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Fundamental quantum limits of magnetic nearfield
measurements
Chen Mechel1,3, Jonathan Nemirovsky 1,3, Eliahu Cohen 2 and Ido Kaminer 1✉

Major advances in the precision of magnetic measurements bring us closer to quantum detection of individual spins at the single-
atom level. On the quest for reducing both classical and quantum measurement noise, it is intriguing to look forward and search for
precision limits arising from the fundamental quantum nature of the measurement process itself. Here, we present the limits of
magnetic quantum measurements arising from quantum information considerations, and apply these limits to a concrete example
of magnetic force microscopy (MFM). We show how such microscopes have a fundamental limit on their precision arising from the
theory of imperfect quantum cloning, manifested by the entanglement between the measured system and the measurement
probe. We show that counterintuitively, increasing the probe complexity decreases both the measurement noise and back action,
and a judicious design of the magnetic interaction reveals optimal schemes already at spin-1 probes.
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INTRODUCTION
Quantum metrology, the study of high-precision quantum-
assisted measurements, has been advancing rapidly in recent
years, presenting sensing and imaging capabilities down to the
nanometer scale1–17. These capabilities display state-of-the-art
precision in a vast variety of fields, ranging from quantum
clocks18–20 and gravitational-radiation detectors21–23 to quantum-
enhanced imaging24–28. Experiments in quantum metrology utilize
the control of quantum devices down to a single-particle
resolution in systems such as nitrogen-vacancy centers29–36,
superconducting circuits37–41, Bose-Einstein condensates42,43, cold
atoms44–47 and photonic systems48–52.
Within the field of quantum metrology, the area of quantum-

assisted magnetic sensing features a diverse set of capabilities—
including coherent control53–59, trapping60–64, magnetic ima-
ging7,65–72 and quantum state tomography73,74. These capabilities
have been used in a variety of systems such as neuron-activity
tomography75,76, NMR-based77–79 and ESR-based80–82 quantum
computing, quantum magnetometers7,29,31–34,36,39,43,45,69,75,83–93

and magnetic resonance imaging67,73,88,94–105. State-of-the-art
magnetic microscopes enable probing of magnetic structures
down to the atomic scale7,53,58,73,106–108.
These advancements motivate analyzing the ultimate precision

limits of such measurement schemes, to help identify optimal
sensing schemes for the smallest scales. The precision of magnetic
measurements today is limited by classical noise. For example,
superconducting quantum interference devices (SQUIDs)109–118 are
eventually limited by Johnson noise119. Nevertheless, it is intriguing
to look beyond current limitations and consider the fundamental
limits that would arise at the most extreme conditions of measuring
individual spins. At these scales, magnetic measurements become
limited by the quantum interaction between the two parties: the
measured (source) and measuring (probe).
The quantum nature of the measurement process raises

fundamental questions regarding the ability to construct suitable
measurement schemes. It is not entirely clear how to utilize the
entanglement between the measuring and measured parties, and

what are the intrinsic limitations on the precision of such
measurements. Therefore, it would be interesting to find limits
on the back action a measurement can induce on the measured
party and explore the tradeoff between lowering the back action
and improving the precision.
Here we present the fundamental limits of magnetic nearfield

measurements, arising from no-go quantum information princi-
ples. Specifically, we show the trade-off between measurement
precision and back action on the measured system governed by
the theory of imperfect quantum cloning. Our work focuses on the
conceptual example of magnetic force microscopes (MFMs), to
show designs that achieve optimal measurement schemes.
Specifically, we analyze scenarios where the source is a single
spin and the probe is a general spin configuration, thus modeling
an arbitrary detection probe, which can be a spin, atom, molecule,
or complex solid object. We solve for the spin–spin interactions
involved in the measurements, analyzing the results from the
perspective of the measurement optimality using two criteria: the
uncertainty of the measurement and the back action of the
source. Finally, we discuss the fundamental connection between
sensing and imperfect quantum cloning, presenting several
consequences arising from this connection.
We find that counterintuitively, the most delicate quantum

magnetic detector—a single spin-1/2 particle—is not the optimal
magnetic detector. In fact, we show that better measurements are
obtained by using higher spin probes, according to both the
uncertainty and back-action criteria. Interestingly, classical measure-
ments of quantum sources, as in the Stern-Gerlach apparatus, are
retrieved as the classical limit of the quantum probe. Furthermore,
we show how a judicious design of the source-probe interaction
Hamiltonian can optimize both criteria already with spin-1 probes.

RESULTS
Theoretical model
Our model of the magnetic measurement is inspired by the
magnetic force microscope (MFM) apparatus95,97–102,104,105. A
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conceptual scheme is presented in Fig. 1. The measurement
device is a rigid tip that consists of a fixed spin configuration
(probe), attached to an elastic cantilever which is allowed to bend
in the vertical direction. The measured party (source) is part of a
target sample and is assumed to remain static throughout the
measurement process. The spin–spin interaction between the
source and probe induces two types of effects: spin-rotation of the
interacting spins (source and probe), and a lateral force between
the source and the probe. Since the probe is a rigid body, this
force bends the cantilever, resulting in a vertical displacement of
the probe. This displacement can be detected using standard
laser-interferometry techniques on the bent cantilever120–123.
Using the known mechanical properties of the cantilever, its
bending is translated to the magnetic force exerted by the source
spin.
To quantitatively compare various measurement configurations,

we define the objective of our magnetic measurement to sense
the vertical spin component of the source, i.e., the projection of its
state on the cantilevers’ axis of movement (z). This objective is
inspired by applications of quantum state tomography as used in
quantum computing and simulators. For the sake of simplicity, we
focus our attention on the case of spin-1/2 sources and general-
spin probes with different properties and initial states. Our analysis
can be directly extended to higher source-spin quantum numbers
and to equivalent spin observables. Note that the spin states in
the manuscript are written in the spin-z basis, so we can write a
general spin-1/2 source as ψj i ¼ cos θ2 þ 1

2

�� �þ eiϕsin θ
2 � 1

2

�� �
.

