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Experimental metrology beyond the standard quantum limit
for a wide resources range
Valeria Cimini 1, Emanuele Polino 1, Federico Belliardo2, Francesco Hoch1, Bruno Piccirillo 3,4, Nicolò Spagnolo1,
Vittorio Giovannetti2✉ and Fabio Sciarrino 1✉

Adopting quantum resources for parameter estimation discloses the possibility to realize quantum sensors operating at a sensitivity
beyond the standard quantum limit. Such an approach promises to reach the fundamental Heisenberg scaling as a function of the
employed resources N in the estimation process. Although previous experiments demonstrated precision scaling approaching
Heisenberg-limited performances, reaching such a regime for a wide range of N remains hard to accomplish. Here, we show a
method that suitably allocates the available resources permitting them to reach the same power law of Heisenberg scaling without
any prior information on the parameter. We demonstrate experimentally such an advantage in measuring a rotation angle. We
quantitatively verify sub-standard quantum limit performances for a considerable range of N (O(30,000)) by using single-photon
states with high-order orbital angular momentum, achieving an error reduction, in terms of the obtained variance, >10 dB below
the standard quantum limit. Such results can be applied to different scenarios, opening the way to the optimization of resources in
quantum sensing.
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INTRODUCTION
The measurement process permits gaining information about a
physical parameter at the expense of a dedicated amount of
resources N. Intuitively, the amount of information that can be
extracted will depend on the number of employed resources, thus
affecting the measurement precision of the parameter. By limiting
the process to using only classical resources, the best achievable
sensitivity is bounded by the standard quantum limit (SQL) and it
scales as 1=

ffiffiffiffi
N
p

. Such a limit can be surpassed by employing N
quantum resources, defining the ultimate precision bound π/N,
known as the Heisenberg limit (HL)1,2. To achieve such funda-
mental limit3–5, a crucial requirement is a capability of allocating
them efficiently, in particular for ab-initio parameter estimation
where no initial knowledge in the whole periodicity of the system
is assumed6. Indeed, the independent use of each resource results
in an uncertainty that scales as the SQL, while the optimal
sensitivity can be achieved by exploiting quantum correlations in
the probe preparation stage7,8.
An example of quantum resource enabling Heisenberg-limit

performances in parameter estimation is the class of two-mode
maximally entangled states, also called N00N states. Such kind of
states has been widely exploited in quantum metrology experi-
ments performed on photonic platforms9. In particular, one of the
most investigated scenarios is the study of the phase sensitivity
resulting from interferometric measurements, thanks to their
broad range of applications ranging from imaging10 to biological
sensing11,12. In this context, the optimal sensitivity can be
achieved through the super-resolving interference obtained with
N photons N00N states9,13. However, current experiments relying
on N00N states are limited to regimes with a small number of
N14–18. Indeed, scaling the number of entangled particles for this
kind of state is particularly demanding due to the high complexity
required for their generation, which cannot be realized

deterministically with linear optics for N > 2. Experiments with
up to 10-photon states have been realized19–21, but going beyond
such order of magnitude requires a significant technological leap.
Furthermore, this class of states results to be very sensitive to
losses, which quickly cancels the quantum advantage as a
function of the number of resources N. For this reason, the
unconditional demonstration of a sub-SQL estimation precision,
taking into account all the effective resources, has been reported
only recently in ref. 22 with two-photon states.
Alternative approaches have been implemented for ab-initio

phase estimations, sampling multiple times the investigated
phase shift23 through adaptive and non-adaptive multi-pass
strategies6, achieving Heisenberg scaling performances in an
entanglement-free fashion. The estimation of one or multiple
parameters with several approaches in different contexts has been
studied in the last years24–32. However, one of the main challenges
is to maintain the Heisenberg scaling when increasing the number
of dedicated resources. Beyond the experimental difficulties
encountered when increasing the number of times the probe
state propagates through the sample, such protocols become
exponentially sensitive to losses. Therefore, the demonstration of
sub-SQL estimation precision with such an approach still remains
confined to small N.
All the previous approaches present a fundamental sensitivity

to losses, which prevent the observation of Heisenberg-limited
performances in the asymptotic limit of very large N, where the
advantage substantially reduces to a constant factor33: using
multi-pass or multiparticle N00N states, the overall efficiency in
these scenarios will indeed scale as ηoverall ~ ηN. In particular, in
lossy scenarios, the employed states can be optimized to maintain
such constant factor improvement as demonstrated in refs. 34,35.
Thus, it becomes crucial to focus the investigation of quantum-
enhanced parameter estimation in the non-asymptotic regime,
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with the aim of progressively extending the range of observation
of Heisenberg scaling sensitivity (in N). Furthermore, such a non-
asymptotic regime is the relevant scenario when dealing with any
implementation of quantum sensors, which operate with limited
values of N. In this respect, appropriate strategies must be
developed to reach a sensitivity that follows the same power law
(N−1) of the Heisenberg scaling for finite values of N, which here
we call the non-asymptotic Heisenberg limit. To this end, it is
necessary to properly allocate the use of resources in the
estimation process, as previously done in ref. 36.
In this Article, using N00N-like quantum states encoded in the

