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Critical parametric quantum sensing
R. Di Candia 1,6✉, F. Minganti2,3,6✉, K. V. Petrovnin 4, G. S. Paraoanu 4 and S. Felicetti 5✉

Critical quantum systems are a promising resource for quantum metrology applications, due to the diverging susceptibility
developed in proximity of phase transitions. Here, we assess the metrological power of parametric Kerr resonators undergoing
driven-dissipative phase transitions. We fully characterize the quantum Fisher information for frequency estimation, and the
Helstrom bound for frequency discrimination. By going beyond the asymptotic regime, we show that the Heisenberg precision can
be achieved with experimentally reachable parameters. We design protocols that exploit the critical behavior of nonlinear
resonators to enhance the precision of quantum magnetometers and the fidelity of superconducting qubit readout.
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INTRODUCTION
Criticality is a compelling resource, commonly used in classical
sensing devices such as transition-edge detectors and bolometers1.
However, these devices do not follow optimal sensing strategies
from the quantum mechanical point of view. A promising
approach to quantum sensing exploits quantum fluctuations in
the proximity of the criticality to improve the measurement
precision. Despite a critical slowing down at the phase transition,
theoretical analyses of many-body systems2–17 show that critical
quantum sensors can achieve the optimal scaling of precision18,
both in the number of probes and in the measurement time8,17.
Furthermore, it has been shown19 that finite-component phase
transitions20–24—where the thermodynamic limit is replaced by a
scaling of the system parameters25–29—can also be applied in
sensing protocols. Surprisingly, quantum criticalities are versatile
sensing resources that do not require the complexity of many-
body system, as demonstrated by efficient dynamical protocols30,
the inclusion of quantum-control methods31 or ancillary
probes32, the design of multiparameter estimation protocols33

and of a critical quantum-thermometer34, and by first experimental
implementations35.
Finite-component critical sensors have hitherto been designed

for light–matter interacting models where the atomic levels
introduce a nonlinearity36. Despite their high experimental
relevance in quantum optics and information37–47, driven resona-
tors with nonlinear photon-photon interactions have so far been
overlooked for applications in critical quantum metrology. These
systems display a broad and exotic variety of critical phenomena,
and their nontrivial dynamics and steady states depend on both the
system and bath parameters26,48,49.
Here, we introduce the critical parametric quantum sensor, a

measurement apparatus based on the second-order driven-
dissipative phase transition of a parametric nonlinear (Kerr)
resonator. We apply tools of quantum parameter estimation,
quantum hypothesis testing, and non-linear quantum optics to
characterize the potential of this instrument for finite-component
critical sensing. Our treatment uses the analytical solutions of the
driven-dissipative Kerr resonator model50–52, together with exact
numerical calculations to: (i) Evaluate the quantum Fisher

information (QFI) for frequency estimation, analyzing its scaling in
the thermodynamic limit of small–but finite–Kerr nonlinearity. We
provide the parameter set maximizing the QFI, and show that
homodyne detection virtually saturates the optimal precision
bound. Importantly, the whole analysis considers the role of
dissipation in these driven transitions. This allows us to design a
highly-sensitive magnetometer, that can be built with state-of-the-
art circuit QED technology. (ii) Compute the optimal and
homodyne-based error probabilities in distinguishing the normal
and the symmetry-broken phases. We apply this result to the
dispersive qubit readout task in circuit-QED. Our approach goes
beyond the semi-classical approximation53,54, and allows one to
recognize the set of parameters minimizing the average error
probability. We find that the optimal working point lies in proximity
of the critical point, in a region where semi-classical or Gaussian
approximation can not be applied.

RESULTS AND DISCUSSION
Kerr resonator model
Our starting point is the Kerr-resonator model, whose Hamiltonian
is

ĤKerr=_ ¼ ωâyâþ ϵ

2
ðây2 þ â2Þ þ χây

2
â2: (1)

This Z2-symmetric model can be realized in various photonic
platforms. In particular, we consider the case of a circuit-QED
implementation, where a resonator at frequency ωr is coupled
with a superconducting quantum interference device (SQUID)
element53,55. If the resonator is pumped at a frequency ωp≃ 2ωr,
then Eq. (1) describes effectively the system, by interpreting
ω= ωr− ωp/2 as the pump-resonator detuning, ϵ as the effective
pump-power, and χ as the SQUID-induced nonlinearity. We
consider the system embedded in a Markovian thermal bath at
zero temperature, described by the Lindblad dissipation super-
operator LD½�� ¼ _Γ½2â � ây � fâyâ; �g�, where Γ ≥ 0 is loss rate
induced by the system-bath coupling. Such a dissipator leaves the
model Z2 invariant (see the Supplemental Material). With no loss
of generality, we take ϵ positive. For χ= 0, the model is Gaussian
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and its phenomenology can be easily explained. In the absence of
noise, for Γ= 0, the model has a ground state only for ϵ < ∣ω∣. This
is a squeezed vacuum state with squeezing approaching infinity in
the ϵ/∣ω∣→ 1 limit. When the bath is turned on, for Γ > 0, the
diverging point is shifted. In this case, the steady-state is a

squeezed thermal-state and exists only for ϵ<
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 þ Γ2

