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Experimental quantum end-to-end learning on a
superconducting processor
Xiaoxuan Pan1,6, Xi Cao2,6, Weiting Wang1, Ziyue Hua1, Weizhou Cai1, Xuegang Li1, Haiyan Wang1, Jiaqi Hu2, Yipu Song1,
Dong-Ling Deng1,3,4, Chang-Ling Zou 4,5, Re-Bing Wu 2,4✉ and Luyan Sun 1,4✉

Machine learning can be enhanced by a quantum computer via its inherent quantum parallelism. In the pursuit of quantum
advantages for machine learning with noisy intermediate-scale quantum devices, it was proposed that the learning model can be
designed in an end-to-end fashion, i.e., the quantum ansatz is parameterized by directly manipulable control pulses without circuit
design and compilation. Such gate-free models are hardware friendly and can fully exploit limited quantum resources. Here, we
report the experimental realization of quantum end-to-end machine learning on a superconducting processor. The trained model
can achieve 98% recognition accuracy for two handwritten digits (via two qubits) and 89% for four digits (via three qubits) in the
MNIST (Mixed National Institute of Standards and Technology) database. The experimental results exhibit the great potential of
quantum end-to-end learning for resolving complex real-world tasks when more qubits are available.
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INTRODUCTION
Quantum computing1 holds the promise of revolutionizing the
field of machine learning (ML)2–4. Powered by quantum Fourier
transform and amplitude amplification, potential exponential
speed-up has been envisaged for high-dimensional and big-data
ML tasks5–9 using fault-tolerant quantum computers. Even with
noisy intermediate-scale quantum (NISQ) devices, quantum
advantage is still promising, because the model expressibility
can be substantially enhanced by the exponentially large feature
space carried by multi-qubit quantum states10–13.
To deploy quantum machine learning algorithms on NISQ

processors, a key step is to construct a parameterized quantum
ansatz that can be trained by a classical optimizer. To date, most
quantum ansatzes are realized by quantum neural networks
(QNN)10,14–23 that consist of layers of parameterized quantum
gates, and demonstrative experiments have been carried out on
classification24–26, clustering27,28, and generative29–31 learning
tasks. The gate-based QNN ansatz naturally incorporates the
theory of quantum circuits, but the learning performance is highly
dependent on the architecture design and the mapping of circuits
to experimentally operable native gates. A structurally non-
optimized QNN cannot fully exploit the limited quantum
coherence resource, and this is partially why high learning
accuracy is hard to attain on NISQ devices without downsizing
the training dataset.
There are certainly much room for performance improvement

by using more hardware-efficient quantum ansatzes, e.g., via deep
optimization of the circuit architecture32 and qubit mapping
strategies33. Recently, a hardware-friendly end-to-end learning
scheme (in the sense that the model is trained as a whole instead
of being divided into separate modules) is proposed34 by
replacing the gate-based QNN with natural quantum dynamics
driven by coherent control pulses. This model requires very little
architecture design, system calibration, and no qubit mapping.

One can also jointly train a data encoder that automatically
transforms classical data to quantum states via control pulses, and
this essentially simplifies the encoding process because the
preparation of quantum states according to a hand-designed
encoding scheme is no more required. More importantly, the
natural control-to-state mapping involved in the encoding process
introduces nonlinearity that is crucial for better model expressi-
bility. The idea of applying pulse-based ansatzs has drawn much
attention in NISQ applications, e.g., the state preparation of
quantum eigensolver35, optimization landscape investigation36,
and cloud-based training37.
In this paper, we report the experimental demonstration of

quantum end-to-end machine learning using a superconducting
processor through the recognition of handwritten digits selected
from the MNIST (Mixed National Institute of Standards and
Technology) dataset38. Without downsizing the original 784-pixel
images, the end-to-end learning model can be trained to achieve
98% accuracy with two qubits for the 2-digit classification and
89% accuracy with three qubits for the 4-digit task, which are
among the best experimental results reported on small-size
quantum processors39. The demonstrated quantum end-to-end
model can be easily scaled up for solving complex real-world
learning tasks owing to its inherent hardware friendliness and
efficiency.

