proposed by our work, but by the improper calibration method
of the modulation variance at the transmitter. To avoid this
issue, three alternative methods are proposed: (1) Add a power
meter at Alice’s side to calibrate Alice’s overall energy and
determine the modulation variance of the whole TM; (2) avoid
information leakage through single-sideband modulation43; (3)
take the leakage information into account in the overall security
analysis44–47.
Therefore, in the practical security analysis of a CVQKD system,

especially when the homodyne detector is used to calibrate Alice’s
modulation variance (such as using Bob’s device to perform back-
to-back test for engineering convenience), we should deal with
this phenomenon more carefully. We will investigate this issue in
detail in the future.

Continuous-mode transmission
The measured state’s TM is determined by the modulation at the
transmitter side, which is controlled, and also the channel
transmission, which is not controlled. Therefore, the DSP needs
to be designed or adjusted according to the channel condition.
We take channel dispersion as an example to show how it
influences the measurement, which is significant in a high-speed
system. Considering a coherent state with a narrow Gaussian
wavepacket ξ in tð Þ, after passing through the channel, its output

Fig. 2 Weighted averaging of sampled data. Assume the LO is a continuous-wave (CW) laser. a The bandwidth of the detector is large
enough, and the impulse response function (IRF) is approximate to the δ-function. The final data are recovered by weighted averaging of all of
the sampled data within one period, and the weight follows the shape of the measured state’s envelope. b, c The bandwidth of the detector is
limited, resulting in a widened IRF, which convolutes the signal around each sampling point. d If the detector’s IRF is similar to the measured
state’s envelope, single-point sampling can represent the final data.
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envelope is transformed with a transfer function h t; zð Þ, given by
ξout tð Þ ¼ ξ in tð Þ � h t; zð Þ, where h t; zð Þ is the channel transfer
function in the time domain, and its Fourier transform is given
by F h t; zð Þ½ � ¼ exp �kiz þ ik1Ωz þ i k22 Ω

2z
� �

, in which the
second-order Taylor expansion of the real part of the wave
vector is considered, z is the transmission distance, Ω is the
Fourier frequency, and k1 and k2 denote the inverse group
velocity and second-order dispersion coefficient, respectively.
Only for the ultrashort period, the influence of third-order
nonlinear dispersion needs to be considered. It can be seen that
the output state’s TM varies with increasing distance, as in
Fig. 3a. Therefore, if the DSP does not consider this TM varying,
there will be an increasing extra loss as the transmission
distance increases, which will decrease the maximal

transmission distance, as simulated in Fig. 3b. This is where
self-adaptive algorithms apply.

DISCUSSION
In this study, we have developed a generalized practical system
model with continuous-mode formalism of quantum optics, based
on which the IQ modulation at the transmitter side and band-
limited homodyne detection with the sampling process at the
receiver side can be well described. Then, with proper calibration
of SNU, the output data of a linear DSP can be modeled by the
quadrature measurement result with respect to a specific TM,
jointly defined by the LO, filter, sampling, and DSP algorithms. This
immediately results in good compatibility with traditional security

Fig. 3 Simulation results of the channel dispersion effect. a Evolution of the envelope of a Gaussian pulse with a full width at half-maximum
(FWHM) of 20 ps in optical fibers, ignoring the fiber loss, where β2=− 20.4 ps2/km is considered, which is a typical value of standard G.652
telecom fiber at 1550 nm. b Secret key rates for narrow-pulse (Gaussian pulse) propagation considering fiber-dispersion-induced TM
mismatch, where β2= 0 ps2/km and β2=−20.4 ps2/km are considered, which are typical values of no dispersion channel and the standard
G.652 telecom fiber at 1550 nm. In the simulation, we use the single-sampling-point scheme, and the sampling time accuracy is considered.
The sampling time t= 0 ps is assumed as the peak of Gaussian pulse. It is shown that the increasing mode mismatch reduces the secret key
rate while also relaxing the accuracy requirement of the sampling time.