p
� ϵc , with

purity approaching zero when ϵ/ϵc→ 1. The effect of the
nonlinearity χ > 0 is to regularize the model for all parameter
values, thus erasing the divergences. In the scaling limit χ→ 0 a
second-order dissipative phase transition (DPT) emerges, asso-
ciated with the spontaneous breaking of the Z2-symmetry of the
model26 (see the Supplemental Material). The steady-state is still
Gaussian for ϵ < ϵc. Beyond the critical point, for ϵ > ϵc, the steady-
state is double-degenerate, and it is given by a statistical mixture
of two equiprobable displaced squeezed thermal-states27, see
Fig. 1. Since χ can be made small in a circuit QED implementation,
we can exploit the presence of this DPT for both quantum
parameter estimation and discrimination. On the one hand, we
can use the large susceptibility of the steady state in the proximity
of the critical point, in order to get a good estimation of ω. In turn,
as the resonator frequency has a steep dependence on the
external magnetic field threading the SQUID loop, the DPT can be
applied in the design of a critical magnetometer. On the other
hand, the presence of the DPT allows one to faithfully discriminate
between two discrete values of ω, each corresponding to a
different phase, in a single-shot measurement.

Quantum parameter estimation
Given an observable Ô, we can define the signal-to-noise ratio
(SNR) for estimating the parameter ω as

Sω½Ô� ¼ j∂ωhÔiωj2

ΔÔ
2
ω

; (2)

where ΔÔ
2
ω ¼ hÔ2iω � hÔi2ω, and the expectation values are

computed in the steady-state manifold. This standard definition of
SNR is useful for parameter estimation protocols because it is
directly related to the mean-square error of the estimator56. The
corresponding precision overMmeasurements is Δω2 ’ ½MSω��1. In
this paper, we consider the SNR for three important measurements:
homodyne, heterodyne, and the quantum–mechanical optimal
given by the QFI. Homodyne detection consists in projecting
on the rotated quadrature operator x̂φ ¼ cosðφÞx̂ þ sinðφÞp̂.
Due to the Z2-symmetry of the system, we consider the observable
x̂2φ, and define the homodyne SNR as SHomω ¼ maxφ Sω½x̂2φ�.

Heterodyne detection corresponds to a noisy measurement
of the conjugate quadratures, with outcomes X and P. We consider
the SNR for the outcome X2+ P2, which can be written as

SHetω ¼ j∂ωhââyiωj2=½hâ2ây2iω � hââyi2ω�, see “Methods”. Finally, if
we maximize the SNR in Eq. (2) among all the observables, we
obtain the QFI: Iω ¼ maxÔ Sω½Ô�. This can be expressed as57

Iω ¼ lim
dω!0

8
dω2 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fðρω; ρω�dωÞ

ph i
; (3)

where Fðρω; ρω0 Þ ¼ ½Trð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρω

ffiffiffiffiffiffi
ρω0

p
ρω

p Þ�2 is the fidelity between the
steady-states ρω and ρω0 .

The normal phase (χ→ 0). To begin with, we consider the case
χ→ 0, which provides us with a good approximation of the
steady-state when we are far enough from the DPT. The model in
Eq. (1) with χ= 0 has a steady-state solution only for ϵ < ϵc,
corresponding to the normal phase. Using the analytical formula
for Gaussian states58, we compute the QFI with respect to the
parameter ω, in the steady-states manifold:

Iωðϵ< ϵcÞ�!χ!0 1
2ϵ2c�ϵ2

2N þ 8ω2

ϵ2 N2
h i

; (4)

where N ¼ ϵ2=½2ðϵ2c � ϵ2Þ� is the number of photons [see Fig. 2a].
We have two possible diverging scaling for ϵ/ϵc→ 1. For ω ≠ 0 we
retrieve the Heisenberg scaling Iω= O(N2), while for ω= 0 one has
Iω= O(N). Notice that here we focused on the scaling with respect
to the number of photons, which is the most relevant figure for
the relevant regime of parameters. However, even if the Gaussian
model presents a critical slowing down, the Heisenberg scaling
can in principle be achieved also with respect to time17,19. We
notice also that the divergence rate Iω/N2 is maximal at ω= Γ. In
the following, we focus at this point, where the QFI is maximal for
low-enough χ.

The symmetry-broken phase (χ→ 0). The model is invariant under
the transformation â ! �â, resulting in a Z2-symmetry. In the
χ→ 0 limit, and for ϵ > ϵc, such a symmetry is broken resulting in a
second-order DPT. The symmetry-broken solutions are well-
approximated by Gaussian states that can be obtained by
displacing the field â ! âþ α, with α 2 C29. For nonzero χ, the
steady state is well-approximated by a statistical mixture of two
Gaussian states50. Indeed, a Gaussian approximation leads to
ρ ¼ 1

2 ½DðαÞρþDðαÞ þ Dð�αÞρ�Dð�αÞ�. Here, ρ± are the steady-

states for H ± ¼ ω0âyâþ 1
2 ðϵ0ây2 þ ϵ0�â2Þ þ Oð ffiffiffi

χ
p Þ and dissipator

LD , where ω0 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2 � Γ2

p
� ω and jϵ0j ¼ ϵc . Namely, α is the

solution of ωα+ ϵα*+ 2χ∣α∣2α− iΓα= 0, see “Methods”. By setting

Fig. 1 Wigner function of the system steady-state. This has been obtained with numerical simulations of the full quantum model (colormap)
and half-height contours (dashed blue circles) of the corresponding analytical solutions obtained under semi-classical approximation
(see “Methods”). The four sub plots are obtained taking ω= 1Γ, χ= 0.04Γ and for increasing values of the pump strength ϵ. The figure shows

the transition from the normal (a) to the symmetry-broken [(c) and (d)] phases, taking place around the semiclassical prediction ϵ ¼ ϵc ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 þ Γ2

p
(b). The system is highly susceptible in the proximity of the criticality, and so it can be exploited in high-sensitivity magnetometry.