RESULTS
Preliminaries
The basic idea of end-to-end quantum learning is to parameterize
the quantum ansatz by physical control pulses that are usually
applied to implement abstract quantum gates in variational
quantum classifiers. In this way, a feedforward QNN can be
constructed by the control-driven evolution of the quantum state
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ψðtÞj i, as follows40:
d ψðtÞj i

dt
¼ � i

_
H0 þ

Xr

m¼1

θmðtÞHm

" #
ψðtÞj i; (1)

where H0 is the static Hamiltonian which involves the coupling
between different qubits, and r is the number of pulsed control
functions/channels in the quantum processor. For example, if
there are M qubits for the QNN and each qubit is dictated by c
control functions (e.g., flux bias or microwave driving), we have
r= c ×M. Here, Hm is the control Hamiltonian associated with the
m-th control pulse that contains n sub-pulses over n sampling
periods. The j-th sub-pulse is parameterized by θm(tj), and hence
we denote the m-th control pulse by θm= [θm(t1), θm(t2), . . . ,
θm(tn)]. The evolution of the quantum system under all n-th
control sub-pulses constructs the n-th layer of the QNN.
We illustrate the quantum end-to-end learning with a

classification task based on the MNIST dataset. As shown in
Fig. 1, an image of a handwritten digit is randomly selected from
the training dataset D. In the k-th iteration, the sampled image is
converted to a d= 784 dimensional vector x(k), and y(k) is the
corresponding label. The input data x(k) is transformed by a matrix
W(k) to the control variables θðkÞ

En ¼ WðkÞxðkÞ . This constructs a
classical encoding block with r channels and E sub-pulses per

channel: θðkÞ
En ¼ ½θðkÞ1 ðt1Þ; :::; θðkÞ1 ðtEÞ; :::; θðkÞr ðt1Þ:::; θðkÞr ðtEÞ�. The

generated control pulses θðkÞ
En then automatically encode x(k) to

the quantum state ψðkÞðtEÞ
�� �

via the natural quantum state
evolution of Eq. (1).
Subsequent inference control pulses θðkÞ

In , which have the same
form as θðkÞ

En but consist of I sub-pulses in each channel, are then
applied to induce the quantum evolution from the encoded
quantum state ψðkÞðtEÞ

�� �
. The inference controls are introduced for

improving the classification performance. Finally, the end-time
quantum state ψðkÞðtEþIÞ

�� �
is measured under the appropriate

experiment-available positive operator O(k) according to the
classical label y(k), which gives the conditional probability (or
confidence) of obtaining y(k) for a given input x(k)

P yðkÞjxðkÞ;WðkÞ;θðkÞ
In

� �
¼ ψðkÞ tEþIð Þ

D ��OðkÞ ψðkÞðtEþIÞ
��

E
: (2)

The corresponding loss function is defined as

L WðkÞ; θðkÞ
In ; xðkÞℓ

n oh i
¼ 1� 1

b

Xb

ℓ¼1

P yðkÞjxðkÞℓ ;WðkÞ;θðkÞ
In

� �
: (3)

In the experiment, we select a batch of b samples in each iteration
to reduce the fluctuation of L for faster convergence of the learning
process. The gradient of the loss function L with respect to the

encoding control θðkÞ
En and the inference control θðkÞ

In can be
evaluated with the finite difference method by making a small
change of the each control parameter θðkÞi ðtjÞ41. The gradient of L
with respect to W(k) can be derived from the gradient of L with

respect to θðkÞ
En

34. Therefore, we can apply the widely used stochastic
gradient-descent algorithm in machine learning to update W(k) and
θðkÞ
In by minimizing L on the training dataset D (see Methods for

details of the algorithms)42. Once the model is well trained, one can
use fresh samples from a testing dataset to examine the recognition
performance of the handwritten digits.

Experiments and simulations
The end-to-end model is demonstrated in a superconducting
processor, as shown in Fig. 1. All qubits take the form of the flux-
tunable Xmon geometry and are driven with inductively coupled
flux bias lines and capacitively coupled RF control lines43–45.
Among the six qubits, Q1, Q2,Q4, Q5 are dispersively coupled to a
half-wavelength coplanar cavity B1, and Q2, Q3,Q5, Q6 are disper-
sively coupled to another cavity B2. Each qubit is dispersively
coupled to a quarter-wavelength readout resonator for a high-
fidelity single-shot readout and all the resonators are coupled to a
common transmission line for multiplexed readouts (see details of
the experimental setup in Supplementary Notes I ~ III). The qubits
that are not relevant to the QNN is biased far away and can be
ignored from the system Hamiltonian, therefore, the static
Hamiltonian of the QNN can be written in the interaction picture as

