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Tailored cluster states with high threshold under biased noise
Jahan Claes 1,2✉, J. Eli Bourassa3 and Shruti Puri 1,2

Fault-tolerant cluster states form the basis for scalable measurement-based quantum computation. Recently, new stabilizer codes
for scalable circuit-based quantum computation have been introduced that have very high thresholds under biased noise where
the qubit predominantly suffers from one type of error, e.g. dephasing. However, extending these advances in stabilizer codes to
generate high-threshold cluster states for biased noise has been a challenge, as the standard method for foliating stabilizer codes
to generate fault-tolerant cluster states does not preserve the noise bias. In this work, we overcome this barrier by introducing a
generalization of the cluster state that allows us to foliate stabilizer codes in a bias-preserving way. As an example of our approach,
we construct a foliated version of the XZZX code which we call the XZZX cluster state. We demonstrate that under a circuit-level-
noise model, our XZZX cluster state has a threshold more than double the usual cluster state when dephasing errors are more likely
than errors that cause bit flips by a factor of order ~100 or more.
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INTRODUCTION
Measurement-based quantum computing (MBQC) is an alternative to
the circuit model of quantum computing1. Depending on the
physical primitives available on the underlying quantum hardware,
MBQC can provide a more natural framework for composing
quantum algorithms, and has been considered for photonic2–6,
trapped-ion7,8, quantum dot9–12, superconducting12–14, and neutral
atom15 architectures. In MBQC, computation is performed by
preparing an entangled resource state, known as a cluster state,
and then performing measurements on the cluster state to realize
quantum gates1,16–20. One can make MBQC fault-tolerant using 3D
cluster states, which are cluster states whose measurement out-
comes obey constraints that can be used to detect errors. These
fault-tolerant cluster states are a universal resource for MBQC, as they
can be modified to perform arbitrary computations via braiding21,22,
lattice surgery23, or other code deformation techniques24.
In circuit model quantum computing, there has recently been

intense interest in developing error-correcting codes for qubits with
biased noise; an example of biased noise is a scenario in which the
errors which can cause bit flips are far less likely than those which
cause only phase-flips25–30. By modifying the stabilizers of the surface
code31,32 by local Pauli frame change, one can generate the
tailored25–27 or XZZX28,33,34 surface codes (see Fig. 1) as well as
other Clifford-deformed surface codes35, all of which have much
higher thresholds than the standard surface code in the presence of
biased noise25–28,35. The XZZX code is particularly notable for having
a high threshold even when using a simple and efficient decoder.
Realizing these high thresholds for biased noise requires all
operations be bias-preserving, i.e. they do not convert high-
probability errors to low-probability errors. Bias-preserving con-
trolled-not (CX) gates for stabilizer measurement have been
proposed in multiple qubit platforms36–38, allowing the practical
possibility of realizing these surface codes on biased-noise qubits29.
However, extending these advances in error-correcting codes to

the design of fault-tolerant cluster states for biased-noise qubits
remains an open challenge. The standard approach to realize a
fault-tolerant cluster state, called foliation, is based on performing
repeated measurements of the stabilizers of a 2D stabilizer code

via teleportation21,22,24,39. Indeed, the typical cluster state is
created by foliating the standard surface code21,22,40,41. This
cluster state is known as either the Raussendorf–Harrington–Goyal
(RHG) or Raussendorf–Bravyi–Harrington cluster state; we will refer
to it as the RHG cluster state in this paper. However, we will see
below that the process of foliation does not preserve the noise
bias, as it effectively converts high-probability pure phase-flip
errors into low-probability bit-flip errors. Thus, foliating the
tailored or XZZX surface code will not result in a high-threshold
cluster state even if the underlying qubits have biased noise.
In this paper, we introduce a generalized cluster state as a tool

for fault-tolerant MBQC. Our generalized cluster state is built by
preparing qubits in the 0j i and þj i states, and then entangling
pairs of qubits using both CZ and CX gates. Using our generalized
cluster state, we can construct a foliation protocol that preserves
the noise bias. This key property allows us to use the generalized
cluster state to build high-threshold foliated versions of stabilizer
codes designed for biased noise. While our method could be
applied to any stabilizer code, we focus on foliating the XZZX
surface code as we can decode it efficiently with a minimum-
weight perfect matching (MWPM) decoder32,42,43. Under biased
circuit-level noise, we demonstrate that our new cluster state, the
XZZX cluster state, has a much higher threshold than the RHG
cluster state. Indeed, the threshold for the XZZX cluster state
exceeds 2.0% gate-error rate compared to under 1.0% for the
usual RHG cluster state when dephasing errors are more likely
than errors that cause bit flips by a factor of order ~100 or more,
which is an experimentally realistic amount of noise asymme-
try29,36. This work provides a systematic procedure for designing
cluster states that are highly effective at correcting structured
noise to gain a significant threshold advantage, thus opening up
an additional direction for realizing near-term practical fault-
tolerant quantum technologies ranging from universal MBQC to
one-way repeaters for quantum networking and communications
using noisier hardware than would otherwise have been possible.
Prior to this work, there has been recent research into non-foliated

cluster states44,45, which cannot be viewed as foliated versions of
some 2D stabilizer code. Examples of non-foliated codes with
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improved thresholds against pure phase-flip errors were found in
refs. 44,45. However, the best-performing of these cluster states
require high-degree (8–10) qubit connectivity and have thresholds
~1.93%, which is lower than what is achieved with the XZZX cluster
state with only degree-4 connectivity. The low qubit connectivity of
the XZZX cluster state makes it much more desirable for practical
implementation. In addition,46 has previously proposed creating
high-threshold cluster states by concatenating a base-level repeti-
tion code to correct phase-flip errors with the usual RHG lattice. This
is similar to the approach of ref. 47 to correct biased errors in the
circuit-model picture, where they concatenate a repetition code with
the usual surface code. The advantage of our approach is similar to
the advantage the tailored and XZZX surface codes have over47,
namely concatenating with a repetition code results in a higher
qubit overhead and an enhanced rate of bit-flip errors.
Our paper is structured as follows. First, we review how to

construct the RHG cluster state by foliating the surface code. This
construction is representative of the more general protocols24,39

for foliating stabilizer codes. Next, we explain why foliation
effectively unbiases the qubits, and thus does not give high
thresholds when applied to the tailored or XZZX surface codes. We
then introduce the generalized cluster state, a simple modification
of the usual cluster state that allows us to foliate the XZZX code in
a bias-preserving way. We call this the bias-preserving XZZX
cluster state. We demonstrate higher thresholds for our XZZX
cluster state using a biased circuit-level-noise model and
minimum weight perfect matching (MWPM) decoder. We
conclude with some discussion of experimental platforms that
may benefit from our approach. Details of our circuit-level-noise
model and decoder are presented in the Methods section.