Moreover, the system shows two highly distinguishable phases, corresponding to a vacuum-like (a) and displaced state (d), a feature that can
be exploited in high-fidelity qubit readout.
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α= ∣α∣eiϕ, we find the two solutions, holding for ϵ > ϵc:

jαj2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2 � Γ2

p
� ω

2χ
; ϕ ¼ arcsin Γ=ϵð Þ± π

2
: (5)

Notice that the Hamiltonians H± are the same at the zeroth
order in χ. Therefore, ρ+≃ ρ− and the steady-state solutions
consist in a mixture of two identical squeezed-thermal states
displaced in opposite directions50. The QFI shows a divergence at
ϵ→ ϵc, as seen in the normal phase. This confirms that in the
proximity of the transition the QFI diverges for χ→ 0. Instead, for
sufficiently large ϵ, the QFI value is solely determined by the
response of α to the ω’s changes. Using Eq. (5), one can easily see
that Iω=Θ(ϵ−1) for ϵ≫ 1.

The full model (finite χ). We are now ready to show our results
beyond the Gaussian approximation. Hereafter, the observables for
the QFI are obtained through the analytical solutions in refs. 50–52,
while the steady-state density matrix are obtained solving the
equation �i½ĤKerr; ρss� þ LD½ρss� ¼ 0 via sparse LU decomposi-
tion59. We then compute the QFI using Eq. (3). The effect of the
Kerr term is to regularize the model, eliminating the divergences
that appear in the Gaussian approximation. As expected, the QFI
increases with ϵ up to a maximum point, then it starts to decrease.
The maximum is reached for ϵ= ϵc in the χ→ 0 limit. Let us
consider the quantity Sω ¼ maxϵ SHomω , and focus on the ω= Γ

point. With a numerical fit, we find that Sω ’ cðχΓÞ�1 for χ/
Γ≲ 10−2, where c≃ 0.55 (see Fig. 2a). Since N ¼ Θð

ffiffiffiffiffiffiffi
χ�1

p
Þ holds,

the Heisenberg scaling is reached already for χ/Γ≲ 10−2. In Fig. 2b,
we show that homodyne detection virtually saturates the QFI
already for χ/Γ= 0.04. In fact, one can easily see that homodyne
detection is optimal in the χ→ 0 limit, see Methods.

Magnetometry
We now consider an application of our results for the quantum
estimation of magnetic flux. Let us consider a SQUID coupled
with a λ/4 resonator. A magnetometer can be designed by
coupling the magnetic field to the SQUID loop. The effective

Hamiltonian is given in Eq. (1). Here, the resonator frequency ωr

depends on the external magnetic flux as ωrðΦÞ ’ ωλ=4=

½1þ γ0=j cosðΦÞj�, where ωλ/4 is the bare resonant frequency in
the absence of the SQUID, Φ= πΦext/Φ0 is the applied magnetic
flux Φext in unit of the flux quantum Φ0, and γ0 is the ratio of
SQUID inductance at zero external magnetic flux and the
geometric inductance of the resonator. For π/4 ≲Φ < π/2, where
the pump-induced non-linearity is small, the non-linearity
depends on the magnetic field as χðΦÞ ’ χ0ωλ=4γ

3
0=jcos3ðΦÞj,

where χ0= πZ0e2/(2ℏ) is a constant dependent on the resonator
characteristic impedance Z0 (see the Supplemental Material).
Assuming a typical value Z0 ≃ 50Ω55, we have χ0 ≃ 0.02. It is
convenient to work at the point Φ ≃ π/4, where χ is minimized.
We can also assume χ to be independent on Φ, by working in the

limit χ0γ
2
0 � 1, which ensures the condition ∂χ

∂Φ

��� ��� � ∂ω
∂Φ

�� �� to hold.

The protocol consists in: (i) Apply a constant magnetic flux bias
Φ ≃ π/4 to the SQUID. (ii) Apply a pump at frequency ωp ≃ 2[ωr(π/
4)− Γ]. This allows to work at ω ≃ Γ, where the QFI is maximal.
(iii) Perform homodyne detection of the output signal.
From the input-output theory, we have that the resonator

output mode is âout ¼
ffiffiffiffiffi
2Γ

p
â� âin, where âin is the input mode

assumed to be in the vacuum60. By applying the right temporal
filter at the output mode, one can retrieve the same statistics of
the intracavity mode61,62. With this premise, the SNR for the
output mode is the same as the one derived for the intracavity
mode. A change of Φ by δΦ induces the shift ω ! ωþ ∂ωr

∂Φ δΦ.
Therefore, the uncertainty over M independent measurements is

ΔΦjΦ’π=4 ’
ffiffiffiffiffiffiffiffiffiffiSωM

p
∂ωr
∂Φ jΦ’π=4

��� ���h i�1
. Let us consider the regime χ/

Γ≲ 10−2, where Sω ’ cðΓχÞ�1, see Fig. 2a. Let us assume an
independent measurement every 2π/Γ, and a measurement time
of half a second, i.e., M= Γ Hz−1/(4π). The magnetometer
sensitivity becomes

ΔΦffiffiffiffiffiffi
Hz

p t0:8
γ0
ωλ=4

� �1=2

(6)

Fig. 2 Metrological performance of the critical parametric quantum sensor. (a) QFI for the estimation of ω as a function of ϵ, computed for

ω/Γ= 1 and various values of χ/Γ. In the Gaussian case (χ→ 0), the QFI diverges at ϵ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 þ Γ2

p
. For finite values of χ, the QFI has a maximum.