H0=_ ¼
X

q≠p

Jqp ayqap þ aypaq
� �

�
XM

q¼1

EC;q
2

ayqa
y
qaqaq; (4)

where Jqp is the coupling strength between the p-th and q-th qubits
mediated by the bus cavity, EC,q denotes the qubit anharmonicity,
and aq is the annihilation operator of the q-th qubit.
Throughout this work, we set the encoding block with E= 2

layers followed by an inference block with I= 2 layers. As shown
in Fig. 1, for the q-th qubit in the n-th (n= 1, 2, 3, 4) layer of the
QNN, there are c= 2 control parameters θ2q−1(tn) and θ2q(tn),
which are associated with the control Hamiltonians H2q�1 ¼
ðaq þ ayqÞ=2 (rotation along the x-axis of the Bloch sphere) and

Fig. 1 The training protocol of the quantum end-to-end learning framework. In the k-th iteration, a randomly selected image of a
handwritten digit in the MNIST dataset is converted to a vector x(k) and then transformed by a matrix W(k) to the control variables θðkÞEn that

steer the quantum state to ψðkÞðtEÞ
�� �

of the qubits in the QNN. This process encodes x(k) to ψðkÞ�� �
. Subsequent inference control pulses θðkÞ

In are

applied to drive ψðkÞðtEÞ
�� �

to ψðkÞðtEþIÞ
�� �

that is to be measured. The parameters in W(k) and θðkÞIn are updated for the next iteration according to
the loss function L and its gradient obtained from the measurement. The circled numbers represent the specific points in the data flow and
the corresponding learning performances are shown in Fig. 4. The top right is the false-colored optical image of the six-qubit device used in
our experiment.
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H2q ¼ iðaq � ayqÞ=2 (rotation along the y-axis of the Bloch sphere),
respectively. The control parameters are the variable amplitudes
of the Gaussian envelopes of two resonant microwave sub-pulses,
each of which has a fixed width of 4σ= 40 ns. All the quantum
controls in the same time interval are exerted simultaneously. For
an N-digit classification task, we take M ¼ dlog2Ne þ 1 qubits for
the QNN: the classification results are mapped to the computation
bases of the first dlog2Ne qubits (label qubits) by the majority vote
of the collective measurement performed on label qubits, while
one additional qubit is introduced for a better expressibility of the
model. Therefore, the QNN in our experiment involves totally
cM(E+ I)= 8M control parameters.
We perform the 2-digit (‘0’ and ‘2’) classification task (N= 2) with

Q3 and Q5 (M= 2). The working frequencies are 6.08 GHz and 6.45
GHz, respectively, which are also the flux sweet-spots of the two
qubits. The effective coupling strength J35/2π= 4.11 MHz. We take
Q5 as the label qubit and assign the classification result to be ‘0’ or ‘2’
if the respective probability of measuring gj i or ej i state is larger.
The end-to-end model is initialized with W=W0 and θIn= θ0,

where all elements ofW0 are 10−5 and each element of θ0 is tuned to
induce a π/4 rotation of the respective qubit. The parameter update
is realized as follows. Firstly, we obtain the loss function L according
to Eq. (3) by measuring Q5. We perturb each control parameter in the
control set {θEn, θIn} and obtain the corresponding gradient of L. The
L and its gradient averaged over a batch of two training samples
(b= 2) are sent to a classical Adam optimizer46 for updating W and
θIn. All control parameters are linearly scaled to the digital-to-analog
converter level of a Tektronix arbitrary waveform generator 70002A,
working with a sampling rate of 25 GHz, to generate the resonant RF
pulses directly. The control pulses composed of in-phase and
quadrature components are sent to each qubit with the correspond-
ing RF control line. To obtain the classification result, we repeat the
procedure and measure the label qubit for 5000 times.
In the 4-digit (‘0’, ‘2’, ‘7’, and ‘9’) classification task (N= 4), we

take Q3, Q5, and Q6 (M= 3) to construct the QNN, whose working
frequencies are 6.08 GHz, 6.45 GHz, and 6.19 GHz, respectively. Q3

and Q5 are measured for the classification output. The target digits
correspond to the four computational bases spanned by the two
label qubits. The training procedure and algorithms are the same
as those for the N= 2 task.
The typical training process is shown in Fig. 2a, b. For better

clarity, the curves are smoothed out by averaging each data point
from its neighboring four ones. For the 2-digit (4-digit) classifica-
tion task, the experimental loss function L converges to 0.14 (0.22)
in 300 (500) iterations. The training loss can potentially be reduced
by increasing the depth E of the encoding block34. For
comparison, numerical simulations are also performed with the
calibrated system Hamiltonian, the same batches of training
samples, and the same parameter update algorithms. As shown in
Fig. 2a, b, the simulations match the experiments well. The small
deviation of the experimental data may attribute to the simplified
modeling of high-order couplings between the qubits and the
control pulses47, as well as the system parameter drifting.
To examine the performance of the end-to-end learning, we