Throughout the analysis, we assume an initially pure state of the
source spin, without loss of generality; generalization to mixed
states appear in the Methods section. By the act of measurement
we aim to estimate its z-spin component σzh i ¼ cos θ.
We can model the act of measurement as a von-Neumann type

interaction with a measuring pointer124,125. The pointer state
represents the vertical displacement of the rigid tip (cantilever and

probe spins). The Hamiltonian of the system is:

H ¼ p2

2M
þ 1
2
Kz2 þ Hint (1)

where p and z are the z-axis momentum and position operators of
the rigid tip (respectively). K and M are the vertical stiffness
coefficient and mass of the cantilever (respectively). Hint ¼
Hint z � z0ð Þ is the overall spin–spin interaction Hamiltonian and
z0 is the vertical position of the source spin. The spin–spin
interaction Hamiltonian Hint couples the source spin to the probe
spins and the cantilever vertical displacement, thereby imple-
menting the measurement.
We take the spin–spin interaction Hamiltonian without loss of

generality as a sum of magnetic dipole–dipole interactions
between the source spin and each of the probe spins:

Hint1;2 ¼ μ0�h
2

4π~rj j3 γ1γ2 S1 � S2 � 3 S1 �b~r� � b~r � S2� �� �
(2)

where S1;2 ¼ ðSx1;2; Sy1;2; Sz1;2Þ are the vector spin operators, γ1, γ2
the gyromagnetic ratios, ~r ¼ x; y; zð Þ is the relative position
operator of the spins (b~r is the unit vector), μ0 is the vacuum
permeability and �h is the reduced Planck constant. We construct
the overall Hint by summation of Hamiltonians as in Eq. (2), taking
into account the spatial distribution of the probe spins (assumed
to be rigid), and the spins properties—gyromagnetic ratios and
spin quantum numbers. We note that we also sum over
interaction terms between pairs that are both inside the probe.
Their relative position will not change, but their spin states can
change. The overall interaction Hamiltonian is:

Hint ¼ μ0_
2

4π

X
i;j;i≠j

γiγj
1

r!ij

�� ��3 Si � Sj � 3 Si � br!ij

� � br!ij � Sj
� �� �

: (3)

The Hamiltonian governing the measurement consists of two
types of operators: the spin states Si and the cantilever’s relative

Fig. 1 A conceptual example of a magnetic nearfield measurement system, analyzed using the principles of quantum measurements. A
sample (gray) contains one or more spins to be measured (black cones). The measurement is performed on one of them at a time. The
measurement device (tip) consists of spins attached to a vertically-bending cantilever (blue). The tip can contain a complex spin configuration,
as shown in the inset on the right. Different spin configurations represent different measurement setups, which are investigated to find the
optimal one. The measurement proceeds as follows: The tip is brought closed to the measured spin (source), such that it interacts with the
tip’s spins (probe). The interaction exerts a force on the cantilever, yielding an (entangled) superposition of vertical displacements, each
correlated to a different multi-spin state. Once the displacement of the cantilever is measured (usually with a laser interferometer120–123), the
system’s state collapses to a certain cantilever displacement and multi-spin state, and its state is known from the measured value of the
displacement. We define the measurement precision by how precisely the z-magnetization of the source spin is obtained from the measured
displacement.
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vertical displacement from equilibrium z–z0. Note the connection
between these two degrees of freedom under this Hamiltonian:
each collective spin state corresponds to a set of vertical
equilibrium points, and each vertical displacement corresponds
to a set of spin eigenstates.
The measurement process can be formulated as follows. The

system is initialized to be in the states ψ0j isource for the source,
Ψ0j iprobe for the probe (generally multi-spin state), and zinitj ipointer
for the pointer. Under the Hamiltonian in Eq. (1), the system
evolves to the following state:

ψ0j isource Ψ0j iprobe zinitj ipointer!
X
j;k

αj;k Φj

�� �
sourceþprobe zkj ipointer:

(4)

The quantum state of the system is a superposition of joint
source-probe spin-states Φj

�� �
sourceþprobe and correlated pointer

states zkj ipointer, with corresponding amplitudes αj,k. Meaning that
the probe becomes entangled with the source, and the pointer
occupies multiple vertical displacements zk. Under the approxima-
tion of small cantilever displacements (see discussion), the states
Φj

�� �
sourceþprobe are the eigenstates of Hint, and therefore the

coefficients αj,k have time independent absolute value. The act of
measurement projects the state of the pointer into a certain

vertical displacement and thus projects the source+probe spins
into a certain joint state. The projection probabilities on each state
depend on the overlap between the spin state and the initial state
of the spins in the system, expressed through αj,k. Note that a
single pointer state can correspond to several spin eigenstates
due to degeneracy of Hint. The final state of the system can be
written as a density matrix:

ρtot ¼
X
k

zkj i zkh jpointer
X
j;j0

αj;kα
�
j0;k Φj

�� �
Φj0
� ��

sourceþprobe

" #
: (5)

Given the final state of the system, we compute the quality of
the measurement using two criteria: the uncertainty of the
measurement and the back action of the source. Since the
uncertainty is calculated from the probability distribution of the
pointer displacements and the back action is calculated from the
source’s final density matrix, we can derive both from Eq. (5).
The density matrix of the spins without post-selection on the

pointer state can be calculated by using partial trace on Eq. (5):