In the inset, we show that Sω ¼ maxϵ SHomω � cðΓχÞ�1, with c≃ 0.55. Since N ¼ Θð
ffiffiffiffiffiffiffi
χ�1

p
Þ, the Heisenberg scaling is reached already

for χ/Γ≲ 10−2. (b) SNR for the homodyne (SHomω ) and heterodyne detection (SHetω ) at ω/Γ= 1 and χ/Γ= 0.04. Homodyne detection virtually
saturates the QFI.
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for γ0≲ 10−2, see “Methods”. Best sensitivity values reported in the
literature are of the order of 4.5 × 10−7

ffiffiffiffiffiffiffiffiffiffi
Hz�1

p
63. Our protocol

improves this value by one order of magnitude if we set ωλ/

4≃ 2π × 10 GHz, and γ0≃ 10−4. The sensitivity can be greatly
enhanced by engineering more sophisticated circuit schemes
using SQUID arrays or other Josephson-junction configurations,
high-impedance metamaterials and large circuits lengths.

Dispersive qubit readout
We now discuss an application of the Kerr resonator for
superconducting-qubit readout. By dipersively coupling a qubit
to the resonator Hamiltonian in Eq. (1), the Hamiltonian becomes

Ĥdisp=_ ¼ ĤKerr=_þ ðωr þ ΔÞ ej i eh j þ δω ej i eh jâyâ: (7)

Here, δω= g2/Δ is a frequency-shift that depends on the qubit-
resonator coupling g and the qubit-to-resonator detuning Δ64.
When the qubit is in its excited state ej i, a frequency-shift is
induced onto the resonator. The Hamiltonian Ĥdisp can be
derived by applying perturbation theory to the full qubit-
resonator Hamiltonian, for g/Δ≪ 1. The dispersive approxima-
tion holds as long as g2N/(4Δ2) ≡ η≪ 1, where N is the number of
photons in the resonator. Notice that a small η also minimizes
the disturbance induced to the qubit by the readout scheme (see
the Supplemental Material). In the following, we show how the
presence of a DPT leads to two highly distinguishable quantum
states, that can be used to perform high-fidelity qubit readout. A
similar setup, with an unoptimized set of parameters, has been
experimentally investigated in ref. 54. Here, the authors map the
qubit discrimination problem to distinguish between the vacuum
and a classical state of ~200 photons, where the dispersive
approximation is clearly not valid anymore. As a result, the qubit
significantly suffers from additional dissipation processes
mediated by the readout resonator. Therefore, one must reduce
the number of photons, bringing the system closer to the critical
point, where the semiclassical approximation does not hold, and
quantum fluctuations shall unavoidably be taken into account. In
the following, we conduct this performance analysis in a
systematic way using the full quantum model, identifying the
set of parameters that maximizes the readout fidelity, while still
respecting the dispersive approximation.
Generally speaking, the method consists in discriminating

between two density matrices, i.e., ρg and ρe, corresponding to
the steady-states when the qubit is in the state ej i or gj i
respectively. We limit ourselves to the case of discrimination via
a single measurement of the mode â (single-shot readout). The
average error probability is bounded by Perr 	 Popterr , also known
as the Helstrom bound57, where Popterr ¼ 1

2 1� 1
2 kρe � ρgk1

� �
and

kσk1 ¼ Tr
ffiffiffiffiffiffiffiffi
σyσ

p
is the trace norm (the qubit readout fidelity can

be defined as F= 1− Perr). The optimal error probability Popterr is in
principle achievable by measuring in the eigenbasis of ρe− ρg.
In Fig. 3a, we show a map of the Popterr values with respect to the
frequency-shift δω and the pump strength ϵ, for χ= 0.08Γ. For a
given value of η, the graph shows the presence of a sweet spot
where the error probability is minimized. The value Popterr is always
attainable, and gives us a bound on what error probabilities can
be in principle reached. However, the measurement can be
complicated to implement, so we consider also a practical
strategy based on homodyne detection. Let us define the
probability density functions Pg,e(x)= ∫Wg,e(x, p)dp, where
Wg,e(x, p) are the Wigner functions of the resonator steady-
state in the case of qubit in the gj i or ej i states. We declare that
the state of the qubit is gj i if our measurement outcome belongs
to {x∣Pg(x) > Pe(x)} and ej i otherwise. The error probability for this

discrimination strategy is

Perr ¼ 1
2

Z
min
x
fPgðxÞ; PeðxÞgdx: (8)

This procedure can be further optimized by considering a
rotated homodyne measurement. Notice that we have used
the Wigner function as a tool to find the best threshold value
distinguishing between the two qubit states, given a single
homodyne measurement. Indeed, our strategy does not rely on
the reconstruction of the resonator Wigner function. In Fig. 3b, we
show that the homodyne strategy, although not saturating the
optimal strategy, achieves error probability values of the order of
10−3. Notice, however, that the position of the minimum of the
error probability with the homodyne strategy coincides with that
of Popterr . In the Supplemental Material, we show that for η= 10−2

there is no backaction on the qubit states (see the Supplemental
Material). Experimentally achievable values attaining the optimal
value for η= 10−2 are: Γ≃ 2π × 1 MHz, χ/Γ ≃ 0.08, g/Γ≃ 102,
ωr/Γ≃ 8 × 103, ωq/Γ≃ 6 × 103. In this case, the resonator has at
most N≃ 30 photons at the steady-state.