Fig. 4 The proposed detection model considering non-ideal efficiency and electronic noise. a The PM version of our detection model.
b The equivalent EB version of our detection model.
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analysis methods, which completes the security proof of linear
DSP algorithms. Linear DSP toolboxes are expected to be directly
employed in CVQKD, which highlights the importance of our work.
In addition to the security, our work also provides a method to

analyze the performance of a DSP algorithm through a factor
quantifying the matching degree between the measured state’s
TM and the receiver’s TM. Moreover, interesting concepts like the
DSP-induced fast fading-channel effect can be further analyzed to
explore the practical limitations of a CVQKD system. By the
guidance of our work, secure and better-performing DSP
algorithms can be designed, which will exploit the significant
potential of digital CVQKD to achieve ultra-high secret key-
generation speed and cost-effective implementations.

METHODS
Trusted detection model considering DSP
Our model mainly deals with the DSP part, which is cascaded
after the trusted physical detection process. The input of the
DSP modular is actually the output of the practical trusted
detector, namely, X̂out, as shown in Fig. 4 (a). From this point of
view, our analysis is actually a complement to the existing
trusted model after considering the time-related information
and its processing.
Since we restrict the discussed DSP algorithms to linear

algorithms, the processing of the output signal is equivalent to
the independent processing of the incident signal and the
electronic noise. Then the output of DSP shares the same form
as the output of the current trusted model, given by

X̂DSP ¼ f dsp X̂out
� �

¼ ffiffiffiffiffiffi
ηD

p
f dsp X̂ in

� �þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ηD

p
f dsp X̂v

� �þ f dsp Xelð Þ
¼PM ffiffiffiffiffiffi

ηD
p

X̂
θ

Ξ
tj
DSP

þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ηD

p
X̂
Ξ
tj
DSP;v

þ XDSP
el

(17)

¼EB ffiffiffiffiffiffi
ηD

p
X̂
θ

Ξ
tj
DSP

þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ηD

p
X̂
DSP
EPR ; (18)

where f dsp �ð Þ denotes the linear DSP function, and X̂
θ

Ξ
tj
DSP

is the

incident TM defined by a specific DSP algorithm. The result of the
prepare-and-measure (PM) scheme (Fig. 4a) is given in Eq. (17),
where X̂

Ξ
tj
DSP;v

refers to the TM of a vacuum input, and the equivalent

electronic noise XDSP
el is the broadband electronic noise filtered by

the same DSP algorithm. The result of the equivalent entanglement-

based (EB) scheme (Fig. 4b) is given in Eq. (18), where X̂
DSP
EPR is the

equivalent trusted mode introduced by our model.
Therefore, the trusted model of a practical detector with DSP

can be simplified as Fig. 4b, as long as we re-calibrate the variance
of the equivalent electronic noise vDSPel .
In experiments, the practical calibrating steps are actually very

similar to the current method, given by the following two steps:

(1) Turn off the quantum input signal, turn off the LO, and
directly sample the output of the detector, which corre-
sponds to the measurement data of the electronic noise;

(2) Process the collected data by the same DSP function as
measured signal and then use the processing result to
calculate the variance of the electronic noise.

After the calibrated electronic noise variance is obtained, the
variance of the trusted EPR mode introduced in the EB scheme
can be obtained, given by VDSP

EPR ¼ 1þ vDSPel = 1 � ηDð Þ, referred to
as Bob’s input.

Derivation of the mode-matching coefficient
Assume that the measured state at Bob’s input is an unknown
wavepacket coherent state γj iξA related to the wavepacket ξA tð Þ.
To obtain the equivalent performance of mode matching, we first
decompose the receiver’s basis function Ξ

tj
DSP tð Þ into the input

basis ξA tð Þ and its orthogonal basis Ψ? tð Þ. Then we show the
mode-matching coefficient.
Using the Gram–Schmidt process, we can map the receiver’s

operator from the basis ΞtjDSP tð Þ to the set of bases ξA tð Þ;Ψ? tð Þf g.
In this transformation, the basis Ξ

tj
DSP tð Þ represents the measure-

ment mode-matched basis function. The Gram–Schmidt process is
given as follows:

● Step 1: The overlapping of two bases (also called the mode-
matching coefficient) is defined as

ffiffiffi
η

p ¼
Z

dtΞtj ;�DSP tð ÞξA tð Þ: (19)

● Step 2: The mode-matched basis is written as ζ1 tð Þ ¼ ξA tð Þ
directly.