ρsourceþprobe ¼ Trpointer ρtotð Þ ¼
X
k;j;j0

αj;kα
�
j0;k Φj

�� �
Φj0
� ��

sourceþprobe; (6)

from which we can calculate an additional partial trace and find
the density matrix of the source spin following its interaction with

Fig. 2 Quantifying the limits of quantum measurements. Using the back action on the source spin and the uncertainty of its measured
value. a, b Both criteria are evaluated and plotted on the Bloch spheres, with the position on the sphere denoting the initial state of the source
spin. All the spins in this figure are spin-1/2 and the Bloch spheres are oriented such that their north pole represents the source state 1=2j i. In
each case, the position and orientation of the probe spins are marked on the shell of the spheres. The minimal, maximal, and averaged value
of each map is marked on its color bar. c One-dimensional cuts of (a) and (b), as a function of the source’s initial z-magnetization,
corresponding to the altitude in the sphere (cos θ). Note that these cuts represent any azimuthal angle since the maps in (a, b) are azimuthally
symmetric. d The measured forces as a function of initial z-magnetization. Error bars represent the standard deviation of the quantum-
measured force distribution. The mean of each error bar resembles the classical value of the force, as expected from the correspondence
principle. The uncertainty is calculated based on the standard deviations and the mean-force range (marked on the right). Note the
correspondence between (c) and (d): larger error bars in (d) correspond to higher uncertainty values in (c). The least (most) back action and
measurement uncertainty occurs from source spins states represented at the north pole (a bit below the equator). e–h Back-action (e, g) and
uncertainty (f, h) maps for double-spin probes; color bars are marked with minimal, average and maximal values. All maps in (e–h) have xz-
plane symmetry due to similar symmetry in the probe spatial distribution, thus only the hemisphere y > 0 is shown. The differences between
(e, f) and (g, h) are caused by the different orientation of the probe spin at the equator, creating a substantial increase in the average
uncertainty, almost by a factor of 5.
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the probe:

ρsource ¼ Trprobe ρsourceþprobe

� � ¼X
k;j;j0

αj;kα
�
j0;kTrprobe Φj

�� �
Φj0
� ��

sourceþprobe

� �
: (7)

Similarly, the density matrix of the pointer, which determines
the probability of each measurement, can be calculated from Eq.
(5) using a partial trace:

ρpointer ¼ Trsourceþprobe ρtotð Þ ¼
X
k

pk zkj i zkh jpointer; pk ¼
X
j

αj;k
�� ��2:

(8)

The back action exerted on the source is computed as one
minus the similarity between the source’s final and initial states,
for which we use the standard fidelity metric126:

back action ¼ 1� F source ¼ 1� ψ0h jρsource ψ0j i (9)

To find the measurement uncertainty, which quantifies the
confidence level of a one-shot measurement, we first define the
measured quantity—the force bending the cantilever. The force
acting on the cantilever is calculated as the z-derivative of the
magnetic spin energy for each spin state ψkj i that corresponds to
a measured zkj i. Mathematically, we calculate the force as

Fk ¼ � d
dz

ψkh jH ψkj i
����
z¼zk

: (10)

The uncertainty is calculated by the variance in the force
normalized by the range of possible mean results in this setup
(mean-force range):

uncertainty ¼ Var Fð Þ
range2 Fð Þ ; (11)

where Var(F) is the variance of the force distribution and range (F)
is the mean-force range across all possible initial source states. The
mean-force range is a property of the measurement setup; the
normalization is done to appropriately represent the ability to
extract information about the source spin from a single-shot
measurement: differences in the mean force are detectable only
when they are larger than the standard deviation of each mean.
The normalization of the variance by the mean-force range
eliminates some of the dependency of the uncertainty on
Hamiltonian global factors such as gyromagnetic ratio or initial
source-probe distance. This dependency elimination occurs when
all the spins in the system share that same properties, which
appear as pre-factors in the spin–spin Hamiltonian in Eq. (3).
Importantly, both criteria in Eqs. (9), (11) are dimensionless, with
lower values representing better measurement setups. The
minimal value of both criteria is 0; the maximal value is 1 for
the back action and infinity for the uncertainty.
Figure 2 presents the back-action and uncertainty criteria as

heat maps on Bloch spheres, where the location on the Bloch
sphere is the initial state of the source spin. These maps help
compare between different measurement setups by extracting the
maximal, minimal and averaged value from each map. The maps
depend on the spins of the probe, as shown by comparing a
single-spin probe (Fig. 2a–d) and a double-spin probe (Fig. 2e–h).
Figure 2c displays one-dimensional cuts of maps as a function of
initial source z-magentization (equivalent to elevation angle in the
Bloch sphere). Figure 2d depicts the procedure of calculating the
uncertainty: from the distribution of force values marked by their
mean and standard deviation using error bars, the variance is
calculated and divided by the mean-force range squared. It is
interesting to note that the classical expected values of the forces
arise as the means of these quantum force distributions, as
expected from the correspondence principle.
We note how the symmetry of the maps arises from the

symmetry of the probe spin distribution. This symmetry is seen in

the case of a single spin in Fig. 2a, b, and in the mirror symmetry
about the x-z plane throughout Fig. 2, arising from the probe
spatial distribution having the same symmetry. Furthermore, the
orientations of the probe spins strongly affect the map distribu-
tion and the overall quality of the measurement. Comparing Fig.
2e–h, a change in the orientation of the probe spin on the equator
from radially outwards to þ 1

2

�� �
(i.e., up) strongly affects both

maps. The uncertainty values are more strongly affected, having
the average value increase almost by a factor of 5. Figure 2d
shows the linear relation between the mean force and the source
spin z-component, as expected for the classical limit. The standard
deviation of each mean value displays the quantum nature of this
measurement.