METHODS
The Gaussian approximation for χ→ 0
Here, we find the Gaussian approximation for χ→ 0, for both the
regimes ϵ < ϵc (normal phase) and ϵ > ϵc (symmetry-breaking
phase).

The normal phase (ϵ < ϵc). For ϵ < ϵc, we set χ= 0 and look for the
steady-state solutions. It is convenient to rewrite the master

Fig. 3 Qubit detection performance with a critical parametric
quantum sensor. (a) Error probability map with respect to δω/
Γ= g2/(ΓΔ) and ϵ/Γ, for ω= 0 and χ/Γ= 0.08. The dashed lines
represent different values of the dispersive parameter η= Nδω2/
(4g2), where N ¼ maxfN gj i;N ej ig and we have fixed g/Γ= 102 to be
in the strong—but not ultrastrong—coupling regime. For η= 10−2,
we can reach error probability values as low as 10−4 with the
optimal measurement. (b) Error probability for homodyne detection
at the optimal points and optimal angle φ for different values of η.
The inset shows the separation in time of hx̂2φi for the normal and
symmetry-broken phases. The steady-state value is reached at
Γt≃ 10.
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equation as Fokker–Planck equation, in the Wigner function
formalism:

∂W
∂t

ðx; pÞ ¼ �ðω� ϵÞp ∂W
∂x

þ ðωþ ϵÞx ∂W
∂p

þ Γ 2W þ
X2
i¼1

xi∂iW þ 1
2

X2
i¼1

∂2i W

" #
;

(9)

where we defined â ¼ ðx̂ þ ip̂Þ= ffiffiffi
2

p
. Since this equation is

quadratic in x and p, it can be solved by a Gaussian ansatz

W ¼ 1

π
ffiffiffiffiffiffiffiffiffiffiffi
det σ

p exp � 1
4

X
i;j

riðσ�1Þij rj
( )

; (10)

where r= (x, p) and the Wigner function is normalized to one.
The covariance matrix σ is defined as σij ¼ hf̂ri; r̂jgi � 2ĥriiĥrji.
From (9) we get the linear system of equations

∂tσ ¼ Bσ þ σBT � 2Γðσ � σLÞ (11)

where σL ¼ I2 and B ¼ 0 ðω� ϵÞ
�ðωþ ϵÞ 0

� 	
. We find the steady

state by solving ∂tσss= 0. The solution is

σss ¼ 1
ϵ2c � ϵ2

ϵ2c � ωϵ �Γϵ

�Γϵ ϵ2c þ ωϵ

" #
; (12)

which corresponds to a physical state only for ϵ2 <ω2 þ Γ2 � ϵ2c .
This sets the critical value in the χ→ 0 limit. In this limit, the
number of photons is

Nðχ ! 0Þ ¼ ðσssÞ11 þ ðσssÞ22 � 2
4

¼ ϵ2

2ðϵ2c � ϵ2Þ ; (13)

which diverges for ϵ→ ϵc.

The symmetry-broken phase (ϵ > ϵc). Let us derive an effective
quadratic Hamiltonian for ϵ > ϵc. We follow the approach
developed in ref. 29. The idea is that for small χ, the model is
well approximated by a double-well potential, and that the low-
energy physics can be described with a quadratic expansion
around each minimum. In order to center the reference frame on
one of the two minima, let us apply a displacement operation
such that UyâU ¼ âþ α. We obtain an effective Hamiltonian

Ĥα ¼ Ĥ
ð1Þ þ Ĥ

ð2Þ þ Ĥ
ð3=4Þ þ const. ; (14)

where

Ĥ
ð1Þ ¼ ðωαþ ϵα� þ 2χjαj2α� iΓÞây þ H.c. (15)

Ĥ
ð2Þ ¼ ðωþ 4χjαj2Þâyâþ ϵ

2
þ χα2


 �
ây

2 þ ϵ

2
þ χα�2


 �
â2; (16)

Ĥ
ð3=4Þ ¼ χðâyâyââþ 2αây

2
âþ 2α�âyâ2Þ: (17)

The dissipator LD, instead, is left unchanged. The quadratic
part of the displaced Hamiltonian (14) is well-defined, i.e., it has
normal modes with positive frequency and is bounded from
below. Accordingly, far from the critical point the steady state
will have bounded quantum fluctuations, and the norm of
the creation/annihilation operators on the steady state will be
bounded. In the limit of small χ, and of large α, higher-order
terms are negligible and the model is well-approximated by a
Gaussian approximation which includes only terms quadratic in
ây and â [see the solutions below in Eq. (18)]. Of course this
approximation will break in a small region for ϵ ! ϵþc , and the
size of the critical region is proportional to χ (the smaller the
nonlinearity, the more reliable the Gaussian approximation even
as the critical point is approached).
The linear equation defining the equilibrium points is

found by imposing Ĥ
ð1Þ ¼ 0, i.e., ωα+ ϵα*+ 2χ∣α∣2α− iΓα= 0.