experimentally test the generalizability of the trained end-to-end
model with fresh testing samples (1000 for each digit), and count
the frequencies of assigning these samples to different digits (see
Fig. 2c–f). The measured overall accuracies (i.e., the proportion of
samples that are correctly classified) are (98.6 ± 0.1)% for the
2-digit task and (89.4 ± 1.5)% for the 4-digit task, respectively,
which are consistent with the simulation results (98.2% and 88.9%,
respectively) based on the experimentally identified Hamiltonian.
The performance of the model also relies on the amount of

entanglement gained in the quantum state. When the number of
QNN layers is fixed, the quantum state gets more entangled under
longer pulse length τ (includes all the E+ I= 4 sub-pulses in both
the encoding and the inference blocks), but coherence may be

lost in the prolonged control time duration due to the inevitable
decoherence. We use the experimentally calibrated parameters to
simulate the 2-digit classification process under different τ and
different coherence times T1 and Tϕ of the qubits (see simulation
details in Supplementary Notes: The Numerical Model of the
System). As shown in Fig. 3, the average confidence 1� L varies
little with τ when T1 or Tϕ is sufficiently small because the
coherent control is overwhelmed by the strong decoherence. For
larger T1 or Tϕ (e.g., T1= 20 μs), the average confidence initially
increases with τ, but then decreases after reaching the peak. This
trend clearly indicates the trade-off between the gained
entanglement and the lost coherence, and thus τ as well as the
number of layers should be optimally chosen for the best balance.
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Fig. 2 Results of training the quantum end-to-end model. a, b The
typical training process of the end-to-end model. For better clarity,
all data points are averaged over the neighboring four points.
c–f The classification performance of the trained model. The
horizontal labels show the digits to be classified, while the vertical
labels show the majority vote of the computational basis measure-
ment results. The hollow bars (nearly invisible) in the experimental
results (c, e) correspond to the standard deviation of multiple
repeated measurements. c, d Experimental and simulation results
for the 2-digit classification task, respectively. The averaged
accuracies for the classification are 0.986 ± 0.001 and 0.982 in the
experiment and the simulation, respectively. e, f The 4-digit
classification of the QNN. The averaged accuracies are
0.894 ± 0.015 and 0.889 in the experiment and the simulation,
respectively.
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The end-to-end learning scheme provides a seamless
combination of quantum and classical computers through the
joint training of the pulse-based QNN and the classical data
encoder W. To understand their respective roles in the
classification, we check how the data distribution varies along
the flow x ! θEn ! ψðtEÞj i ! ψðtEþIÞj i ! y (see ① ~ ④ in Fig. 1)
in the 2-digit classification process. To facilitate the analysis, we
use the Linear Discriminant Analysis (LDA)48 that projects high-
dimensional data vectors into two clusters of points distributed
on an optimally chosen line (see details in the Supplementary
Notes: Liner Discriminant Analysis). The LDA makes it easier to
visualize and compare data distributions whose dimensional-
ities are different.
The projected clusters are plotted in Fig. 4. In each sub-figure,

the distance between the centers of the two clusters is
normalized, and hence we can quantify the classifiability by
their standard deviations (i.e., the narrowness of distribution). As
can be seen in Fig. 4a, b, the classical data encoder W effectively
reduces the original 784-dimensional vector x to a
8-dimensional vector of control variables θEn, but the standard
deviation is increased from 0.1658 for the original dataset to
0.2903 for the transformed control pulses. Then, the control-to-
state mapping, which is both nonlinear and quantum, sharply
reduces the standard deviation to 0.0919 for the encoded
quantum state (Fig. 4c), while the following quantum inference
block does not make further improvement (Fig. 4d). These
results indicate that the classical data encoder is responsible for
the compression of the high-dimensional input data, while the
classification is mainly accomplished by the QNN.

DISCUSSION
To conclude, our proof-of-principle experiment has clearly
demonstrated the feasibility of the end-to-end quantum
machine learning framework. The pulse-based QNN is experi-
mentally easy to implement and scale up. Through joint training
of the classical encoder and the QNN, high-precision classifica-
tion is achieved for MNIST digits without downsizing the
dataset. Our experiment indicates that the limited quantum
resources on NISQ devices can be more efficiently exploited
than pure gate-based quantum models.
It should be noted that no quantum advantage is claimed here

over classical ML algorithms, which is still an ongoing pursuit for

all types of variational quantum algorithms. When more qubits are
available and the noise level is sufficiently low, quantum
advantage may be approached owing to the enhanced expressive
power by the exponentially scaled quantum Hilbert space. We
expect that, with more elaborately designed training algorithms,
the framework of quantum end-to-end learning can be applied to
more complicated real-world ML applications (e.g., unsupervised
and generative learning).