Optimization using higher spin probes
We now turn to optimizing the probe based on the uncertainty
and back-action criteria. Considering standard experiments of
magnetic sensing in the quantum regime, we envision the probe
as a quantum system such as an atom or a molecule constrained
to the cantilever (e.g., refs. 7,58,107). In principle, the probe could be
described by its sub-atomic particles, e.g., as a large collection of
spin-1/2 particles with complex spatial structure, yet it greatly
complicates the analysis. Hence, for the results below, we take the
reasonable assumption that the intra-atomic or intra-molecular
distances between the spins are much smaller than the distance
between the cantilever and the source, and model the probe as a
single spin with a higher spin quantum number. This is justified
when the energy scale of spin flips inside the probe dominates the
Hamiltonian over spin flips of the source. Probes of this structure
are thus modeled similarly to the single-spin setup presented in
Fig. 2a, b, i.e., no inner-probe geometrical structure. Yet, although
seemingly simple, this setup already provides much insight for the
fundamental quantum limits of magnetic measurements, exhibit-
ing intriguing features as a function of the spin quantum number.
Figure 3 presents the back action and uncertainty of the high

spin number single-spin probes, based on derivations appearing
in the Methods section. Figure 3b, c presents the average values of
the back action and uncertainty, color coded by spin quantum
number. Figure 3d summarizes the criteria for different spin
numbers by taking m = s. Figure 3e, f present the dependence of
the back action and uncertainty on the initial source z-
magnetization component, for different spin numbers (again
taking m = s). The limiting case of s → ∞ is plotted in black
asterisks. Our results imply that higher spin quantum numbers
yield better measurements, and within that, higher spin z-
components yield better measurements. This conclusion is
surprising, when bearing in mind the requirements of both
minimal back action and minimal uncertainty. Specifically, this
result comes against the classical intuition of having the smallest
possible probe charge or mass for minimizing the measurement-
induced back action on the source spin.
Note that within each spin quantum number, there is a strong

variation of both criteria as a function of the probe’s spin z-
component. This is especially true for integer-spin probes: in the
case of 0-spin states, the lack of magnetic charge implies that no
measurement occurs, yielding zero mean-force range and thus
diverging uncertainty, yet there is still back action exerted on the
source spin (although minimal), occurring due to quantum
transitions of the two-particle system. This effect again demon-
strates the fundamental difference between quantum and
classical measurement—back action can be exerted even without
any information being extracted.
It is interesting to compare the performance of this quantum-

spin setup to its classical counterpart—the Stern-Gerlach appara-
tus (SG)—defined as a projection of the spin on its z-component
by a classical magnetic field that experiences negligible back
action. Markedly, our quantum measurement apparatus converges
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to the results of SG as s → ∞, both in average values (Fig. 3d) and
in the dependence on initial source state (Fig. 3e, f). This
convergence demonstrates the quantum-classical correspondence
principle and implies that our measurement scheme can be seen
as a quantum extension of the SG scheme. The emergence of the
SG scheme raises intriguing questions about the universality of
this convergence for other interaction Hamiltonians and whether
it is possible to bypass the classical SG performance using a
different quantum scheme. In the next part, we investigate this
direction using different interaction types and show that the
optimality of the SG scheme can already be achieved at lower spin
values.

Optimization using generalized spin–spin interaction
We generalize our model to include additional interaction types
other than magnetic dipole-dipole (Eq. (2)), e.g., exchange
interaction107,127–129, spin quadruple interaction130 and the pre-
sence of external magnetic fields. The generalized model better
captures inter-atomic and inter-molecular interactions of real
atomic and molecular probes, as they are often modeled using the
above-mentioned Hamiltonians to account for various electric and
chemical phenomena. As an example for the richness of the
interactions involved, MFMs were demonstrated to operate using
exchange interaction even between non-identical atoms107,129,131.
In the case of a single-spin probe (as a model for molecular
probes), we optimize the measurement by a judicious choice of
the source-probe interaction and the probe spin number. To this
end, we apply our methods directly on a generalized set of

interaction Hamiltonians and investigate how the measurement
qualities from Fig. 3 depend on the interaction parameters.
As a proof of concept, we choose a generalized Hamiltonian

that includes both magnetic dipole–dipole interaction with an r−3

dependence (as in Eq. (2)) and ferromagnetic exchange interac-
tion (−S1⋅S2) with an r−6 dependence, where r is the source-probe
distance:

Htot ¼ αHdipole þ βHexchange � α Sx1S
x
2 þ Sy1S

y
2 � 2Sz1S

z
2

� �þ β �S1 � S2ð Þ
¼ α� βð ÞSx1Sx2 þ α� βð ÞSy1Sy2 þ �2α� βð ÞSz1Sz2:

(12)

where α, β are parameters representing the effective strength of
each interaction type. In realistic settings, they are functions of the
source-probe initial distance and electro-chemical properties of
the source and probes spins132. The ratio α

β shall be denoted as the
interactions ratio. As guiding examples, note that α

β ¼ 1 yields the
Ising Hamiltonian �Sz1S

z
2
133 and α

β ¼ � 1
2 yields the XY Hamiltonian

Sx1S
x
2 þ Sy1S

y
2
127,128. Since global Hamiltonian factors do not affect

the measurement uncertainty and back action, we investigate this
Hamiltonian as a function of αβ and probe spin numbers. Hence, the
result of the optimization we seek is triplets of values: αβ and the
probe’s state |s, m〉, which together optimize the measurement
uncertainty and back action.
Figure 4 shows how the parameters of the interaction