total angular momentum of every single photon, more robust to
losses than the aforementioned approaches (using these states
the efficiency impacts the estimation only with a factor η37), we
implement a method able to identify and perform optimal
allocation of the available resources. In particular, the protocol
not only requires the generation of high-dimensional N00N-like
superposition states but also the capability of tuning their
dimensionality, allocating individually the resources at the
single-photon level in order to achieve a sub-SQL estimation
precision showing considerable regions following the same power
law of Heisenberg scaling. Notably, the approach does not require
an expensive online calculation for adapting the measurements,
but only offline pre-calculated procedures. We test the developed
protocol for an ab-initio measurement of an unknown rotation
angle defined in the system’s overall periodicity interval [0, π). By
this approach, we demonstrate the capability of resolving the
ambiguity among the possible equivalent angle values. We
perform a detailed study on the precision scaling as a function
of the dedicated resources, demonstrating sub-SQL performances
for a wide range of the overall amount of resources N. This task
has direct applications to spatial synchronization of communica-
tion stations with relatively rotating reference frames.

RESULTS
Estimation protocol
In the considered scenario, we are interested in recovering the
value of an unknown parameter θ∈ [0, π) represented by an
optical phase shift or, as in the case discussed in this work, by a
rotation angle between two different platforms. The idea is then
to prepare a certain number of copies n of the input state
ð 0j i þ 1j iÞ= ffiffiffi

2
p

, let transform each one of them into the associated
output configuration ΨsðθÞj i ¼ ð 0j i þ e�i2sθ 1j iÞ= ffiffiffi

2
p

by a proper
imprinting process, and then measure (see Fig. 1). In these
expressions, 0j i and 1j i stand for proper orthogonal states of the
electromagnetic field. The integer quantity s describes instead
the number of quantum resources devoted in the production of
each individual copy of ΨsðθÞj i, i.e., adopting the language of
ref. 5, the number of black-box operations needed to imprint θ on a
single copy of ð 0j i þ 1j iÞ= ffiffiffi

2
p

. Therefore, in the case of n copies,
the total number of operations corresponds to ns. Considering our
implementation and the mentioned resource counting, our
approach employs non-entangled resources that are in a coherent
superposition of different total angular momentum si states. For
instance, in the scenario where one has access to a joint collection
of s correlated modes which get independently imprinted by θ, 0j i
can be identified with the joint vacuum state of the radiation and
1j i with a tensor product Fock state where all the modes of
the model contain exactly one excitation (in this case s can also
be seen as the size of the GHZ state ð 0j i�s þ 1j i�sÞ= ffiffiffi

2
p

). On the
contrary, in a multi-round scenario where a single mode under-
goes s subsequent imprintings of θ, 0j i and 1j i represents instead
the zero and one photon states of such mode.
The problem of determining the optimal allocation of resources

that ensures the best estimation of θ is that, while states ΨsðθÞj i
with larger s have greater sensitivity to changes in θ, an
experiment that uses just such output signals will only be able

Fig. 1 Conceptual scheme of the estimation protocol. At stage i, ni copies of the state Ψsi ðθÞj i characterized by a resource number si are
employed. In our experiment, the encoded parameter is the rotation angle θ between two reference systems, associated, respectively, with
two platforms corresponding to the photon generation stage and to the measurement apparatus. The quantum resource is related to the
total angular momentum of the photons. Each stage is successful if and only if it could identify the correct interval for the angle θ among the
possible ones, using the information on the previously selected interval. This allows the last stage (with maximal sensitivity) to produce an
unambiguous estimator θ̂. In the figure, the plausible intervals for the phase, computed from the outcomes of the independent and non-
adaptive measurements are colored, and the selected one is highlighted.
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to distinguish θ within a period of size π/s, being totally blind to
the information on where exactly locate such interval into the full
domain 0; π½ Þ. The problem can be solved by using a sequence of
experiments with growing values s of the allocated quantum
resources. We devised therefore a multistage procedure that
works with an arbitrarily growing sequence of K quantum
resources s1; s2; s3;…; sK, aiming at passing down the information
stage by stage in order to disambiguate θ as the quantum
resource (i.e. the sensitivity) grows, see Fig. 1 for a conceptual
scheme of the protocol. Note that these s values are not chosen
adaptively, but are precalculated according to the heuristic
prescription reported in the “Methods” section.
At the ith stage ni copies of Ψsi ðθÞj i are measured, individually