● Step 3: The second orthonormal basis is calculated by

ζ2 tð Þ ¼ Ξ
tj
DSP tð Þ �

R
dtΞ

tj ;�
DSP tð Þζ1 tð ÞR

dtζ�1 tð Þζ1 tð Þ ζ1 tð Þ

¼ Ξ
tj
DSP tð Þ � ffiffiffi

η
p

ξA tð Þ:
(20)

It is easy to verify thatR
dtζ�2 tð Þζ2 tð Þ

¼ R
dt Ξ

tj ;�
DSP tð Þ � ffiffiffi

η
p

ξ�A tð Þ
h i

Ξ
tj
DSP tð Þ � ffiffiffi

η
p

ξA tð Þ
h i

¼ 1þ η� 2
ffiffiffi
η

p R
dtξA tð ÞΞtjDSP tð Þ

¼ 1� η:

(21)

After normalizing the basis function, we can obtain

Ψ? tð Þ ¼ ζ2 tð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
dtζ�2 tð Þζ2 tð Þ

p

¼ 1ffiffiffiffiffiffiffi
1�η

p Ξ
tj
DSP tð Þ � ffiffiffi

η
p

ξA tð Þ
� �

:
(22)

The receiver’s basis function is then decomposed as

Ξ
tj
DSP tð Þ ¼ ffiffiffi

η
p

ξA tð Þ þ
ffiffiffiffiffiffiffiffiffiffiffi
1� η

p
Ψ? tð Þ; (23)

and based on this, we can define two temporal modes (TMs) given
by

Â
y
ξA

¼
Z

dtξA tð Þây tð Þ; (24)

Â
y
Ψ? ¼

Z
dtΨ? tð Þây tð Þ: (25)

Now, the measurement results can be rewritten as

D̂
SNU
tj ¼ X̂

θ

Ξ
tj
DSP

¼ ffiffiffi
η

p
X̂ξA þ

ffiffiffiffiffiffiffiffiffiffiffi
1� η

p
X̂Ψ? ; (26)

where X̂ξ ¼ Âξ þ Â
y
ξ denotes the quadrature operator of ξ-TM.

Moments of measured data
Now, let us investigate the first-order and second-order
moments of the final data. The mean value (first-order moment)
is given by

dout ¼ γh jD̂SNU
tj γj iξA ¼ γh j ffiffiffi

η
p

X̂ξA þ
ffiffiffiffiffiffiffiffiffiffiffi
1� η

p
X̂Ψ?

� �
γj iξA

¼ ffiffiffi
η

p
γh jX̂ξA γj iξA þ

ffiffiffiffiffiffiffiffiffiffiffi
1� η

p
γh jX̂Ψ? γj iξA

¼ ffiffiffi
η

p
din;

(27)
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where φh jÂ φj i is the expectation value of Â in the state φ, and din
denotes the mean value of the input mode.
The variance of the final data can be obtained and is

σ2 ¼ γh jD̂SNU
tj D̂

SNU
tj γj iξA � γh jD̂SNU

tj γj i2ξA
¼ η γh jX̂ξA X̂ξA γj iξA þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η 1� ηð Þp

γh jX̂ξA X̂Ψ? γj iξA
þ 1� ηð Þ γh jX̂Ψ? X̂Ψ? γj iξA

¼ ηV in þ 1� ηð Þ � 1;

(28)

where Vin is the variance of the input mode.
From Eq. (26), we can see that the measurement results are

equivalent to a mode-matching loss added before the receiver
side, which is modeled by a beam splitter (BS). After the first-
order and second-order moments of measured data are given, it
is more intuitive to see that the transmittance of equivalent BS is
η. In the above discussion, we assume that γj i is a TM coherent
state to simplify the calculation of Eqs. (27) and (28). While one
can further exam that, for an arbitrary input state, Eqs. (27) and
(28) still hold. The above derivations also hold considering
heterodyne detection.
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