Hamiltonian determine the behavior of the measurement setup.
Interestingly, the uncertainty and back action can both be
optimized simultaneously by combining an exchange interac-
tion and a dipole-dipole interaction. Spin-1/2 probes reach our

Fig. 3 Quantum measurement of a spin using higher spin probes. Higher spins provide a better measurement performance. a Setup
schematics of a high-spin probe with total spin s and z-component m. The color legend for panels (b–f) is shown on the right. b, c Back action
(b) and uncertainty (c) for probes of different spin numbers and as a function of m, the probe’s spin z component. The values of the criteria are
averaged over all possible initial source spin states (the entire Bloch sphere). The vertical axis in (c) was cut in the value 1 for figure clarity.
d Average uncertainty vs. average back-action plots for each s (with m = s), connected in dashed black line using the theoretical formulas.
Both measurement criteria are improved by using higher spins. e, f Back action (e) and uncertainty (f) for different values of s (with m = s), as a
function of the initial z-magnetization of the source. Note the convergence to the Stern-Gerlach (SG) type measurement (black asterisks).
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best-achieved uncertainty value of 1
6 by taking α

β ¼ 2, while the
back action remains constant as a function of α

β and is not
optimized. Nonetheless, both the back action and uncertainty
can be simultaneously optimized at larger spin values, reaching
the optimal values of both criteria for α

β ¼ 1. The optimized
values occur when m = s, achieved already at spin-1 particles. As
a comparison, when the Hamiltonian is made solely of dipole-

dipole interactions
�
α
β ! 1

�
, this optimal value is reached only

in the limit s → ∞. The optimal Hamiltonian reads Hint ¼ �Sz1S
z
2,

which resembles the Ising model133. An additional effect
displayed in Fig. 4b is the divergence of the uncertainty for
negative values of α

β, occuring for all spin values. This effect
matches the limit of m = 0 probes in Fig. 3, and occurs due to
the vanishing mean-force range, as evident from Eq. (11).
The analysis above can be applied for other types of

interactions, including with external magentic fields, and even
including molecular anisotropy130. Different Hamiltonians could
be relevant in determining the optimal properties for the probe,
depending on experimnetal parameters such as the charateristic
source-probe distance (affecting each interaction type differ-
ently) and the atomic/molecular properties of the source
(yielding different interaction effects). Generalizing the source-
probe interaction, one can write the interaction Hamiltonian:

Hint ¼ S1A S2ð ÞT (13)

where S1,2 are the vector spin operators, T denotes matrix
transpose, and A is the 3-by-3 interaction tensor. For example, a
dipolar interaction uses Adipolar / diag 1; 1;�2ð Þ and an
exchange interaction uses Aexchange / diag 1; 1; 1ð Þ. The eigenva-
lues of A determine the nature of the interaction130. The A
interaction tensor can be further investigated to improve upon
our result, potentially yielding an optimal measurement already
at spin-1/2 probes rather than spin-1. In a similar way, additional
terms can be added to the Hamiltonian, such as Zeeman
terms (proportional to S1,2) and spin anisotropy (proportional to
S21;2 or Sz 2

1;2 ).

Possible generalizations of our approach
Our formalism can be further generalized in several different
directions. One generalization is of the uncertainty measure
defined in Eq. (11). The present one has the advantage of
simplicity, especially for operations such as averaging and
minimizing. Other options include the error-propagation-based
uncertainty, replacing the denominator of Eq. (11) by a partial
derivative or gradient of observable by the source initial state
parameters: ∂ σzh imeasured

∂θsource
. In case the derivative is constant, this

definition coincides with Eq. (11). Additional options could be
using the classical or quantum Fisher information1,17. The
quantum Fisher information can be applied on different options,
such as the joint pure state of the entire system or the reduced
mixed state of the probe. The main subtlety here is the existence
of decoherence during the measurement process as experienced
by the probe. Additionally, the quantum Fisher information could
yield additional uncertainty bounds using the quantum Cramér-
Rao bound1,134. We leave this intriguing direction for future work.
A second generalization that can be made in our model is of the

pointer (Eq. 4 and subsequent derivation), and specifically the
vertical motion of the cantilever. In our formalism, we describe the
cantilever using a single vertical displacement z with a corre-
sponding quantum state zj ipointer, neglecting the inherent width
in z. The width is related to the wavefunction of the pointer as a
quantum harmonic oscillator, whose spatial representation can be
written as φ z � zkð Þ, where zk is the equilibrium due to the spin
interaction. One may take φ(z − zk) to be a Gaussian function as
the ground state of the oscillator; its width would be manifested
as an intrinsic quantum noise in the process of reading the
cantilever state and inferring the spin–spin force from it. In this
work, we assumed ideal cantilever-reading process, yet improve-
ments in this realistically-imperfect process should be of great
value in our model of measurement, as they might reduce
measurement noise that could obscure our quantum optimization
effect. Two types of possible improvements to the reading process
are based on squeezed states. First, one can prepare the cantilever
initial state φ to be squeezed in the z-direction, reducing its