and non-adaptively, and a multivalued ambiguous estimator is
constructed. Then si plausible intervals for the phase are identified,
centered around the many values of the ambiguous multivalued
estimator. Finally, one and only one value is deterministically
chosen according to the position of the selected interval in the
previous step, removing the estimator ambiguity. In this step, it is
crucial to identify the suitable number of employed copies ni in
order to avoid fringe ambiguity when changing si. At each stage,
the algorithm might incur an error, providing an incorrect range
selection for θ. When this happens, the subsequent stages of
estimation are also unreliable. The probability of an error
occurring at the ith stage decreases as increasing the number ni
of probes used in such a stage. The precision of the final estimator,
θ̂, resulting from the multistage procedure, is optimized in the
number of probes n1, n2,…, nK. The overall number of consumed
resources, N ¼PK

i¼1 nisi , is kept constant. We thus obtain the
optimal number of probes ni to be used at each stage. The details
of the algorithm and the optimization are reported in the
“Methods” section. Remarkably, it can be analytically proved that
protocols with si= 2i−1 work at the Heisenberg scaling23,38–41,
provided that the right probe distribution is chosen. Due to the
limited amount of available quantum resources, when growing
the total number N of resources, the scaling of the error
Δθ̂ eventually approaches the SQL. In the non-asymptotic region,
however, a sub-SQL scaling is reasonably expected. An important
feature of such a protocol is that being non-adaptive, the
measurement stage decouples completely from the algorithmic
processing of the measurement record. This means that the
algorithm producing the estimator θ̂ can be considered post-
processing of the measured data. Non-unitary visibility can be
easily accounted for in the optimization of resource distribution.
We emphasize that this phase estimation algorithm has been
adapted to work for an arbitrary sequence of quantum resources,
which in our case corresponds to the experimentally accessible si
values, in contrast with previous formulations23,40,42.

Experimental setup
The total angular momentum of light is given by the sum of the
spin angular momentum, that is, the polarization with eigenbasis
given by the two circular polarization states of the photon, and its
orbital angular momentum (OAM). The latter is associated with
modes with spiral wavefronts or, more generally, with modes
having non-cylindrically symmetric wavefronts43,44. The OAM
space is infinite-dimensional and states with arbitrarily high OAM
values are in principle possible. This enables to exploit of OAM
states for multiple applications such as quantum simulation45–47,
quantum computation48–51, and quantum communication52–59.
Recently, photon states with more than 10,000 quanta of orbital
angular momentum have been experimentally generated60.
Importantly, states with high angular momentum values can be
also exploited to improve the sensitivity of the rotation
measurements37,61–64, thanks to the obtained super-resolving
interference. The single-photon superposition of opposite angular
momenta, indeed, represents a state with N00N-like features

when dealing with rotation angles. Furthermore, the use of OAM
in this context is more robust against losses compared to
approaches relying on entangled states or multi-pass protocols.
The N00N-like behavior of such states emerges when considering
the OAM as a resource at the same level of the number of
photons, in the same spirit as multipass protocols42. The
mentioned resources counting together with the use of coherent
superposition of OAM states allow in principle to reach a
sensitivity following the same power law of Heisenberg scaling,
avoiding all the problems related to noise fragility typical of
multiparticle N00N entangled states.
In the present experiment, we employ the total angular

momentum of single photons as a tool to measure the rotation
angle θ between two reference frames associated with two
physical platforms37. The full apparatus is shown in Fig. 2. The key
elements for the generation and measurement of OAM states are
provided by q-plates (QPs) devices, able to modify the photons’
OAM conditionally to the value of their polarization. A q-plate is a
topologically charged half-wave plate that imparts an OAM 2ℏq to
an impinging photon and flips its handedness65.
In the preparation stage, single photon pairs at 808 nm are

generated by a 20mm-long periodically poled titanyl phosphate
(ppKTP) crystal pumped by a continuous laser with a wavelength
equal to 404 nm. One of the two photons, the signal, is sent along
the apparatus, while the other is measured by a single photon
detector and acts as a trigger for the experiment. The probe state
is prepared by initializing the single-photon polarization in the
linear horizontal state Hj i, through a polarizing beam splitter
(PBS). After the PBS, the photon passes through a QP with a
topological charge q and a half-wave plate (HWP) which inverts its
polarization, generating the following superposition:

Ψj i0 ¼
1ffiffiffi
2
p Rj i þmj i þ Lj i �mj ið Þ; (1)

where m= 2q is the value, in modulus, of the OAM carried by the
photon. In this way, considering also the spin angular momentum
carried by the polarization, the total angular momenta of the two
components of the superposition are ±∣m+ 1∣.
After the probe preparation, the generated state propagates

and reaches the receiving station, where it enters a measurement
apparatus rotated by an angle θ. Such a rotation is encoded in the
photon state by means of a relative phase shift with a value
2∣m+ 1∣θ between the two components of the superposition:

Ψj i1 ¼
1ffiffiffi
2
p eiðmþ1Þθ Rj i þmj i þ e�iðmþ1Þθ Lj i �mj i
� �

: (2)

To measure and retrieve efficiently the information on θ, such a
vector vortex state is then reconverted into a polarization state
with zero OAM. This is achieved by means of a second HWP and a
QP with the same topological charge as the first one, oriented as
the rotated measurement station:

Ψj i2 ¼
1ffiffiffi
2
p Rj i þ e�i2ðmþ1Þθ Lj i
� �

; (3)

where the zero OAM state factorizes and is thus omitted for ease
of notation.
In this way, the relative rotation between the two apparatuses

is embedded in the polarization of the photon in a state which,
for s=m+ 1, exactly mimics the output vector ΨsðθÞj i of the
previous section and that is finally measured with a PBS
(concordant with the rotated station) followed by single photon
detectors. Note that an HWP is inserted just after the preparation
of PBS and before the first three QPs. Such an HWP is rotated by
0° and 22.5° during the measurements to obtain the projections
in the Hj i, Vj i basis and in the diagonal one ( Dj i, Aj i). In each
stage, half of the photons are measured on the former basis and
half on the latter. The entire measurement station is mounted on
a single motorized rotation cage. The interference fringes at the
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output of such a setup oscillate with an output transmission
probability P ¼ cos2½ðmþ 1Þθ� with a periodicity that is π/
(m+ 1). Hence, the maximum periodicity is π at m= 0 and,
consequently, one can unambiguously estimate at most all the
rotations in the range [0, π).
The limit of the error on the estimation θ̂ of the rotation θ is

Δθ̂ � 1
2ðmþ 1Þ ffiffiffinp ; (4)

where n is the number of employed single photons carrying a
total angular momentum (m+ 1) times the number of repetitions
of the measurement. Such a scaling is Heisenberg-like in the
angular momentum resource m+ 1 and can be associated with
the Heisenberg scaling achievable by multi-pass protocols for
phase estimation, using non-entangled states42. This kind of
protocol can overcome the SQL scaling, that in our case reads
1=ð2 ffiffiffi

n
p Þ, corresponding to the limit calculated considering

single-photon probes with zero OAM. However, such a limit can
be achieved only in the asymptotic limit of n→∞, where the
scaling of the precision in the total number of resources used is
again the classical one Δθ̂ / 1=

ffiffiffi
n
p

, if the angular momentum is
not increased. This is the case of the three-step adaptive
algorithm proposed in ref. 37, which is conversely tailored to
remove phase-ambiguities due to the periodicity of the
measurement probabilities. Here, we investigate both the

non-asymptotic and near-asymptotic regimes using non-
adaptive protocols. Our apparatus is an all-automatized toolbox
generalizing the photonic gear presented in ref. 37. In our case, six
QPs are simultaneously aligned in a cascaded configuration and
actively participate in the estimation process. The first three QPs,
each with a different topological charge q, lie in the preparation
stage, while the other three, each having, respectively, the same
q as the first three, are in the measurement stage. All the QPs are
mounted inside the same robust and compact rotation stage,
able to rotate around the photon propagation direction. Notably,
the whole apparatus is completely motorized and automated.
Indeed, both the rotation stage and the voltages applied to
the q-plates are driven by a computing unit that fully controls the
measurement process.
During the estimation protocol of a rotation angle, only one

pair of QPs with the same charge, one in the preparation and the
other in the measurement stage, is simultaneously turned on. For
a fixed value of the rotation angle, representing the parameter to
measure, pairs of QPs with the same charge are turned on, while
keeping the other pairs turned off. Data are then collected for
each of the four possible configurations, namely all the q-plates
turned off, i.e. s= 1, and the three settings producing
s= 2, 11, 51, respectively. Finally, the measured events are
divided among different estimation strategies and exploited for
post-processing analysis.

Strategy ( = + )

with = 1

with = 2

with = 11

with = 51

APD

APD

APD

Time tagger

Driver

HWP PBS

PBS

HWP

PBS

= 1/2

= 5

HWP

= 25

encoding

= 1/2= 25 = 5HWP

decoding

Fig. 2 Experimental setup. Single photon pairs are generated by a degenerate type-II SPDC process inside a ppKTP pumped by a 404 nm cw
laser. The idler photon is measured by a single photon avalanche photodiode (APD) and acts as a trigger for the signal that enters the
apparatus. This consists of an encoding stage which is composed of a first polarizing beam splitter (PBS) and three q-plates with different
topological charges q= 1/2, 5, 25, respectively, followed by a motorized half-waveplate (HWP). The decoding stage is composed of the same
elements of the preparation mounted, in the reverse order, in a compact and motorized cage that can be freely rotated around the light
propagation axis of an angle θ. After the final PBS, the photons are measured through a set of two APDs. Coincidences with the trigger
photon are measured, analyzed via a time-tagger, and sent to a computing unit. The latter, according to the pre-calculated optimal strategy,
controls all the voltages applied to the q-plates and the angle of rotation of the measurement stage.
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Analysis of the measured precision
The optimization of the uncertainty on the estimated rotation
angle is obtained by employing the protocol described above. In
particular, such an approach determines the use of the resources
of each estimation stage. In this experiment, we have access to
two different kinds of resources, namely the number of photon-
pairs n employed in the measurement and the value of their total
angular momentum s. Therefore, the total number of employed
resources is N ¼PK