RESULTS
The standard fault-tolerant cluster state
Foliation is a flexible approach to build fault-tolerant cluster states
from stabilizer codes24,39; here, we will follow the presentation of
folation given in ref. 24. The essential idea is to replace each qubit in
a stabilizer code with a 1D cluster state that can be used to teleport
a single logical degree of freedom, and couple these 1D cluster
states so that the stabilizers of the code are repeatedly measured
during teleportation. These cluster states can then be used to fault-
tolerantly store some initial encoded state. While the cluster states
we construct will not apply logical gates during the teleportation,
there are standard methods to modify the basic fault-tolerant
cluster state to enable universal fault-tolerant MBQC21–24,48.

To illustrate the idea of foliation and motivate our generalized
cluster state construction, we will review how to build the RHG
cluster state by foliating the surface code. We will begin by
constructing the 1D cluster state that can teleport a single qubit.
We then replace each surface code qubit with a 1D teleportation
cluster state, and demonstrate how to couple them to measure
the surface code stabilizers during teleportation. Finally, we will
explain how the resulting RHG cluster state detects errors.
The standard 1D teleportation cluster state is illustrated in Fig. 2a,

b. To prepare the cluster state, we begin with an arbitrary state ψj i
on the first qubit and a þj i state on the remaining qubits. We then
entangle neighboring qubits by applying controlled-phase or CZ
gates to all pairs of neighbors (Fig. 2a). Importantly, the CZ gates are
mutually commuting and may be applied in any order.
The stabilizer formalism can now be used to describe the cluster

state. Before the CZ gates, the logical Pauli operators on ψj i are
given by XL= X1 and ZL= Z1, and the state is stabilized by
{X2, X3,… }. After applying the CZ gates, the new logical operators
and stabilizers are obtained from the old by conjugating with the
CZ gates. This sends

Zi ! Zi Xi ! Xi

Y
j2N i

Zj (1)

where N i denotes the neighbors of site i. We thus have XL= X1Z2
and ZL= Z1, with stabilizers {Z1X2Z3, Z2X3Z4,… } (Fig. 2b). By
multiplying the logical operators by stabilizers, we can put them
in a form involving only X operators on the first 2n qubits:

XL ¼
Y

i � 2n

i odd

Xi

0
BBBBB@

1
CCCCCA
X2nþ1Z2nþ2 (2)

ZL ¼
Y

i � 2n

i even

Xi

0
BBBBB@

1
CCCCCA
Z2nþ1 (3)

The case of n= 3 is illustrated in Fig. 2b. This form makes it clear
that if we measure the first 2n qubits in the X basis, the logical
operators will be teleported to qubits {2n+ 1, 2n+ 2}. For
example, in the case n= 3, if we measure qubits 1− 6 and get

Fig. 1 Examples of surface codes. a The standard surface code has alternating plaquettes with X and Z stabilizers. b The XZZX surface code
has the same stabilizer on every plaquette, the product of two X and two Z operators. The XZZX surface code can be obtained from the
standard surface code via local Pauli frame changes.
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outcomes {x1, x2, x3, x4, x5, x6} with xi= ± 1, Eqs. (2) and (3) imply
that the logical operators are given by

XL ¼ x1x3x5X7Z8; ZL ¼ x2x4x6Z7: (4)

To construct a fault-tolerant cluster state, we combine
individual 1D teleportation cluster states, and modify the
cluster to measure the check operators of some stabilizer code
as we teleport. This construction was first realized for the
surface code21,22,41, but has been adapted to arbitrary CSS
codes39 and non-CSS codes24. To generate the surface code, we
replace each qubit of the surface code shown in Fig. 1a with a
1D teleportation chain. For each X-stabilizer plaquette of the
surface code, we attach an ancilla qubit to each set of odd sites
of the teleportation chain, and for each Z-stabilizer plaquette
we attach an ancilla to each set of even sites of the
teleportation chain, as shown in Fig. 2c. These ancillas are also
initialized in þj i and entangled with their neighbors with CZ
gates. One can easily verify that measuring an ancilla qubit in
the X basis results in measuring the surface code stabilizer of
the corresponding plaquette during the teleportation.
The resulting 3D cluster state, the RHG cluster state21,22,40, is

illustrated in Fig. 2d, where we display two overlapping cells of the
cluster. To fault-tolerantly teleport information through this state,
we simply measure both the data qubits and ancilla qubits in the X
basis. One can check that for an RHG cluster state without errors,
the product of the X operators on the faces of a cell (the highlighted
qubits in Fig. 2d) is a stabilizer of the state, so the product of the X
measurements around the faces of a cell should be (+1). To see the
effects of errors, we can consider applying a single Pauli error. A Z or
Y error on a face qubit flips the syndromes of the two neighboring
cells, allowing us to detect these errors (Fig. 2e). Multi-qubit Pauli
errors can be detected similarly, by considering the syndromes they
flip. Note that X errors on the final cluster state have no effect,
although X errors occurring between two CZ gates will propagate to
Z errors on neighboring qubits. Errors can be corrected by pairing
(−1) syndromes to each other using a minimum weight perfect
matching (MWPM) decoder32,42, and under this decoder the RHG
cluster has a threshold for local Pauli noise21,22.

This method of creating fault-tolerant cluster states can also be
used to generate cluster states that realize the tailored25–27 or
XZZX28 surface codes (Fig. 1b). However, these codes only offer
improved thresholds over the usual surface code when the effective
probability of bit-flip errors is suppressed compared to phase-flip
errors. Unfortunately, the 1D teleportation procedure outlined
above unbiases the noise, converting physical Z errors into logical X
errors. We can understand these phenomena in two ways. Firstly, as
seen from Eq. (3) the ZL operator we use includes physical X
operators on qubits 2, 4,…, 2n so that Z errors on these qubits
anticommute with ZL, and are therefore equivalent to an XL error.
Alternatively, if we consider teleporting the logical information from
qubits 1 and 2 to, e.g., qubits 7 and 8, we see from Eq. (4) that to
recover the logical information about the state we require accurate
measurements x1,…, x6. A Z error on qubits 2, 4, or 6 would cause
us to measure the wrong sign of x2, x4, or x6. This results in the
replacement of ZL with −ZL, which is equivalent to an XL error.
From either viewpoint, we see that physical Z noise converts to

logical X noise. Consequently, the effective error channel of the 1D
teleportation chains, which are subsequently combined to
measure the check operators of an error-correcting code, is not
biased. Thus, the resulting fault-tolerant cluster state will not have
an improved threshold even if the measured stabilizers corre-
spond to a code that is specifically designed for biased noise, such
as the XZZX surface code. In fact, we find that the XZZX cluster
state produced by this approach does not perform better than the
standard RHG at any bias (at the level of circuit-level noise it
actually does worse; more details can be found in the
supplementary results49).
Naively, one might assume that while the RHG lattice is not

robust to Z-biased noise, it should be robust to X-biased noise,
since X errors on the RHG cluster state have no effect on the
teleportation. However, even if physical qubits only experience X
errors, applying CZc,t, where c denotes the control and t the target,
propagates an Xc error to XcZt. Thus, if X errors occur during the
construction of the RHG lattice, they propagate to Z errors on the
final cluster, and we cannot assume we have X-biased noise after
the construction of the cluster state. By contrast, CZ gates