Fig. 4 Optimization of the quantum measurements by designing the source-probe interaction Hamiltonian. a An exchange interaction
can optimize the measurement. The source-probe interaction Hamiltonian is a sum of dipolar and exchange interactions with strengths α and
β (respectively), see Eq. (12). The coefficients α, β depend differently on the source-probe distance and have different coupling constants, thus
their desired values are obtained by judicious design of a probe with certain electro-chemical properties, appropriate spin numbers s, m and
by varying the source-distance r. b, c Results of numerical simulations: uncertainty (b) and back action (c) as a function of the interaction ratio
α
β, for different spin numbers s, m (see legend in (a)). Varying the source-probe interaction relative to solely dipolar interaction can improve the
quantum measurement for any spin value: spin-1/2 (blue) yields optimal uncertainty for α

β ¼ 2, yet with the same suboptimal back action as in
the dipolar case. Higher spin values (e.g., spin-1 in red and spin-3/2 in purple) yield fully optimal values of back action and uncertainty for
α
β ¼ 1, marked in green. This enables optimal measurement already with spin-1 particles without the need for higher spin values as seen in Fig.
3. For a given value of s, higher m values are still favorable in both criteria, similarly to Fig. 3. Note the divergence of the uncertainties in the
region �1 � α

β � � 1
2, marked in (b) by gray dashed lines. The exact value of α

β that yields a divergence depends on the spin values. This
divergence occurs due to vanishing mean-force range, as in Fig. 3 for m = 0.
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inherent quantum width, hence reducing the shot noise of
measuring the cantilever displacement135. Second, one can
prepare the light that is used for measuring the cantilever
displacement to be squeezed. This squeezed light has reduced
fluctuations in a chosen quadrature (amplitude or phase), and has
been proven to enhance measurement accuracy in a variety of
setups136–139. Note that these improvements are complementary
to our quantum optimization analysis, as they are related only to
the cantilever-reading process and not the spin properties and
interaction.
A third generalization of our model can address the small

displacement approximation. This approximation is a first-order
perturbation of the spin–spin interaction on the cantilever
harmonic movement, and is used to neglect the change in the
spin–spin eigenstates due to the cantilever vertical displacement.
This change occurs when the probe spins are arranged in a non-
trivial geometrical structure, such that the cantilever displacement
changes the relative distance of each probe spin to the source
spin (~rij in Eq. (3)), which changes the spin–spin Hamiltonian of Eq.
(3). Consequently, the first-order approximation is valid under the
assumption that the probe-source distance is much larger than
the length scale of the probe, and their ratio serves as the small
parameter for this approximation. Note that this assumption is
similar to the assumption we used to treat the higher spin probe
of Fig. 3. Another independent condition that enables this
approximation is a large spring constant / large mass of the
cantilever. Both options reduce linear effects, but also impairs the
overall sensitivity. Further note that this assumption must be
relaxed in order to include exotic cantilever quantum states such
as cat states. Going beyond the first-order approximation (as in
ref. 140) to a second-order approach can be done by incorporating
the cantilever vertical displacement into the spin–spin eigenstates
as a first-order correction. This correction will only affect the back
action, but higher-order corrections could affect the uncertainty as
well. An additional way to relax the small displacement assump-
tion is to assume adiabatic changes in the cantilever vertical
position compared to the timescale of the spin-state dynamics.
The adiabatic changes could be incorporated into the spin–spin
interaction, possibly without a perturbation theory.
A fourth generalization to our model is taking into account

additional spins nearby the measured spin. In the picture
portrayed in Fig. 1, the measured spin could be one of many to
measure, and there might be a need to take this crowded
environment into account. As a guiding example, there are some
works (e.g., ref. 141) that investigate the possibility of using a single
spin probe for characterization of the dynamics, interaction type
and dimensionality of a many-body spin state in which it is
included. To proceed in this direction, there are two possible
generalizations: when a nearby spin interacts solely with the
measured spin, or interact with the probe spins as well. In the
former case, the measured spin is part of a larger (possibly many-
body) entangled state, in which case each spin by itself possess a
mixed state. The measurement of such mixed state is modeled
exactly as described in the Methods section, and very similarly to
measurement of a pure state. In the latter case, a nearby spin can
act as a weak perturbation on the cantilever, splitting each force-
reading into 2n+1 values, with n being the number of measured
spins in the sample, and with possible degeneracy in the forces.
The case of n = 1 is described in the Methods section. To first
order, the splitting is not likely to increase the measurement
uncertainty, which is mainly influenced by the large separation
between cantilever states. However, the additional perturbation
could alter the states of the probe spins and cantilever in a way
that alters the back action of the source. Furthermore, the
additional spins in the sample might be close enough to the
measured spin to prevent perturbative analysis, in which case
measurement of a multi-spin simultaneous measurement must be
considered.

DISCUSSION
A key conclusion from Figs. 3, 4 is that increasing the spin
quantum number of the probe generally improves the measure-
ment, both in the back-action and uncertainty criteria. Still, Fig. 4
displays that both criteria can be optimized for smaller spin values
(all m = s > 1/2) in case of dipolar and exchange interaction with
equal strengths

�
α
β ¼ 1

�
. Even then, increasing s is beneficial for a

lower sensitivity in the interaction ratio α
β, as seen graphically by

the curvature of both Fig. 4a, b near α
β ¼ 1. Physically, this means

that higher spin values permit larger deviations from α
β ¼ 1 for

which the measurement quality remains relatively good. The
deviation from the optimal ratio α