i¼1 nisi , where ni is the number of photons with
momentum si, and K= 4. According to the above procedure, for
every N we determine the sequence of the multiplicative factors si
and ni associated with the optimal resource distribution. Note that,
in the same spirit of multi-pass protocols, where the resources
invested for the estimation are given by the number of
interactions of the probe with the sample, it is natural to consider
the total angular momentum as a resource in the estimation
protocol. Indeed, generating, propagating, and measuring higher-
order OAM states of light require more effort, due to the necessity
of using higher topological charge q-plates, of facing their
divergence and challenging measurements, respectively.

The distance between the true value, θ, and the one obtained
with the estimation protocol, θ̂, in the system periodicity [0, π), is
obtained by computing the circular error as follows:

jθ̂� θj ¼ π

2
� ðθ� θ̂Þ mod π � π

2

��� ���: (5)

Repeating the procedure for r= 1,…, R different runs of the
protocol with R= 200, we retrieve, for each estimation strategy,
the corresponding root-mean-square error (RMSE):

Δθ̂ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXR
r¼1

θ̂r � θ
��� ���2

R

vuuut : (6)

We remark that R in Eq. (6) and n in Eq. (4) do not have the same
interpretation. Indeed R is not a part of the protocol but is merely
the number of times we repeat it in order to get a reliable
estimate of its precision. We then averaged such quantity over 17
different rotations with values between 0 and π (see Supplemen-

tary Note 1 for more details), leading to Δθ̂. In such a way, we
investigate the uncertainty independently on the particular
rotation angle inspected.
In the following, we report the results of our investigation on

how the measurement sensitivity is improved by exploiting
strategies that have access to states with an increasing value of
the total angular momentum, obtained by tuning QPs with higher
topological charge. We first consider the scenario where only
photon states with s= 1 are generated. In this case, the RMSE
follows as expected, the SQL scaling as a function of the number
of total resources. The obtained estimation error for the strategies
constrained by the such condition is represented by the blue
points in Fig. 3a. Running the estimation protocol and exploiting
also states with s > 1, it is possible to surpass the SQL and
progressively approach performances following the same power
law of Heisenberg scaling, for high values of s. In particular, we
demonstrate such improvement by progressively adding to the
estimation process a new step with a higher OAM value. We run
the protocol limiting first the estimation strategy to states with
s= 1; 2 (green points), then to s= 1; 2; 11 (cyan points), and finally
to s= 1; 2; 11; 51 (magenta points). For each scenario, the number
of photons n per step is optimized accordingly. Performing the
estimation with all 4 available orders of OAM allows us to achieve
an error reduction, in terms of the obtained variance, up to
10.7 dB below the SQL. Note that the achievement of the
Heisenberg scaling is obtained by progressively increasing the
order of the OAM states employed in the probing process,
mimicking the increase of N when using N00N-like states in multi-
pass protocols. This is highlighted by a further analysis performed
in Fig. 3b, c. More specifically, if beyond a certain value of N the
OAM value is kept fixed, the estimation process will soon return
to scale as the SQL.
To certify the quantum-inspired enhancement of the sensitivity

scaling, we performed a first global analysis on the uncertainty
scaling, considering the full range of N. This is performed by
fitting the obtained experimental results with the function C/Nα.
In particular, such a fitting procedure is performed considering
batches of increasing size of the overall data. This choice permits
to investigate how the overall scaling of the measurement
uncertainty, quantified by the coefficient α, changes as a function
of N. Starting from the point N= 2, we performed the fit
considering each time the subsequent 10 experimental averaged
angle estimations (reported in Fig. 3a) and evaluated the scaling
coefficient α with its corresponding confidence interval for each
data batch. The results of this analysis are reported in Fig. 3b. As
shown in the plot, α is compatible with the SQL, i.e. α= 0.5, when
the protocol employs only states with s= 1. Sub-SQL perfor-
mance is conversely achieved when states with s > 1 are
introduced in the estimation protocol. The scaling coefficient of

Fig. 3 Experimental sensitivity and its scaling with higher-order
OAM states. a Averaged measurement uncertainty over R= 200
repetitions of the algorithm and over 17 different angle measure-
ments, in the interval [0, π), as a function of the total amount of
resources N. The adoption of single-photon states with progressively
higher-order total angular momentum allows to reach sub-SQL
performance, progressively approaching the same power law of
Heisenberg scaling. The red dashed line is the standard quantum
limit for this system 1=ð2 ffiffiffiffi