Fig. 2 The standard foliation. a Filled black circles denote qubits initialized in the þj i state, filled red circles denote qubits initialized in an
arbitrary state. Qubits connected by a line have a CZ gate applied between them. b Left: The logical operators (red) and stabilizers (blue) of the
1D cluster state. Right: By multiplying the logical operators by stabilizers, we can rewrite them to involve only X operators on the first 2n
qubits. Measuring the first 2n qubits in the X basis teleports logical information to qubits {2n+ 1, 2n+ 2}. c By coupling ancilla qubits (bold) to
a set of 1D cluster states, we can measure multi-qubit logical operators during teleportation. Here, measuring the X operator on the ancilla
qubits attached at even (odd) numbered sites measures the logical product of the Z (X) operators of the neighboring qubits. We thus measure
the stabilizers of the surface code as we teleport. d The unit cell of the resulting cluster state, the RHG cluster state. One can verify that the
product of X operators on the highlighted qubits is a stabilizer of the RHG cluster state. There is one such stabilizer associated with each cell of
the lattice. e A Z error on a qubit flips the stabilizers of the neighboring cells, allowing us to detect errors.
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commute with Z errors, so Z-biased noise is compatible with
constructing the cluster state.

Building the bias-preserving XZZX cluster state
Based on the discussion above, we see that in order to build a
cluster state that realizes the XZZX code with high-threshold, we
must start with a 1D teleportation cluster state in which ZL
contains only physical Z operators. To achieve this, we construct
our generalized cluster state with two types of qubits, X-type and
Z-type. X-type qubits are initialized in þj i and measured in the X
basis, as in the usual cluster state, while Z-type qubits are
initialized in 0j i and measured in the Z basis. We’ll denote X-type
qubits by ● and Z-type qubits by ○. To entangle neighboring
qubits, we will apply different gates depending on the types of
qubits we are entangling. To entangle two X-type qubits, we apply
the usual CZ gate, while to entangle an X- and a Z-type qubit, we
apply the CX gate, where the X-type qubit is the control qubit and
the Z-type qubit is the target qubit (Fig. 3a). Importantly, the
entangling gates are still mutually commuting, and may be
applied in any order. We note that previous cluster states are a
subset of our generalized cluster state, in which all qubits are X-
type. In this construction, both the CX and CZ gate must be bias-
preserving. CX gates that preserve Z-bias have already been
proposed in multiple qubit platforms36–38, while CZ gates naturally
preserves Z-bias since Z errors naturally commute with CZ. Note

that we are assuming that Z errors are dominant: CZ gates would
not preserve X-bias, as they convert X errors to Z errors.
Our generalized construction allows us to build two distinct 1D

teleportation cluster states, which are illustrated in Fig. 3b,c. The
first, the X-start cluster state, begins with a state ψj i on the first
qubit, followed by alternating Z-type and X-type qubits. While we
don’t initialize the first qubit in þj i, we treat it as an X-type qubit
during entanglement and measurement. The second, the Z-start
cluster state, begins with a state ψj i on the first qubit, followed by
alternating X-type and Z-type qubits. Here, we treat the first qubit
as a Z-type qubit during entanglement and measurement.
After applying the entangling gates, the new logical operators

and stabilizers are obtained from the old by conjugating with the
entangling gates. This sends

Zi ! Zi Xi ! Xi

Y
j 2 N i

j 2 X

Zj

Y
k 2 N i

k 2 Z

Xk ; i 2 X
(5)

Xi ! Xi Zi ! Zi

Y
j 2 N i

j 2 X

Zj; i 2 Z
(6)

where X and Z denote the set of X-type and Z-type qubits,
respectively, and N i denotes the neighbors of site i. For X-start
cluster states, we thus have logical operators XL= X1X2 and ZL= Z1
with stabilizers {Z1Z2Z3, X2X3X4,… }, while for Z-start we have

Fig. 3 Our bias-preserving foliation. a Filled black circles denote X-type qubits initialized in the þj i state, open black circles denote Z-type
qubits initialized in the 0j i state, while filled/open red circles denote X/Z-type qubits initialized in an arbitrary state. Two X-type qubits
connected by a line have a CZ gate applied between them, while an X-type and Z-type qubit connected by a line have a CX gate applied
between them as shown. b Left: The logical operators (red) and stabilizers (blue) of the X-start 1D cluster state. Right: By multiplying the logical
operators by stabilizers, we can rewrite the logical operators to involve only X operators on the first nX-type qubits and Z operators on the first
nZ-type qubits. Measuring the first nX-type qubits in the X basis and the first nZ-type qubits in the Z basis teleports logical information to
qubits {2n+ 1, 2n+ 2}. c Same, for Z-start qubits. d By coupling ancilla X-type qubits (bold) to an alternating grid of X-start and Z-start 1D
cluster states, we can measure multi-qubit logical operators during teleportation. Here, measuring the X operator on the ancilla qubits
measures the XZZX operators of the neighboring qubits. We thus measure the stabilizers of the XZZX code as we teleport. e The unit cell of
the resulting cluster state, the bias-preserving XZZX cluster state. One can verify that the product of X operators on the highlighted X-type
qubits and Z operators on the highlighted Z-type qubits is a stabilizer of the XZZX cluster state. There is one such stabilizer associated to each
cell of the lattice. f A Z error on an X-type qubit or an X error on a Z-type qubit flips the stabilizers of the neighboring cells, allowing us to
detect errors. Importantly, Z errors create error chains that are restricted to 2D planes, allowing for improved decoding.
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logical operators XL= X1 and ZL= Z1Z2 with stabilizers {X1X2X3,
Z2Z3Z4,… }. By multiplying the logical operators by stabilizers, we
can put them in a form that involves only X operators on the first
nX-type qubits and only Z operators on the first nZ-type qubits. In
the case of the X-start cluster state, we have

XL ¼
Y

i � 2n

i odd

Xi

0
BBBBB@

1
CCCCCA
X2nþ1X2nþ2 (7)

ZL ¼
Y

i � 2n

i even

Zi

0
BBBBB@

1
CCCCCA
Z2nþ1 (8)

while in the case of the Z-start cluster state, we have

XL ¼
Y

i � 2n

i even

Xi

0
BBBBB@

1
CCCCCA
X2nþ1 (9)

ZL ¼
Y

i � 2n

i odd

Zi

0
BBBBB@

1
CCCCCA
Z2nþ1Z2nþ2 (10)

The case of n= 3 for both clusters is illustrated in Fig. 3b, c. This
form makes it clear that if we measure the first nX-type qubits in
the X basis and the first nZ-type qubits in the Z-basis, the logical
operators will be teleported to qubits {2n+ 1, 2n+ 2}. For
example, in the case n= 3 for the X-start cluster state, if we
measure qubits 1− 6 and get outcomes {x1, z2, x3, z4, x5, z6} with
xi, zi= ± 1, Eqs. (9) and (10) imply that the logical operators are
given by