β ¼ 1 could stem from, e.g.,
setting an improper cantilever vertical equilibrium position above
the source.
The result that increasing the probe’s spin number optimizes

the measurement may seem surprising given that the source spin
is spin-1/2, the most delicate spin possible. Classical intuition for
measurement in electro- or magneto-statics is that in classical
cases, the best measurement is achieved using a test charge or
test magnet, which are defined as probe particles that do not
influence the field source. However, in our case, the quantum
nature of the probe and source forces them to affect each other.
An explanation for the measurement optimality at s → ∞ is that
this limit resembles the asymmetry present in quantum metrol-
ogy: where one party is quantum and the other is classical and
does not change during the interaction.
A fundamental aspect of our work is the connection to the

theory of imperfect quantum cloning142–155. This connection can
be utilized to gain a broader perspective on our framework using
concepts from quantum information. The source-probe-cantilever
system corresponds to a cloned-clone-machine system, respec-
tively. This correspondence is in the sense that the information
transfer from the source to the probe and the cantilever (cloning)
is analogous to the information transfer from the cloned to the
clone and the cloning machine. The theory of imperfect cloning
can explain our results and find theoretical bounds on the back
action and on the uncertainty of our proposed measurements.
As a simple example, the no-cloning theorem142 forbids

creating a perfect clone without changing the state of the clone;
analogously, any precise measurement should include a non-zero
back action, and vice versa144,148,154,155. Yet the theory of
imperfect cloning goes beyond this no-go theorem: There is a
substantial amount of works that classify cloning machines and
bound their accuracy and back action, which we can use to bound
the performance of our spin–spin measurements setups. One
important example is the universal and optimal cloning machine
by Buzek and Hilary149, which present a lower bound on the
average back action of cloning a spin-1/2 particle; they showed
this lower bound to be 1/6. Later works extended this result to a
general number of cloned/clone spins or higher Hilbert space
dimensions145,147,150–152, and cloning in specific cases, e.g., phase-
covariant cloning, where the cloned is assumed to be on the
equator of the Bloch sphere156–158. Experimental works have
obtained and verified these bounds in various physical settings
and cloning interactions159–164.
Let us further develop the cloning-measurement correspon-

dence in our case. The scheme that measures a single spin-1/
2 source using a single spin-s corresponds to a 1 → M cloning
machine that clones a single spin-1/2 to a total of M spin-1/2
particles, prepared in advance in the probe with a total angular
momentum spin state s. The correspondence is expressed both in
the mathematical formulation of the interaction and in its physical
origin: every spin-s probe (e.g., containing a single Nickel atom), is
composed of many spin-1/2 particles (electrons, protons and
neutrons), in a joint state that yields a higher spin value due to
addition of angular momentum; all of the probe’s spins interact
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with the source spin, yielding the above-mentioned 1 → M
cloning machine.
The optimal 1 → M machine was introduced in ref. 150 as an

extension of the optimal 1 → 2 machine introduced in ref. 149.
Interestingly, the optimal machine in the M → ∞ limit and our
machine in the s → ∞ limit are identical, and resemble the SG
apparatus. Our setup yields this optimal machine already at s = 1
with the appropriate interaction, as shown in Fig. 4. In the absence
of this optimization, our setup clones sub-optimally. The optimal
machine has a state-dependent cloning fidelity, as it perfectly
clones the states on the poles of the Bloch sphere, and transforms
the states on the equator to a completely mixed state. Further
note that the SG scheme is known as the best state estimation
scheme given a single copy of a spin state146, demonstrating the
equivalence between state estimation and cloning to a clone’s
Hilbert space of a diverging size.
Continuing this line of thought, we believe that one can take

inspiration from optimal cloning machines in the conceptual
design of future measurement devices, when such devices
approach the ultimate sensitivity limited by the foundations of
quantum information theory. Specifically, this means taking the
definition of the cloning process and finding probes and
interaction Hamiltonian whose eigenstates obey this definition.
As an example, one can take the 1 → 2 universal machine from
ref. 149, and write it as a measurement in the notations of Eq. (4):

þ 1
2

����
	

þ 1
2

����
	

z0j i ! a þ 1
2

����
	

þ 1
2

����
	

z1j i þ b Ψþj i z2j i (14)

� 1
2

����
	

þ 1
2

����
	

z0j i ! a � 1
2

����
	

� 1
2

����
	

z2j i þ b Ψþj i z1j i (15)

where
��Ψ±

� ¼ 1ffiffi
2

p
���þ 1

2 ;� 1
2

�
±
��� 1

2 ;þ 1
2

��
are the common Bell

states. The case a; b ¼
ffiffi
2
3

q
;
ffiffi
1
3

q
corresponds to ref. 149 and the case

a, b = 1,0 corresponds to the Wootters-Zurek cloning
machine142,149. Using this notation helps identifying the relevant
interaction Hamiltonian for each cloning process. It remains to be
seen which specific physical Hamiltonian can implement each of
these cases and their generalizations. Another interesting machine
to mention is the optimal phase-covariant machine156–158, which
has some similarities in structure to our spin-1/2 probe case. This
machine clones states on the equator with optimal fidelity.
Looking forward, our formalism can be applied to a wide range

of scenarios, for example, finding which probe spin configuration
best measures a high spin source. In this case, other interactions
can be taken into account, such as quadruple-quadrupole
interaction that stems from anisotropic electrostatic distributions
of higher spin atoms. Our framework could also be extended to
more complex observables, such as simultaneous measurements
of non-commuting variables, or multi-spin observables of
entangled sources. It would also be of interest to extend our
methods for treating multiple-shot measurements and see how
the uncertainty and back action behave as the number of shots
increases. There is much more to pursue in analyzing the tradeoff
between uncertainty and back action144,148,154,155,165–168.
We expect more advanced fully analytical formulas to be

obtainable for the back action and uncertainty as a function of the
spatial spin distribution, possibly using a magnetic multipole
expansion. Another important prospect worth-pursuing is the
usage of more exotic probes, such as spin-squeezed probes169–171