N
p Þ, while the green dashed line is the HL

π/(2N). b Value of the coefficient α and its standard deviation
obtained by fitting the points from N= 2 to the value reported on
the x-axis with the curve C/Nα. c Value of the coefficient α and its
standard deviation obtained by fitting the points from N= N0 to the
value reported on the x-axis with the curve C/Nα. Purple points:
estimation process with the full strategy. Blue points: estimation
process by using only s= 1. Green points: estimation process by
using only s= 1; 2. Cyan points: estimation by using only s= 1; 2; 11.
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the best fit on the experimental data collected when exploiting
all the available QPs (magenta points) achieves a maximum
value of α= 0.7910 ± 0.0002, corresponding to the use of 6460
resources. The enhancement is still verified when the fit is
performed considering the full set of 30,000 resources. Indeed,
the scaling coefficient value in this scenario still remains well
above the SQL, reaching a value of α= 0.6786 ± 0.0001. Given
that the data sets corresponding to s= 1 inherently follow the
SQL, we now focus on those protocols with s > 1, thus taking into
account only points starting from N0= 62. This value coincides
with the first strategy exploiting states with s= 2. Fitting only
such region, the maximum value of the obtained coefficient
increases to α= 0.8301 ± 0.0003 for N= 4764. Note that, as
higher resource values s are introduced, the overall scaling
coefficient of the estimation process, taking into account the full
data set, progressively approaches the same power law of
Heisenberg scaling.
Then, we focus on the protocols which have access to the full

set of states with s= 1; 2; 11; 51, and we perform a local analysis of
the scaling, studying individually the regions defined by the order
of OAM used, and characterized by different colors of the data
points in the top panel of Fig. 4. This is performed by fitting the
scaling coefficient with a batch procedure (as described pre-
viously) within each region. We first report in the top panel
of Fig. 4 the obtained uncertainty Δθ̂. Then, we study the overall
uncertainty scaling, which shows a different trend depending on
the maximum s value we have access to. To certify locally the
achieved scaling, we study the obtained coefficient for the four
different regions sharing strategies requiring states with the same

maximum value of s. In the first region (2 ≤ N ≤ 60), since s= 1 no
advantage can be obtained with respect to the SQL. This can be
quantitatively demonstrated by studying the compatibility, in 3σ,
of the best-fit coefficient α with 0.5. Each of the blue points in the
lower panel of Fig. 4 is indeed compatible with the red dashed
line. In the second region (62 ≤ N ≤ 264), since states with s= 2 are
also introduced, it is possible to achieve a sub-SQL scaling. When
states with up to s= 11 and s= 51 are also employed (N > 264) we
observe that the scaling coefficient α > 0.75 is well above the value
obtained for the SQL. Finally, we can identify two regions
(266 ≤ N ≤ 554 and 1772 ≤ N ≤ 2996) where the scaling coefficient
α obtained from a local fit is compatible, within 3σ, with the value
α= 1 corresponding to the same power law of the Heisenberg
scaling. This holds for extended resource regions of size ~300
and ~1000, respectively, and provides a quantitative certification
of the achievement of Heisenberg scaling performances (see
Supplementary Note 2 for more details). Notably, such perfor-
mances are achieved for values of si which are different from the
optimal ones according to the method of ref. 41, i.e. si= 2i−1,
showing the versatility of the approach that can be effectively
adapted depending on the employed resources.

DISCUSSION
The achievement of Heisenberg precision for a large range of
resources N is one of the most investigated problems in
quantum metrology. Recent progress has been made demon-
strating a sub-SQL measurement precision approaching the
Heisenberg limit when employing a restricted number of

Fig. 4 Certification of the sensitivity scaling in the local scenario. Upper panel: measurement uncertainty averaged over 17 different angle
values in the interval [0, π) as a function of the number of resources N. We highlight the points with the color code associated with the
maximum value of s exploited in each strategy. Blue points: strategies with s= 1. Green points: strategies relative to s= 1; 2. Cyan points:
strategies relative to s= 1; 2; 11. Purple points: strategies for s= 1; 2; 11; 51. Error bars are smaller than the size of each point. Lower panel: the
value of the coefficient α and the relative confidence interval for the four inspected regions. Such a confidence interval consists of a 3σ region,
obtained for the best fit with function C/Nα. The fit is done on batches of data as described in the main text. The continuous lines show
the average value of α in the respective region, while the shaded area is its standard deviation. The last reported point of α corresponds to the
maximum batch of data which we can fit all together with the function C/Nα, without taking into account other sources of noise. In both the
plots the salmon, yellow, and green colored areas represent, respectively, regions with SQL scaling (α= 0.5), sub-SQL scaling (0.5 < α ≤ 0.75),
and a scaling approaching the same power law of Heisenberg scaling (0.75 < α≤1). The red dotted line represents the SQL ¼ 1=ð2 ffiffiffiffi