XL ¼ x1x3x5X7X8; ZL ¼ z2z4z6Z7: (11)

Importantly, in this cluster state ZL is the product of physical Z
operators and XL is the product of physical X operators, meaning
that physical Z errors cannot cause a logical XL error. Thus, both
teleportation clusters preserve the noise bias.
Crucially, these bias-preserving teleportation clusters can be

used to foliate any biased-noise stabilizer code to gain large
threshold advantage which was impossible with the conventional
approach. This recipe follows the framework in24 wherein each
qubit in the stabilizer code is replaced with a 1D teleportation
cluster state, and ancillas are added to measure the stabilizers. The
main difference is now the 1D teleportation cluster is the bias-
preserving cluster of Fig. 3b rather than the usual cluster of Fig. 2b.
For any stabilizer code, there is some freedom in deciding how to
foliate it. One can replace the qubits of the stabilizer code with X-
start cluster states, Z-start cluster states, or a mixture of the two. In
addition, one can couple either X-type or Z-type ancilla qubits to
the teleportation cluster to measure the code stabilizers. However,
switching between an X- and Z-start cluster is equivalent to
shifting the teleportation cluster one unit to the left or right, so
either type of teleportation cluster can be used provided the
ancilla bonds are appropriately shifted. In addition, if an ancilla
qubit is coupled to any Z-type qubits, the ancilla must be X-type,
as there is no bias-preserving way to connect two Z-type qubits

(they would have to be entangled with an X-controlled-X gate,
which is not bias-preserving). Thus, in practice is it straightforward
to determine a good bias-preserving foliation.
To build a bias-preserving cluster state realizing the XZZX code,

it is most convenient to use an alternating grid of X-start and Z-
start cluster states, as shown in Fig. 3d. While this choice is not
essential, it results in simpler connectivity diagrams for the
resulting cluster state. For each plaquette of the XZZX code, we
add an X-type ancilla qubit as shown in Fig. 3d. These ancillas are
also initialized in þj i and entangled with their neighbors following
Fig. 3a. One can easily verify that measuring an ancilla qubit in the
X basis results in measuring the XZZX code stabilizer of the
corresponding plaquette during the teleportation. The resulting
cluster state, the XZZX cluster state, is shown in Fig. 3e. The XZZX
cluster state can be obtained from the usual RHG cluster state by
applying Hadamard (H) gates at the site of Z-type qubits, just as
the XZZX surface code can be obtained from the usual surface
code by conjugating the stabilizers by H on alternating qubits.
However, it is important to physically build the XZZX cluster state
with CX and CZ gates rather than applying H gates to the RHG
lattice, as an H operation does not preserve the bias.
Each cell of the XZZX cluster state has four X-type qubits and

two Z-type qubits on its faces, highlighted in Fig. 3e; it is
straightforward to show that for an XZZX cluster state without
errors, the product of the X operators on the X-type qubits and
the Z operators on the Z-type qubits is a stabilizer of the state,
so the product of the corresponding X and Z measurements
should be (+1). A Z or Y error on an X-type qubit flips the
syndromes of the neighboring cells, as does an X or Y error on a
Z-type qubit (Fig. 3f). Note that X errors on the overall cluster
state have no effect on X-type qubits and Z errors on the overall
cluster state have no effect on Z-type qubits, although Z errors
on Z-type qubits occurring between two CX gates will
propagate to Z error on neighboring X-type qubits, and similar
for X errors on X-type qubits. Using a bias-preserving CX gate
ensures that Z errors do not propagate to X or Y errors. Overall,
errors can again be corrected by pairing (−1) syndromes to
each other using a MWPM decoder. Importantly, we observe
that in the XZZX cluster state Z errors create error chains that
are restricted to disconnected 2D planes, while in the RHG
cluster state Z errors create error chains that may meander in
3D. Intuitively, this makes decoding the XZZX cluster state
easier in the presence of biased noise. This effective reduction
in dimensionality of the matching graph in the case of biased
noise has previously been noted50 as a mechanism for
increased thresholds in the tailored26 and XZZX28 surface codes.

Comparing the thresholds
To demonstrate the advantage of the XZZX cluster state in the
presence of biased noise, we perform full circuit-level-noise
simulations for both the XZZX cluster state and the usual RHG
cluster state. We do not present results on the cluster obtained by
applying the standard foliation approach to the XZZX surface
code, as this yields worse thresholds than the RHG state (see the
supplemental material49). We use a physically well motivated
biased noise model29,36,51,52, although we do not expect the
details of the noise model to significantly affect our conclusions. In
this model, CZc,t gates experience errors 1cZt and Zc1t with
probability pz, ZcZt with probability p2z , and all other errors with
probability pz/η. In addition, CXc,t gates experience errors 1cZt and
ZcZt with probability pz/2, Zc1t with probability pz, and all other
errors with probability pz/η. Finally, during both preparation and
measurement, each qubit experiences Z errors with probability pz
and X and Y errors with probability pz/η.
In addition, we simulate the RHG cluster state under X-biased

noise, to verify our earlier argument that the RHG cluster state
should not have a notably higher threshold under X-biased noise.
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For X-biased noise in the RHG cluster state, we use a physically-
motivated error model based on a specific implementation of CZ
gates. Note that even when we assume X-biased noise on the
physical qubits, we do not expect the noise of the CZ gates to be
X-biased as CZ gates do not preserve X-bias. In our model, after
applying a CZc,t gate errors IcXt, XcIt, ZcXt and XcZt occur with
probability 0.375px, IcYt, YcIt, ZcYt and YcZt occur with probability
0.125px, and all other errors occur with probability px/η. In addition
to errors during the CZ gates, during both preparation and
measurement X errors occur with probability px and Y and Z errors
with probability px/η. We do not simulate the XZZX cluster state
with X-biased noise since we expect it to perform worse than the
XZZX cluster state with Z-biased noise, as CZ gates do not
preserve the X-bias. However, if the physical qubits available are X-
biased, one can always perform a Pauli frame change to ensure
the noise on the XZZX cluster is Z-biased.
In the Z-biased noise model, the total error probability of CZ is