Setting α= ∣α∣eiϕ we find two solutions for ϵ > ϵc:

αj j2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2 � Γ2

p
� ω

2χ
(18)

ϕ ¼ 1
2
arcsin Γ=ϵð Þ± π=2: (19)

We find the effective Hamiltonians in the symmetry-broken
phase by plugging the solution into Eq. (14). We get

H ± ¼ ω0ayaþ 1
2
ðϵ0ay2 þ ϵ0�a2Þ þ Oð ffiffiffi

χ
p Þ; (20)

with

ω0 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2 � Γ2

p
� ω (21)

ϵ0 ¼ ϵce
iθ (22)

θ ¼ �2 arctan
Γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2 � Γ2

p
� ω


 �
ϵϵc þ ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2 � Γ2

p
þ Γ2

2
4

3
5: (23)

Notice that the Hamiltonians H± are the same for χ→ 0.
Therefore, in this limit the two solutions are degenerate.
Increasing the pump power ϵ corresponds to an effective
growth of the pump-resonator detuning, since ω0 � ϵ for large ϵ.
Instead, the effective squeezing parameter ϵ0 remains constant
in modulus, while its argument changes until reaching the value
θϵ=ϵc
1 ¼ �2 arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðϵc � ωÞ=ðϵc þ ωÞp
. Therefore, the effect of

increasing the pump is to displace the state to the new
equilibrium points, and to rotate and reduce the squeezing of
each of the resulting states.

Quantum parameter estimation
Here, we derive the quantum parameter estimation results for the
full model.

Signal-to-noise ratio (SNR). The SNR induced by the observable Ô
in the task of estimating the parameter ω is defined as

Sω½Ô� ¼ ½∂ωhÔiω�
2

ΔÔ
2
ω

; (24)

where ΔÔ
2
ω ¼ hÔ2iω � hÔi2ω and the index ω indicates the

expectation value computed on the steady-state ρω. The SNR
computed in ω= ω0 should be interpreted as the precision
achievable for estimating the parameter ω when its value is
close to ω0, through the relation Δω2

jω’ω0
’ ½M ´ Sω0 ��1, where

M≫ 1 is the number of measurements. Generally speaking, if
an experimentalist is able measure the expectation value of a
class of observables fOð r!Þg, with r!¼ ðr1; ¼ ; rKÞ, they would
like to maximize the SNR with respect to r! in order to obtain a
better precision rate (call r!max the maximizing set of
parameters). This in principle requires the preknowledge of
ω0. If this knowledge is not provided, then they can implement
a two-step adaptive protocol, where first they measure the
expectation value of A 2 fOð r!Þg such that the function
f(ω)= 〈A〉ω is invertible in the range of values where ω belongs,
obtaining a first order estimation of ω, i.e., ω0. Then they find
r!max and measure Oð r!maxÞ.
We are particularly interested in the following SNRs.

● Homodyne detection: This is defined by the POVM
XHom

φ ¼ f xφ
�� �

xφ
 ��gxφ2R, where xφ

�� �
is an eigenstate of the
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rotated quadrature

x̂ðφÞ ¼ cosðφÞx̂ þ sinðφÞp̂ ¼ 1ffiffiffi
2

p ½âe�iφ þ âyeiφ�: (25)

We consider this SNR Sω½x̂2φ� to evaluate the perfomance of
homodyne detection for finite χ. This will be clear in the following,
when we will evaluate the classical Fisher information. We also
consider the best phase choice, i.e.,

SHomω � max
φ

Sω½x̂2φ�: (26)

● Heterodyne detection: This is defined by the POVM
XHet ¼ 1

π γj i γh j� �
γ2C, where γj i is a coherent state. The

heterodyne measurement can be modeled as the signal â
entering in a beamsplitter with a thermal mode ĥ as the other

input, obtaining the two modes b̂± ¼ ½â± ĥ
y�= ffiffiffi

2
p

. The

quadratures X̂þ ¼ ½b̂þ þ b̂
y
þ�=

ffiffiffi
2

p
and P̂� ¼ �i½b̂� � b̂

y
��=

ffiffiffi
2

p
are finally measured. This is equivalent to measure the
complex envelope operator

Ŝ � X̂þ þ iP̂� ¼ âþ ĥ
y
: (27)

Indeed, from the measurement outcomes one can estimate the
moments of Ŝ, and then invert Eq. (27) to obtain an estimation of
the moments of â. In the quantum-limited case, when ĥ is a
vacuum mode, the moments of Ŝ can be easily computed as

hŜymŜni ¼ hânâymi, since ½Ŝ; Ŝy� ¼ 065,66. The SNR for the obser-

vable ÔHet ¼ X̂
2
þ þ P̂

2
� ¼ Ŝ

y
Ŝ is then

Sω½ÔHet� ¼ ½∂ωhââyiω�
2

hâ2 ây2iω�hââyi2ω
� SHetω : (28)

● Classical Fisher information (FI): Let us focus on the homodyne
POVM XHom

φ ¼ f xφ
�� �

xφ
 ��g

xφ2R. The estimation precision is

given by the FI, which is defined as the SNR maximized over
the observables which are diagonal in f xφ

�� �
xφ
 ��g

xφ2R, i.e.,

FωðXHom
φ Þ ¼ max ^O¼

P
xφ
pðxφÞ xφj i xφh j Sω½Ô�. This can be generally

expressed as67

FωðXHom
φ Þ ¼

Z
R
dx pðxφjωÞ ∂ω ln pðxφjωÞ

� �� �2
; (29)

where pðxφjωÞ ¼ xφ
 ��ρω xφ

�� �
is the probability density function of

the outcome.
● Quantum Fisher information (QFI): Generally speaking, the QFI

provides the precision for the optimal unbiased estimator
allowed by quantum mechanics. This is indeed defined as
Iω ¼ max

Ô
Sω½Ô�, that can be generally expressed as57

Iω ¼ lim
dω!0

8
dω2

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fðρω; ρω�dωÞ

ph i
; (30)

where Fðρω; ρω�dωÞ ¼ Tr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρω

ffiffiffiffiffiffiffiffiffiffiffiffi
ρω�dω

p
ρω

p� �2
is the fidelity between

the two density matrices ρω and ρω−dω, and ρω (ρω−dω) is the
steady-state of the model with pump-resonator detuning ω
(ω− dω). This expression can be easily evaluated numerically by
considering a dω smaller and smaller, and by doing a
convergence check. In the paper, this procedure has been used
to compute the QFI in the steady-state manifold for the χ > 0
case. Indeed, Eq. (30) has been evaluated numerically by letting
the system evolve to the steady-state for two values of ω close
to each other.