N
p Þ (α= 0.5)

while the green one is the limit= C/(2N) (obtained fixing α= 1 and C= 6 which has been arbitrarily chosen in order to have the Heisenberg
scaling comparison close to the experimental data in the regions of interest). The gray dotted line is the threshold α= 0.75.
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physical resources. However, beyond the fundamental purpose
of demonstrating the effective realization of a Heisenberg
limited estimation precision, it becomes crucial for practical
applications to maintain such enhanced scaling for a sufficiently
large range of resources.
We have experimentally implemented a protocol that allows

to estimate a physical parameter in the non-asymptotic regime,
demonstrating sub-SQL performances for the whole experiment.
In order to accomplish such a task, we employ single-photon
states carrying high total angular momentum generated and
measured in a fully automatized toolbox using a non-adaptive
estimation protocol. Overall, we have demonstrated a sub-SQL
scaling for a large resource interval O(30, 000), and we have
validated our results with a detailed global analysis of the
achieved scaling as a function of the employed resources.
Furthermore, thanks to the extension of the investigated
resource region and to the abundant number of data points,
we can also perform a local analysis which quantitatively proves
to follow the same power law of Heisenberg scaling in a
considerable range of resources O(1, 300). This represents a
substantial improvement over the state of the art of protocols
allowing sub-SQL estimation precision for a large resource range.
Notably, this goal is reached using only a limited number of
N00N-like states with momenta up to 50.
These results provide an experimental demonstration of a

solid and versatile protocol to optimize the use of resources for
the achievement of quantum advantage in ab-initio parameter
estimation protocols. Indeed, we have performed enhanced
estimation in a resource range where previous photonic
experiments are missing, opening new perspectives for the
implementation of recently developed theoretical protocols41.
For instance, the demonstrated approach and platform have
direct application for robust enhanced estimation of angular
rotations in quantum communication systems. Given that its use
can be adapted to different platforms, this approach can
represent a significant tool in several scenarios. Direct near-
term applications of the methods can be foreseen in different
fields including sensing, quantum communication, and informa-
tion processing.

METHODS
Experimental details
Generation and measurement of the OAM states are obtained
through the q-plate devices. A q-plate is a tunable liquid crystal
birefringent element that couples the polarization and the orbital
angular momentum of the incoming light. Given an incoming
photon carrying an OAM value l, the action of a tuned QP in the
circular polarization basis Rj i; Lj i is the following transformations:

QP Rj iπ lj ioam ¼ Lj iπ l � 2qj ioam;
QP Lj iπ lj ioam ¼ Rj iπ l þ 2qj ioam;

(7)

where Xj iπ indicates the polarization X, while l ± 2qj ioam indicates
the OAM value ±2q, being q is the topological charge characteriz-
ing the QP. Tuning of the q-plate is performed by changing the
applied voltage.
The two sources of error are photon loss and the non-unitary

conversion efficiency of the QPs. Each stage of the protocol is
characterized by a certain photon loss η, which reduces the amount
of detected signal. In general, each stage will have its own noise
level ηj. Conversely, the non-unitary efficiency of the QPs translates
to a non-unitary visibility v, which changes the probability outcomes
for the two measurement projections as follows:

pHV ¼ 1
2 1þ v cos 2sθð Þ;

pDA ¼ 1
2 1þ v sin 2sθð Þ: (8)

The limit of the error on the estimation of the rotation θ in this
setting is

Δθ̂ � 1
2ðmþ 1Þv ffiffiffiffiffiffi

ηn
p (9)

However, if the actual experiment is performed in post-selection,
then η= 1, and the only source of noise is the reduced visibility.

Data processing algorithm and optimization
In this section, we present extensively the phase estimation
algorithm which we used to process the measured data and its
optimization. As it naturally applies to the phase in 0; 2π½ Þ we
present it for φ ¼ 2θ 2 0; 2π½ Þ. At each stage of the procedure, the
estimator φ̂ and its error Δφ̂ can be easily converted into an
estimator and error for the rotation angle: θ̂ ¼ φ̂=2 and
Δθ̂ ¼ Δφ̂=2. In the ith stage of the procedure, we are given the
result of ni/2 photon polarization measurements on the basis of HV
and ni/2 measurements on the basis DA. We define f̂HV and f̂DA the
observed frequencies of the outcomes H and D, respectively, and

introduce the estimator csiθ ¼ atan 2ð2f̂HV � 1; 2f̂DA � 1Þ 2 ½0; 2πÞ.
From the probabilities in Eq. (8) it is easy to conclude that csiφ is a
consistent estimator of siφmod 2π. This does not identify an
unambiguous φ alone though, but instead a set of si possible
values csiφ=si þ 2πm=si with m= 0, 1, 2,⋯ , si− 1. Centered around
these points we build intervals of size 2π/(siγi), where

γi ¼
γi�1

γi�1 � si
si�1

: (10)

The algorithm then chooses among these intervals the only one
that overlaps with the previously selected interval. The choice of
γi, computed recursively with the formula in Eq. (10), is
fundamental in order to have one and only one overlap. The
starting point γ1 of the recursive formula can be chosen freely
inside an interval of values that guarantees γi ≥ 1 ∀ i, therefore it
will be subject to optimization. By convention, we set γ0= 1.
Algorithm 1 reports in pseudocode the processing of the
measurement outcomes required to get the estimator φ̂ working
at Heisenberg scaling.