2pz þ p2z þ 12pz=η and of CX gate is 2pz+ 12pz/η. We emphasize
that η is a parameter of our error model, and does not represent
the ratio of the probability of dephasing errors to the probability
of errors which cause bit flips. This ratio, which is often quoted as
the bias, is η/6, so that e.g. η= 1000 corresponds to a ratio of
probabilities equal to 166.67. In the X-biased noise model, the
total error probability of CZ is 2px+ 7px/η. To compare the cluster
states, we will measure the threshold in terms of the error
probability of CZ, although we note that the CX gate in the XZZX
cluster state has a near-identical error rate to the CZ gate for low
pz. For each noise model, we use a MWPM decoder for circuit-
level-noise to correct the errors32,42,43,53. We explain the details of
the noise model and our decoder in the Methods section.
We show our results in Fig. 4, where we plot the threshold for

1≤η≤10000. We see that at η= 1 the threshold for all three are
similar. As we increase η, the threshold of the RHG cluster state
with X-biased noise modestly outperforms the RHG cluster state

with Z-biased noise; however, as expected, the threshold of our
XZZX cluster state strongly outperforms both. For high bias
η≥1000, the threshold of the XZZX cluster state has pth > 2.0%,
more than doubling the RHG cluster state with Z-biased noise
which has pth < 1.0%. Our results also compare favorably to the
non-foliated clusters in45. At infinite bias where our noise models
become equivalent, the XZZX cluster state moderately outper-
forms the best non-foliated cluster state, which has a threshold of
1.93%. The non-foliated cluster state requires degree-10 con-
nectivity between qubits, while our cluster state maintains the
degree-4 connectivity of the usual RHG cluster state. Note that the
best cluster state under infinite bias is labeled “srs" in45 and has a
threshold of 1.16% under their error model; this translates to a
threshold of 1.93% in our error model. We also remark that even if
high qubit connectivity is achievable, the thresholds of the non-
foliated clusters of44,45 can likely be improved further using our
method to selectively replace some of the X-type qubits with Z-
type qubits.

DISCUSSION
Given the significant increase in threshold of the XZZX cluster
state under biased noise, the next step is to consider what qubit
platforms might naturally take advantage of the increased
threshold. Detailed investigations of the structure of errors for
specific qubit platforms are beyond the scope of this paper.
However, in this section, we make some preliminary suggestions
for quantum computing approaches that may benefit from
realizing the XZZX cluster state rather than another form of error
correction. Each of our proposals uses a two-step strategy, in
which we start with small cluster states, and fuse X-type qubits
with Z-type qubits using Bell measurements to create the XZZX
cluster state. Importantly, such fusions are bias-preserving: Z errors
on qubits involved in the fusion result in Z errors on the final
cluster state. Furthermore, as we’ll demonstrate for specific
platforms below, the additional errors introduced during the
fusions are also Z-biased. Thus, our constructions all result in a
final cluster state with Z-biased noise. Note that our constructions
of the XZZX cluster state can likely be further optimized to require
fewer operations and qubits, for example, by using the ideas in
ref. 48.

Dual-rail photons with linear optics
A prime candidate for realizing the XZZX cluster state is dual-rail
encoded photonic qubits, in which a qubit is represented by a
photon being in one of two photonic modes. Denoting the qubit
state by 0

�� �
and 1

�� �
, we have 0

�� �
:¼ 10j i and 1

�� �
:¼ 01j i. Using

only standard linear-optical elements, one can apply arbitrary
single-qubit gates to dual-rail qubits, but entangling operations
are inherently probabilistic2,3,54,55. Modern architecture proposals
for dual-rail photonic qubits involve building a cluster state from
smaller resource states using probabilistic destructive Bell
measurements ("fusions")2,3,48,56. To correct errors, these protocols
use the RHG cluster state48,56, but by using modified resource
states one can instead realize the XZZX cluster states. Building the
XZZX cluster state from the resource states requires the same
number of fusion measurements as the RHG cluster state. See Fig.
5, where we illustrate how to build the XZZX cluster state with
fusions. Starting from 3-qubit GHZ resource states ð 0 0 0�� �þ
1 1 1
�� �Þ= ffiffiffi

2
p

and ð þþþj i þ ���j iÞ= ffiffiffi
2

p
, we fuse these states

into 5-qubit resource states, postselecting on Bell measurement
success. From here, the 5-qubit resource states are fused into the
XZZX cluster state, the center qubits of the 5-qubit resource states
becoming the qubits of the XZZX cluster state.
Errors on the final XZZX cluster state come from three sources:

photon loss, probabilistic Bell measurement failures, and stochas-
tic Pauli errors induced by errors during preparation. Photon loss

Fig. 4 The threshold error rate pth as a function of bias η for the
three cluster states we consider, the XZZX and RHG cluster states
with Z-biased noise and the RHG cluster state with X-biased noise.
Here pth refers to the total error rate of the CZ gate in the
corresponding noise model. We see that the XZZX cluster state
strongly outperforms both RHG cluster states, although the RHG
cluster state has a modestly improved threshold for X-biased noise
as compared to Z-biased. The error bars (standard deviation) are
smaller than the marker size in the figure.
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results in qubit erasure in the XZZX cluster state, and can be
corrected by modifying the weights in the MWPM decoder just as
in the usual RHG cluster state57,58. For pure loss, the XZZX and
RHG cluster states have identical thresholds. However, in the
presence of biased noise, we expect the XZXX cluster state to be
able to tolerate higher rates of photon loss.
In the simplest fusion scheme the Bell measurement fails 50% of

the time3, but the success probability can be boosted by the use
of ancilla photons59,60 or more complicated “snowflake" resource
states56. In the case of Bell measurement failure, the fusion
measurement instead measures each of the qubits in the single-
qubit Z basis, which leads to unwanted Z-measurements on the
ultimate XZZX cluster state. These unwanted Z-measurements

apply the channel

ρ ! 1þ Z
2

� �
ρ

1þ Z
2

� �
þ 1� Z

2

� �
ρ

1� Z
2

� �
(12)

¼ 1
2

ρþ ZρZð Þ (13)

act thus as Z-errors with 50% probability, at locations heralded by
the Bell measurement failure. Given the XZZX cluster state’s
enhanced threshold to Z errors, we expect this construction to
lead to a higher threshold to bond failure than has been
previously established for the RHG cluster state61.
Finally, stochastic errors during preparation can propagate to

Pauli errors on the final cluster state. While there are many
potential sources of stochastic errors in dual-rail qubits, two
frequently considered sources of error are relative phase errors
and mode mismatch. Relative phase errors occur when certain
paths in an optical network cause unexpected phase evolu-
tion48,55. Mode mismatch may occur due to timing errors, causing
wavepackets to arrive at a beamsplitter at mismatched times62–65.
It can be shown that mode mismatch between the modes
entering a fusion measurement causes an effective Z error63,
although mode mismatch during construction of the resource
state can have other effects. Provided the relative phase errors
and timing errors primarily occur during the storage/routing that
occurs after building the resource states but before fusing them,
the noise on the final XZZX cluster state will be biased towards Z
errors. However, precisely quantifying the effect of these errors
versus other sources of non-idealities will depend on the specific
hardware.
Overall, then, we expect the XZZX cluster state to have a similar

tolerance to qubit loss, an improved tolerance to fusion failure,
and an improved tolerance to stochastic noise provided the noise
is biased. Detailed investigation of the structure of noise for
specific hardware is required to determine to what extent this
noise is biased. Quantifying the threshold improvements for error
models incorporating photon loss and fusion failure will be left to
future work.