Quantum parameter estimation for χ→ 0 (Normal phase)
Here, we derive the formulas for the QFI and the FI for the
Gaussian model. We show that homodyne detection saturates the
QFI for χ→ 0.

QFI for the Gaussian model. The QFI for the Gaussian model can
be analytically calculated using the covariance matrix formalism58,
using the solutions of Eq. (12):

Iω ¼ 1
2ð1þ μ2Þ Tr σ�1∂ωσ

� �2h i
þ 2ð∂ωμÞ2

1� μ4
; (31)

where μ ¼ ðdet σÞ�1=2 is the purity of the quantum state, and we
have used that the displacements are zero for all parameter
values. The solution has been computed using a symbolic
computation software, obtaining

Iω ¼ ϵ2

2ϵ2c�ϵ2
1

ϵ2c�ϵ2
þ 2ω2

ðϵ2c�ϵ2Þ2
h i

: (32)

This expression can be cast as in Eq. (4) using the relation
N ¼ ϵ2=½2ðϵ2c � ϵ2Þ�. We recall that the quantum Fisher informa-
tion provides an upper bound to the achievable SNR as defined in
Eq. (2), which can be saturated when the optimal measurement is
implemented.

FI for the Gaussian model. Let us focus on the homodyne POVM
XHom

φ ¼ f xφ
�� �

xφ
 ��g

xφ2R. One can easily see that in the Gaussian

approximation FωðXHom
φ Þ ¼ ∂ωsωðφÞ½ �2=ð2sωðφÞ2Þ ¼ Sω½x̂2φ�, where

sωðφÞ ¼ cos2ðφÞ ðσssÞ11 þ sin2ðφÞ ðσssÞ22 � sinð2φÞ ðσssÞ125. This
can be expanded as

FωðXHom
φ Þ ¼ ϵ2 ðΓ2 � ω2 � ϵ2Þ cosð2φÞ þ 2ωϵþ 2ωΓ sinð2φÞ� �2

2ðϵ2c � ϵ2Þ2½ϵ2c � ϵðω cosð2φÞ � Γ sinð2φÞÞ�2 :

(33)

● For ω= 0, we have that

Fω¼0ðXHom
φ Þ ¼ ϵ2cos2ð2φÞ

2½ϵ2c þ ϵcϵ sinð2φÞ�2
: (34)

This is maximal for sinð2φÞ ¼ �ϵ=ϵc , for which we obtain
Fω¼0ðXHom

φ Þ ¼ ϵ2=½2ϵ2c ðϵ2c � ϵ2Þ�. Since Fω¼0ðXHom
φ Þ=Iω¼0 ! 1=2

for ϵ/ϵc→ 1, we have that homodyne does not saturate the QFI
when ω= 0. However the FI and the QFI share the same diverging
scaling, i.e., Fω¼0ðXHom

φ Þ ¼ Oðϵc � ϵÞ�1 for ε→ εc.
● For ω ≠ 0, the FI scales differently with respect to ϵc− ϵ. We

exemplify the calculation for ω= Γ, that is the point where the
QFI shows the maximal divergence rate. Here, we have that

Fω¼ΓðXHom
φ Þ ¼ ϵ2½ϵ2c sinð2φÞ � ϵ2 cosð2φÞ þ ffiffiffi

2
p

ϵcϵ�2

ϵ2c ðϵ2c � ϵ2Þ2½ ffiffiffi
2

p
ϵc � ϵðcosð2φÞ � sinð2φÞÞ�2

:

(35)

In the ϵ/ϵc→ 1 limit, we have that Fω¼ΓðXHom
φ Þ � ϵ2c=ðϵ2c � ϵ2Þ2 for

any φ. This means that Fω¼ΓðXHom
φ Þ=Iω¼Γ ! 1, and homodyne

detection saturates the QFI for any φ,

Quantum parameter estimation for χ > 0
Let us evaluate the QFI scaling in two regimes: (i) ϵ/ϵc≫ 1, and (ii)
ϵ close to the criticality.

● ϵ/ϵc≫ 1. In this regime, we have seen that the Wigner
function becomes a mixture of two equiprobable coherent
states, symmetrically displaced with respect to the center.
These states are uniquely determined by ∣α(ω)∣2, as the phase

R. Di Candia et al.

6

npj Quantum Information (2023)    23 Published in partnership with The University of New South Wales



ϕ in Eq. (19) does not depend on ω. Therefore, for symmetry
reasons, the optimal observable is the photon-number
operator. This gives rise to the optimal SNR scaling

Iω � Sω½N̂� ¼
∂ωð αj j2Þ�� ��2

αj j2 ¼ 1

2χ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2 � Γ2

p
� ω

h i � 1
2χϵ

: (36)

● ϵclose to the criticality. In this case, we have analyzed numerically
the scaling of Sω ¼ maxϵ SHomω , computed in ω= Γ, where the
QFI is maximal for low-enough χ. We find that Sωðω ¼ ΓÞ �
cðχΓÞ�1 for χ/Γ≲ 0.01, where c≃ 0.55. In addition, since in the
same regime we have that N ¼ Θð

ffiffiffiffiffiffiffi
χ�1

p
Þ, that the Heisenberg

scaling is reached. Let us focus on Iω ¼ maxϵ Iω. On the one
hand, we always have that Iωðω ¼ ΓÞ � Sωðω ¼ ΓÞ. On the
other hand, in practice homodyne detection already saturates
the QFI for χ/Γ= 0.04, meaning that one should expect Iωðω ¼
ΓÞ ’ Sωðω ¼ ΓÞ already in this regime, since homodyne
performs optimally for χ→ 0.