METHODS
Algorithm for the classical optimizer
The algorithm for evaluating the loss function and the calculation
of the gradient is shown in Algorithm 1. The Adam optimizer that
is used in our experiment is shown in Algorithm 2.

Algorithm 1. Calculate the loss function and the gradients with
respect to the model parameters
Input W, θIn, Batch of training data xðkÞ; yðkÞ

� �

Pout, gW, gIn← 0

δ 2 Rþ

for ℓ= 1: b do

P0 ¼ P yðkÞℓ jxðkÞℓ ;W;θIn
� �

θEn ¼ W � xðkÞℓ

for i ¼ 1 : Length θEnð Þ do
θ1= [θEn(1),…, θEn(i)+ δ,… ]

g1ðiÞ ¼ P yðkÞℓ jxðkÞℓ ; θ1;θIn
� �

� P0
� �

=δ

end for

for i= 1: Length(θIn) do

θ2= [θIn(1),…, θIn(i)+ δ,… ]

g2ðiÞ ¼ P yðkÞℓ jxðkÞℓ ;W;θ2
� �

� P0
� �

=δ

end for

gW ¼ gW � g1 � xðkÞ>ℓ =b

gIn= gIn− g2/b

Pout= Pout+ P0/b

end for

return Pout, gW, gIn

Algorithm 2. Adam optimizer
Input Training dataset {x, y}

sW, rW, sIn, rIn← 0

W, θIn←W0, θIn,0
lr= 10−3, β1= 0.9, β2= 0.999, ϵ= 10−8

for k= 1: N do

gW ;gIn ¼ Algorithm1 W;θIn; xðkÞ; yðkÞ
� �� 	

sw ¼ β1 � sw þ ð1� β1Þ � gw

rw ¼ β2 � rw þ ð1� β2Þ � gw : � gw

s1 ¼ sW= 1� βk1

� �

r1 ¼ rW= 1� βk2

� �

W ¼ W � lr � s1:= ffiffiffiffi
r1

p þ ϵ
� 	

sIn ¼ β1 � sIn þ ð1� β1Þ � gIn

rIn ¼ β2 � rIn þ ð1� β2Þ � gIn: � gIn

s2 ¼ sIn= 1� βk1

� �

r2 ¼ rIn= 1� βk2

� �

θIn ¼ θIn � lr � s2:= ffiffiffiffi
r2

p þ ϵ
� 	

end for

return W, θIn

Fig. 4 The projected points by using LDA, where the distance
between the projected cluster centers is normalized. The positions
of ① ~④ along the data flow are shown in Fig. 1. a The projected
points of the original 784-dimensional handwritten digits. b The
projected points of the control pulses for encoding the classical data
to the quantum states. c The projected points of the quantum states
after the encoding block. d The projected points of the final
quantum states.

X. Pan et al.

4

npj Quantum Information (2023)    18 Published in partnership with The University of New South Wales



The gradient of the loss function L for parameter update in
each iteration is obtained by averaging the gradients of the
conditional probability P over a batch of randomly selected input
samples (b= 2). This can reduce the fluctuation of L for faster
convergence in the learning process. For the inference block, the
gradient gIn of L with respect to each parameter in θIn is directly
obtained by rerunning the experiment with a small change in θIn
and calculating the difference of P. As for the encoding block, the
gradient gW with respect to the elements of the classical matrix W
is needed. To reduce the experimental cost, we can equivalently
calculate gW from the outer product between the measured
gradient g1 with respect to the encoding controls and the input
data vector.
Once the gradients with respect to the model parameters are

obtained, we take Adaptive Moment Estimation (Adam)46 update
algorithm to update the corresponding parameters. The Adam
algorithm is popular for its efficiency and stability in stochastic
optimization of learning problems. In the Adam algorithm,
lr, β1, β2, ϵ refer to algorithm configuration parameters and are
chosen as default empirical values. The intermediate parameters
sW, sIn, rW, rIn will be passed to the next iteration so as to
adaptively control the parameter updating rate.

DATA AVAILABILITY
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Superconducting-Processor.
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