Dual-rail photons with linear optics and weak cross-Kerr
nonlinearities
If we go beyond linear optics and allow for the possibility of weak
cross-Kerr nonlinearities, then a deterministic nondestructive Z1Z2
parity measurement can be made by interacting two dual-rail
qubits with a large coherent state αj i66–70, and a probabilistic
nondestructive Z1Z2Z3 measurement can similarly be made on
three dual-rail qubits70. These operations, along with single-qubit
rotations, are sufficient to build the XZZX cluster state, and the
stochastic noise introduced by the measurements is highly biased.
Briefly, a cross-Kerr nonlinearity between two modes b and c

results in an interaction χn̂bn̂c , where χ is typically small. If we
denote the two modes of the dual-rail qubit by a and b and the
mode of the coherent state by c, the cross-Kerr interaction
between b and c realizes the transformation

ψ0 10j iabþ
�

ψ1 01j iab
�
αj ic

! ψ0 10j iab αj ic þ ψ1 01j iab αe�iθ
�� �

c:
(14)

Here, θ= χt, where t is the time of the interaction. This nonlinear
interaction has been realized for θ ≈ 0.28 and θ ≈ 0.7 in different
platforms71,72.
If we sequentially repeat this interaction between mode c and

the second mode of N dual-rail qubits, the resulting transforma-
tion isX
z2f0;1gN

ψz zj i αj ic !
X
z

ψz zj i αe�iθjzj�� E
c (15)

Fig. 5 Building the XZZX cluster state with fusion measurements.
a The XZZX cluster state can be built from three-qubit GHZ cluster
states ð 0 0 0�� �þ 1 1 1

�� �Þ= ffiffiffi
2

p
and ð þþþj i þ ���j iÞ= ffiffiffi

2
p

using only
destructive Bell measurements. b Larger five-qubit cluster states
built from the three-qubit cluster states. When fusing small cluster
states using Bell measurements, the measurement outcomes
determine Pauli corrections we must apply to get the correct final
state. Importantly, a Z error on a qubit involved in a Bell
measurement only results in an erroneous Z correction on the final
cluster state, so that Bell fusions are bias-preserving. Note that to get
the third cluster state, we apply a Hadamard Ĥ to one of the qubits.
This converts Z errors to X errors on that qubit, but does not result in
X errors on the final XZZX cluster state. c The five-qubit clusters can
be fused with Bell measurements to form the XZZX cluster state.
Here, we illustrate the fusion measurements for the three qubits
highlighted in the inset.
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where jzj is the number of 1s in z. Focusing for a moment on the
N= 2 case, the state after the interaction is

ψ0 1 0 1
�� �

αe�iθ
�� �

c
þ ψ

10
1 0
�� �

αe�iθ
�� �

c

þψ0 0 0 0
�� �

αj ic þ ψ
11

1 1
�� �

αe�2iθ
�� �

c:
(16)

Performing a homodyne measurement of the X̂ cosðθÞ � P̂ sinðθÞ
quadrature on mode c doesn’t distinguish between 0 1

�� �
and

1 0
�� �

, or between 0 0
�� �

and 1 1
�� �

. However, for αθ sufficiently
large, the measurement distinguishes between jzjmod 2 ¼ 0 and
jzjmod 2 ¼ 0; thus, it measures the parity Ẑ1Ẑ2

66. Importantly, χ
can be very weak as long as α is sufficiently large.
The N= 3 case is similar, but in this case a homodyne

measurement of the X̂ cosðθÞ � P̂ sinðθÞ quadrature can’t distin-
guish between jzj ¼ 0 and jzj ¼ 2, but it can distinguish jzj ¼ 1
and jzj ¼ 3. If one measures the outcome corresponding to
jzjmod 2 ¼ 0, we have successfully performed a Ẑ1Ẑ2Ẑ3 measure-
ment, and otherwise the measurement fails70.
These two-qubit and three-qubit parity measurements are

sufficient prepare the two GHZ states shown in Fig. 5. In addition,
by performing a nondestructive Ẑ1Ẑ2 measurement followed by
two single qubit X̂1 and X̂2 measurements, we can perform a
deterministic Bell measurement. Thus, we can build the cluster
state using the same strategy as in Fig. 5, with the additional
benefit that the fusions always succeed.
The dominant error in the multi-qubit Z measurement is

photon loss. Photon loss on the qubit modes results in erasure
errors on the final cluster state, which as we noted above can be
corrected by modifying the MWPM decoder57,58. Photon loss on
the coherent state leads to dephasing errors67. As a simple
example, we can consider the final state in Eq. (14); a photon
loss on a coherent state results in the transformation (ignoring
normalization)

ψ0 10j iab αj ic þ ψ1 01j iab αe�iθ
�� �

c

! α ψ0 10j iab αj ic þ ψ1e
�iθ 01j iab αe�iθ

�� �
c

h i
:

(17)

Photon loss during the cross-Kerr interaction or at other points in
building the cluster state similarly results in dephasing errors. In
addition, other work has shown that the effect of a finite cross-
Kerr response time leads to dephasing as well73.

Coherent states with linear optics
An alternative qubit encoding for linear-optical quantum compu-
tation represents the qubit using coherent states 0

�� �
:¼ αj i and

1
�� �

:¼ �αj i, respectively74–76. This encoding has the advantage
that for large α, destructive Bell measurements can be carried out
deterministically using linear optics74. In addition, the dominant
source of error is photon loss, which causes dephasing.
We can use the same strategy as in Fig. 5 to build the XZZX

cluster state, with deterministic fusions, provided we can prepare
the GHZ resource states. The state ð 0 0 0�� �þ 1 1 1

�� �Þ= ffiffiffi
2

p
can be

prepared by sending the state þj i 0j i 0j i through a three-way
beamsplitter74 (here 0j i is the vacuum state, not to be confused
with 0

�� �
), and this preparation does not convert Z errors to X or Y

errors. Preparing the state ð þþþj i þ ���j iÞ= ffiffiffi
2

p
in a bias-

preserving way is more challenging. In the supplemental material,
we outline a procedure to prepare this GHZ state from five Bell
pairs in a bias-preserving way49. This procedure is likely too
resource-intensive for practical purposes, but illustrates that there
is no no-go theorem forbidding the construction of this state in a
bias-preserving way. We note that if the majority of photon loss
happens after building the GHZ states, we will still have biased
noise on the final cluster even if the GHZ preparation is not bias-
preserving.