The magnetometer sensitivity
Here, we derive the sensitivity of the magnetometer in Eq. (6). We
have that

ΔΦjΦ’π=4 ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sωðω ’ ΓÞM

p ∂ωr

∂Φ jΦ’π=4

����
����

� 	�1

; (37)

where Sωðω ¼ ΓÞ ’ cðχΓÞ�1 for χ/Γ≲ 0.01, M= ΓHz−1/(4π), and
ωrðΦÞ ’ ωλ=4=½1þ γ0=j cosðΦÞj�. In the 0 ≤Φ ≤ π/2 regime, we
have that

∂ωr

∂Φ
’ � γ0ωλ=4 sinðΦÞ

ðγ0 þ cosðΦÞÞ2 : (38)

It follows that

ΔΦjΦ’π=4ffiffiffiffiffiffi
Hz

p ’
ffiffiffiffiffi
π

2c

r ð2γ0 þ
ffiffiffi
2

p Þ2
γ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χðΦ ’ π=4Þp

ωλ=4
: (39)

We now use that χðΦÞ ’ χ0ωλ=4γ
3
0=jcos3ðΦÞj to obtain

ΔΦjΦ¼π=4ffiffiffiffiffiffi
Hz

p ’ 21=4
ffiffiffiffiffiffiffiffiffiffi
χ0

4π3c

r
ð2γ0 þ

ffiffiffi
2

p
Þ2

ffiffiffiffiffiffiffiffiffi
γ0
ωλ=4

r
(40)

’ 0:39ð2γ0 þ
ffiffiffi
2

p
Þ2

ffiffiffiffiffiffiffiffiffi
γ0
ωλ=4

r
; (41)

where we have used that χ0= 2π3Z0e2/ℏ≃ 0.02 for Z0≃ 50Ω, and
c≃ 0.55. This means that

ΔΦjΦ¼π=4ffiffiffiffiffiffi
Hz

p t0:8
ffiffiffiffiffiffiffiffiffi
γ0
ωλ=4

r
; (42)

for γ0≲ 10−2, which is Eq. (6).
Finally, let us see how χ changes with respect to small changes

of Φ. In the 0 ≤Φ ≤ π/2 regime, we have that

∂χ

∂Φ
’ 3χ0ωλ=4γ

3
0
sinðΦÞ
cos4ðΦÞ : (43)

At Φ= π/4, the condition ∂χ
∂Φ

��� ��� � ∂ω
∂Φ

�� �� is equivalent to 6χ0γ
2
0 � 1.

Dispersive qubit readout
Dispersive Hamiltonian. Consider a qubit-resonator system, with
Hamiltonian

Ĥqr ¼ ĤJC þ _ϵ

2
ðâ2 þ ây2Þ þ _χây2â2; (44)

where ĤJC=_ ¼ ωr â
yâþ ωq ej i eh j þ gðσ�ây þ σþâÞ is the Jaynes-

Cumming Hamiltonian with qubit-resonator coupling g and

qubit-frequency ωq. Dispersive-readout protocols assume the
qubit-resonator coupling to be in the linear dispersive
regime, where an effective Hamiltonian is found applying
the unitary transformation U ¼ expfðg=2ΔÞ½σþâ� σ�ây�g,
where Δ= ∣ωq − ωr∣ is the qubit-resonator detuning, and
applying perturbation theory with respect to g/Δ. One then
finds the effective Hamiltonian

Ĥdisp=_ ¼ ωq ej i eh j þ ðωþ δω ej i eh jÞâyâþ ϵ

2
ðây2 þ â2Þ þ χây

2
â2;

(45)

that can be cast as in Eq. (7). Here, δω= g2/Δ is a qubit-state
dependent frequency-shift, that depends on the qubit-resonator
coupling g and the qubit-resonator detuning Δ64. The dispersive
approximation holds as long as g2N/(4Δ2)≡ η≪ 1, where N is the
number of photons in the resonator.

Optimal parameter choice. For each sample, the state of the
resonator collapse either on ρe or ρg. Discriminating between
these two states gives us the measurement result. Fixing a value
of χ/Γ, one can draw a (δω, ϵ)-dependent map of the optimal
error probability for discriminating ρe and ρg, i.e.,
Popterr ¼ 1� kρe � ρgk=2

� �
=2. Since ϵ is monotone with respect

to N, for each value of (δω, ϵ, η), one can find a value of g and Δ
satisfying the conditions δω= g2/Δ and η= g2N/(4Δ2). However,
since g/Γ cannot be too large, otherwise we go to the
ultrastrong regime where the counter-rotating terms appear,
we have fixed g/Γ= 102, and choose ωr and ωq such that
g=minfωq;ωrg � 1. We have then drawn the lines for η equals
to 10−2 and 0.5 × 10−2, see Fig. 3a.
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