Algorithm 1. Phase estimation
1: φ̂ 0
2: for i= 1→ K do
3: 0; 2π½ Þ 3 csiφ Estimated from measurements.

4: 0; 2πsi

h �
3 ξ̂  bsiφ

si

5: m si φ̂
2π � 1

2
si

si�1γi�1

j k
6: ξ̂  ξ̂ þ 2πm

si

7: if φ̂þ πð2γi�1Þ
siγi

� π
si�1γi�1

<ξ̂<φ̂þ πð2γiþ1Þ
siγi

þ π
si�1γi�1

then

8: φ̂ ξ̂ � 2π
si

9: else if φ̂� πð2γiþ1Þ
siγi

� π
si�1γi�1

<ξ̂<φ̂� πð2γi�1Þ
siγi

þ π
si�1γi�1

then
10: φ̂ ξ̂ þ 2π

si
11: else
12: φ̂ ξ̂
13: end if
14: φ̂ φ̂� 2π φ̂

2π

j k
15: end for

We can upper bound the probability of choosing the wrong
interval through the probability for the distance of the estimatorcsiφ from φ to exceed π/γi, that is

P csiφ� φ
�� �� � π

γi

� �
� ACðγiÞ�

ni
2 ; (11)
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where ni is the number of photons employed in the stage,

CðγÞ ¼ exp bsin2 π
γ

� �h i
, and A is an unimportant numerical

constant. This form for C(γ) was suggested by Hoeffding’s
inequality, and we set b= 0.7357 as indicated by numerical
evaluations for ni ≤ 40. By applying the upper bound in Eq. (11) we
can write a bound on the precision of the final estimator φ̂, as
measured by the RMSE with the circular distance, that reads

Δ2φ̂ � Aπ2

2bnKs2K
þ 3Aπ2

4s2K
e�

bnK
2 þ

XK�1
i¼1

2πDi

γi�1si�1

� 	2

AC
�ni

2
i : (12)

where Ci ¼ C γið Þ, and Di are

Di :¼

1
2 ; i ¼ 1;

1þ γi�1si�1
PK�2
k¼i

1
γk sk

� 	
þ

�
þ 1

2sK�1γK�1
þ 1

2sK

i
; i > 1:

8>>>><>>>>: (13)

If 2πDi
γi�1si�1

� π then we redefine Di ¼ γi�1si�1
2 . These steps are

analogous to those in ref. 41. The last stage of the estimation is
different from the previous ones, as it is no more a step of the
localization process. This difference can be clearly seen in how the
error contribution is treated in Eq. (12). We optimize this upper
bound while fixing the total number of used resources by writing

L :¼ π2

2bnKs2K
þ 3π2

4s2K
e�

bnK
2 þ

XK�1
i¼1

2πDi

γi�1si�1

� 	2

C
�ni

2
i � λ

XK
i¼1

sini � N

 !
:

(14)

Through the optimization of this Lagrangian, we found the
resource distribution ni optimal for the given sequence of si and N.
Substituting back the obtained ni in the error expression, we get

Δ2φ̂ � Aπ2

2bnKs2K
þ 3Aπ2

4s2K
e�

bnK
2 þ Aeα

XK�1
i¼1

si
γ2i�1 log Ci

; (15)

where α depends on the total resource number N. In an
experiment we have at disposal, or we have selected, a certain
sequence of quantum resources s= 1; s2; s3;…; sK, but it is not
convenient for every N to use the whole sequence. A better
strategy is to add one at a time a new quantum resource as the
total number of available resources N grows, and therefore slowly
building the complete sequence. For small N we do not employ
any quantum resource, so that s= 1. The first upgrade prescribes
the use of the 2-stage strategy s= 1; s2, then, as N reaches a
certain value we upgrade again to a 3-stage strategy s= 1; s2; s3,
and so on until we get to s= 1; s2; s3;…; sK, which will be valid
asymptotically in N. The optimal points at which these upgrades
should be performed can be found by comparing the error upper
bounds given in Eq. (15) or via numerical simulations. The
sequence s= 1; s2; s3;…, sK might not be the complete set of all
the quantum resources that are experimentally available. In our
experiment s= 1; 2; 11; 51 were all the available quantum
resources, but the here-described procedure of adding one stage
at a time might work better with only a subset of the available si.
We are therefore in need of comparing many sets of quantum
resources s= 1; s2; s3;…; sK. The numerical simulations suggested
that a comparison of the summationsXK�1
i¼1

si
γ2j�1 log Ci

; (16)

with optimized γ1, which appears in Eq. (15), is a quick and reliable
way to establish the best set of quantum resources. We can treat
the non-perfect visibility of the apparatus by rescaling the
parameters b and Cj in the Lagrangian (14). Given vi the visibility
in the ith stage, the rescaling requires Ci ! C

v2i
i , and for the last

stage b! bv2K .
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