Other biased-noise qubits
While optical platforms are typically considered for MBQC, our
cluster state may also prove useful for qubits that are typically
considered in the circuit model. Several platforms, such as
superconducting fluxonium77, quantum-dots78, Rydberg atoms38,
continuous-variable or bosonic qubits79,80, and many others,
exhibit a biased-noise channel. So far, these qubits have been
mostly considered for realizing the circuit model of fault-tolerant
topological codes, which will require native bias-preserving CX
gates in order to take advantage of the bias (a bias-preserving
gate is one which does not convert a dominant error to a less
dominant error and hence does not destroy the noise bias in the
underlying hardware). Unlike a diagonal gate such as CZ which is
trivially bias-preserving, a native bias-preserving CX gate is
unphysical in finite-dimensional systems due to a no-go result37,81.
Recent works have shown that in some platforms, it is possible to
circumvent this no-go result and implement CX gates in a bias-
preserving manner36,38. Nonetheless, the schemes proposed so far
are experimentally challenging and it is unclear how well they will
perform in practice.
Remarkably, the XZZX cluster state can be generated with only

bias-preserving CZ gates, nondestructive Z⊗ Z and Z⊗ Z⊗ Z
measurements, and destructive Bell measurements (see Fig. 6).
Nondestructive Z⊗ Z and Z⊗ Z⊗ Z measurements can be
performed with a single ancilla qubit and CZ gates, although we
need to repeat the measurement in order to avoid converting Z
errors to X errors at a high rate. Alternatively, we can use multiple
ancilla qubits to partially parallelize the repeated measurement81.
One may worry that by repeating the measurement to suppress X
errors, we are multiplying the rate of Z errors. However, in some qubit
architectures such as Kerr cats and dissipative cats, increasing the
bias of the qubit also increases the fidelity of CZ gates, so that the
probability of CZ gates introducing Z errors decreases as we increase
the bias (see29, Tables I and II,51, Appendix D2). Destructive Bell
measurement can be performed by making a nondestructive Z⊗ Z
measurement followed by single-qubit X measurements on each
qubit. Overall, this strategy is distinct from earlier work on realizing
biased-noise error correction without CX gates, which relies on
concatenating an inner repetition code with an outer CSS code81.
Thus, MBQC with the XZZX cluster state may be an avenue for higher
threshold fault-tolerant error correction for biased noise architectures
without bias-preserving CX gates. This opens up a new opportunities
to develop high-threshold universal MBQC with a plethora of biased-
noise qubits ranging from superconducting qubits to Rydberg atoms.
We have demonstrated that in the presence of biased noise, the

XZZX cluster state offers significant threshold improvements over
the usual RHG cluster state. Moreover, this cluster state can be
prepared using a similar strategy as the standard RHG state. Just
like the latter, the entire 3D XZZX cluster state need not be
prepared at once and at most two layers of the state need to exist
simultaneously at a given time41.
While the most direct preparation route is to initialize the Z-type

and X-type qubits in 0j i and þj i states respectively and then apply
the entangling CZ and CX gates as described in Fig. 3, we have
illustrated that for some qubit architectures it may be more
desirable to build the XZZX cluster state from smaller resource
states using Bell measurements.

Future directions
While we have focused on the impact of circuit-level Pauli errors in
this paper, in some architectures, e.g. photonic, qubit loss is an
additional source of error. Fortunately, it is known that the RHG
cluster state can simultaneously correct both Pauli errors and
qubit loss57,58. Similarly, in linear-optical photonic architectures
the entangling fusions only succeed probabilistically3, but the RHG
cluster state is resilient to these errors as well61. In both cases,
there is a tradeoff between the Pauli noise the threshold can
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tolerate and the amount of qubit loss or gate failure that can
occur; at higher rates of loss or gate failure, the thresholds against
Pauli noise are lower. We can use similar strategies to deal with
loss and fusion failure for the XZZX cluster state. Preliminary
simulations indicate that the XZZX cluster states retains its higher
threshold to biased noise in the presence of loss and bond failure.
Quantifying the threshold improvement for realistic values of bias,
loss probability, and gate failure rate will be left to future work.
Finally, while we constructed our high-threshold fault-tolerant

cluster state by foliating the XZZX surface code, we have not
addressed the possibility of high-threshold non-foliated cluster
states. Current versions of non-foliated cluster states are made
entirely of X-type qubits, which leave every qubit vulnerable to Z
errors44,45. It is likely that replacing certain X-type qubits with Z-
type qubits would lead to higher thresholds, by limiting the qubits
where Z errors can affect the cluster. This could allow for the low-
degree cluster states of refs. 44,45 to have a much higher threshold
under biased noise, and may further increase the already-high
thresholds of their high-degree cluster states under biased noise.
We leave this question open for future exploration.

METHODS
Circuit-level-noise model
For Z-biased noise in both the RHG and XZZX cluster state, we use
the circuit-level-noise model introduced in29 for biased-noise Kerr
cat qubits, although we do not expect the specific error model to
noticeably affect our results. We assume the CZc,t gates are
implemented by evolving under some interaction that is diagonal
in the Z-basis, e.g. evolving under an interaction of the form
χ ðIc þ ZtÞ1t=2þ ðIc � ZcÞZt=2½ � for time π/2χ. If we let pz be the
probability of any qubit experiencing a Z error during the
operation of this gate, then a CZc,t gate experiences 1cZt and
Zc1t errors with probability pz and a ZcZt error with probability p2z .
Because the underlying qubits are biased, we assume all other
errors occur with probability pz/η. A CXc,t gate experiences 1cZt
and ZcZt errors with probability pz/2, a Zc1t error with probability
pz, and all other errors with probability pz/η; justification for this
error model can be found in29,36. Finally, during both preparation
and measurement, each qubit experiences Z errors with prob-
ability pz and X and Y errors with probability pz/η.
For X-biased noise in the RHG cluster state, we use a physically-

motivated error model based on a specific implementation of CZ
gates. Let px be the probability of an X error occurring on a qubit at
any point in the CZ gate operation, and assume CZc,t is implemented
by evolving under an interaction of the form χ ðIc þ ZcÞ1t=2þ ðIc�½
ZcÞZt=2� for time π/2χ. Then X errors during the evolution result in an
error channel whose Pauli-terms are p0xIcXtρIcXt þ p0xXcItρXcItþ
p0xZcXtρZcXt þ p0xXcZtρXcZt þ p00x IcYtρIcYt þ p00x YcItρYcIt þ p00x ZcYtρ
ZcYt þ p00x YcZtρYcZt , with p0x :¼ ð2px=πÞ

R π=2
0 cos4ðϕÞdϕ ¼ 0:375px

and p00x :¼ ð2px=πÞ
R π=2
0 cos2sin2ðϕÞdϕ ¼ 0:125px . We assume every

other Pauli error occurs with probability px/η. Note that even if the
qubits only experience X errors, evolving under the CZ interaction
converts X errors into Z errors. Indeed, it does not appear that an X-
bias-preserving CZ gate is physical. In addition to errors during the
CZ gates, during both preparation and measurement X errors occur
with probability px and Y and Z errors with probability px/η.
To build the cluster state, we apply our entangling gates in the

order shown in Fig. 7 for both the RHG and XZZX cluster states,
although we expect other orderings to perform similarly. This gate
ordering determines the overall form of our noise model, as Pauli
errors associated with one gate are propagated through
subsequent gates. Note that the structure of the cluster state
ensures that a Pauli error on one qubit never propagates further
than that qubit’s immediate neighbors. Our ordering is compatible
with building the cluster state layer-by-layer in time, as we can
measure the leftmost qubits as soon as they are entangled with
their neighbors without waiting for the rightmost qubits to be
initialized. Our ordering also ensures that qubits can be initialized,
entangled, and measured without ever sitting idle.

The MWPM decoder
To match error syndromes in a circuit-level-noise model, we use
the approach originally developed in Ref. 53. Given error syndrome
locations {e1, . . . , en}, we want to determine the most likely pairing
of the error syndromes. This can be done via a MWPM algorithm,
which takes as input the weights Wei ;ej between all pairs of error
syndromes, and outputs a matching that minimizes the weights
between them42,43.
We determine the weights between two syndromes Wei ;ej by

approximating � logðPei ;ej Þ, where Pei ;ej is the probability that ei
and ej were connected by a string of errors. We generate Wei ;ej by
iterating through all possible errors. For each possible preparation,
measurement, or gate error during the creation of the cluster
state, we determine the effect of that error on the syndromes. We
illustrate a representative case in Fig. 8. We consider only errors
that result in exactly two error syndromes. Each time two locations
s1 and s2 are connected by such an error, we increment the
probability ps1s2 associated with that connection by the probability

Fig. 6 Building the XZZX cluster state with simple bias-preserving
operations. a The XZZX cluster state can be built from a product of
þj i states using only nondestructive Z1⊗ Z2 and Z1⊗ Z2⊗ Z3
measurements, destructive X1⊗ X2 measurements, and CZ gates.
Note that bias-preserving multi-qubit Zmeasurements can generally
be realized nondestructively in biased-noise architectures81. b Two
elementary cluster states. The left cluster state is constructed by
preparing three qubits in the þj i state and performing the three-
qubit Z measurement. The right cluster state is constructed by
preparing four qubits in the þj i state and performing two-qubit Z
measurements as shown. c From the elementary cluster states, we
can generate larger five-qubit cluster states. The first cluster is
formed by fusing three-qubit cluster states using nondestructive
Z⊗ Z followed by destructive X⊗ X measurements. The second
cluster is formed from the four-qubit cluster state by preparing an
additional qubit in the þj i state and applying a CZ gate as shown.
From these five-qubit resource states, we can build the XZZX cluster
state as in Fig. 5c.
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of that error. We then define the local weight between two
syndrome locations to be ws1s2 ¼ � logðps1s2Þ, with ws1s2 ¼ 1 if s1
and s2 are not connected by any error. The true weight We1e2
between two syndrome locations ei and ej is then defined to be
the smallest sum of local weights for all paths connecting ei and ej:

Weiej ¼ min
fsg

weis1 þ ws1s2 þ � � � þ wsmej

� �
: (18)

The weights W can be efficiently determined from the local
weights w. Standard pathfinding algorithms82 compute a weight
Weiej in time Oðn logðnÞÞ, where n is the number of qubits.

Determining the threshold
To determine the threshold, we use the method of83. For a given
η, we simulate a cluster state of size d experiencing errors at a
physical error rate pz and determine the logical error probability
pL; we repeat this procedure for various values of d and pz. Near

threshold pth and for large values d, the logical error rate has the
scaling form

pL ¼ f ðp� pthÞd1=ν
	 


(19)

for some scaling parameter ν. Expanding f(x) ≈ A+ Bx+ Cx2 for
small x, we fit the values of A, B, C, ν, and pth to give an estimate of
pth.
The error bars in our estimate for pth come from the uncertainty

in this fit. The uncertainty originates from statistical uncertainty in
our estimate for pL, but does not include possible systematic errors
from our approximation to f(x) or finite-size effects, as is standard
when using the method of ref. 83.
For each threshold estimate, we take data at four different

distances d and 12− 15 different values of pCZ within 20% of our
threshold value. For the XZZX cluster state with η≥100 we use an
asymmetric cluster state with distance 3d in the time- and Z-

Fig. 7 The order in which we apply our entangling gates to build the both the RHG and XZZX cluster state. Red edges are gates that are
performed at that timestep, red vertices are qubits that are initialized for that timestep, and black edges/vertices are gates/qubits that have
already been introduced in a previous timestep. We construct our cluster state layer-by-layer, so our gate order is compatible with only a 2D
layer of the cluster state existing at any point in time. Note that timesteps 7 and 8 coincide with timesteps 1 and 2 for the next layer. Our
choice of gate order ensures that each qubit can be initialized, entangled with its four neighbors, and then measured without ever being idle.

Fig. 8 An example of propagating errors in the RHG cluster state. If an X⊗ X error occurs after the CZ gate highlighted in red while building
the RHG state, subsequent CZ gates spread X errors to Z errors on neighboring qubits. The X⊗ X error on the CZ gate results in a Pauli error on
the final state that involves three Z operators and two X operators. When we measure the qubits in the X basis, the X errors do nothing, while
the Z errors result in erroneous measurements on the red highlighted qubits. Overall, the X⊗ X error results in the error syndrome shown.

J. Claes et al.

10

npj Quantum Information (2023)     9 Published in partnership with The University of New South Wales



directions, and distance d in the X-direction for d= 5, 6, 7, 8. For all
other simulations, we consider a cluster state with distance d in all
directions for d= 12, 13, 14, 15. We assume perfect stabilizer
measurements on the time boundaries, so that error strings only
end on the X- and Z-boundaries. For each value of d and pCZ we
estimate the value of pL through some number nS of Monte Carlo
samples, which ranges from nS= 68, 000 for our smallest systems
to nS= 1600 for our largest system. When performing the fits, we
weight the data according to the statistical uncertainty, so that
data points with less uncertainty are weighted more highly in the
fit. We include more details of the distances d and the values pCZ
we consider in the supplemental material49.

DATA AVAILABILITY
The simulation data for determining the thresholds of the cluster states is available at
https://github.com/jahanclaes/XZZXClusterState.

CODE AVAILABILITY
The code used for simulating the cluster states is available at https://github.com/
jahanclaes/XZZXClusterState.
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