or entangled probes172–174, which are known to improve
measurements in quantum metrology applications. This direction
should be studied in light of cloning theory, where the cloning
machine would now be of the form N → M145,150 and is related to
similar concepts in quantum state estimation146,153,175.
To conclude, we developed a framework to quantify and

optimize magnetic nearfield measurement schemes at their

ultimate limit of sensitivity, which arises from fundamental
principles of quantum information. To exemplify this framework,
we analyzed both analytically and numerically different measure-
ment setups of the z-magnetization of a single spin. We quantified
these measurements based on the back action they exert on the
source spin and their uncertainty, finding fully analytical expres-
sions for an arbitrary-spin-size probe. Our results display a
quantum-to-classical transition as the spin size increases, conver-
ging into a Stern-Gerlach-type measurement. Furthermore, we
showed how shaping the interaction Hamiltonian can achieve an
optimal performance already at low spin numbers. Looking at the
bigger picture, we expect the study of quantum cloning and its
relation to measurement to further provide bounds and insights
pertaining to fundamental measurement processes in many other
physical systems.

METHODS
Generalization to an initially mixed source spin state
The source spin might initially possess a mixed state, for example
in the case of measuring a single spin out of a larger group. In this
case, Eqs. (5–9) must be slightly modified as follows. We first
define the initial source density matrix ρ0

ρ0 ¼
X
n

pn0 ψn
0

�� �
ψn
0

� ��; (16)

where pn0 are real number between 0 and 1 and ψn
0

�� �
are pure spin

states, possibly orthogonal. This representation may not be
unique, but is written in this form to keep the formulation
general. All the subsequent states from Eqs. (5–8) are modified to
also include the incoherent summation over n, which signifies a
state that originates from a measurement that starts from a source
spin pure state ψn

0

�� �
. As an example, the final total density matrix

from Eq. (5) is now re-written as

ρtot ¼
X
n

pn0ρ
n
tot ¼

X
n

pn0
X
k

znk
�� �

znk
� ��

pointer

X
j;j0

αnj;kα
n �
j0;k Φn

j

��� E
Φn

j0

D ���
sourceþprobe

" #
;

(17)

and Eqs. (6–8) are modified accordingly. The ρntot is the final total
density matrix originating from the state ψn

0

�� �
, taken from Eq. (5).

The back action from Eq. (9) must use the proper fidelity measured
between mixed states, which we still take as the standard one126

back action ¼ 1� F source ¼ 1� tr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ0

p
ρsource

ffiffiffiffiffi
ρ0

pq� �
; (18)

where tr is the trace operator. All subsequent calculations can be
carried out from here similarly to the pure-state case.

Calculation for a probe of spin-1/2
The single-spin setup can be solved analytically for any spin
quantum number. We first provide a full solution to the spin-1/2
case to illustrate our methodology, and then generalize our results
for an arbitrary spin number. The geometrical setup is identical to
the one depicted in Fig. 2a, b, and the results of our theoretical
calculations agree with our numerical simulations. Based on Eq.
(2), the Hamiltonian reads

H ¼ � μ0�h
2

4πr312
γ1γ2 �Sx1S

x
2 � Sy1S

y
2 þ 2Sz1S

z
2

� �
: (19)

In order to use Eqs. (4–8), we write the spectral decomposition
of H up to its pre-factors from Eq. (19) as

H / � 1
2
� 1
2
;
1
2

����
	

1
2
;
1
2

 ����� 1
2
� � 1

2
;� 1

2

����
	

� 1
2
;� 1

2

 ����þ 0 � Ψþj i Ψþh j þ 1 � Ψ�j i Ψ�h j;

(20)
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where Ψ±j i ¼ 1ffiffi
2

p 1
2 ;� 1

2

�� �
± � 1

2 ;
1
2

�� �� �
are the common Bell states.

For clarity, the probe- and source-spin states are written together
in the same vector (in this order), and the probe/source notations
are omitted.
Let us now compute the back action and uncertainty for an

initial source state ψ0j i ¼ cos θ2 � 1
2

�� �þ eiϕsin θ
2

1
2

�� �, where θ 2 0; π½ �
and ϕ 2 �π; π½ � are the elevation and azimuth angles (respec-
tively) in the Bloch sphere. We take the probe state to be � 1

2

�� �
;

this choice characterizes the measurement setup but does not
change the final values of the criteria in the spin-1/2 case, due to
rotational symmetry. Writing the state of the system in the
notations of Eq. (4), we obtain

ψ0j i 0j i z0j i ! cos
θ

2
1
2
;
1
2

����
	

� 1
2

����
	
þ 1ffiffiffi

2
p eiϕ sin

θ

2
Ψþj i 0j i þ Ψ�j i 1j ið Þ:

(21)

In the notations of Eq. (4), z1;2;3
�� � ¼ � 1

2

�� �
; 0j i; 1j i and

α11 ¼ cos θ
2, α32 ¼ α43 ¼ 1ffiffi

2
p eiϕ sin θ

2. Using Eq. (7) for the source
final state, we obtain ρsource ¼ cos2 θ

2
1
2

�� � 1
2

� ��þ sin2 θ
2 � 12 I, and thus

the back action is:

back action ¼ 1� cos4
θ

2
� 1
2
sin2

θ

2
; (22)

yielding a minimal value of 0 (θ = 0), maximal value of 9
16 θ ¼ 2π

3

� �
and averaged value of 5

12.
For the uncertainty, we calculate the force of each eigenstate by

its derivative with respect to z. For the case of a single-spin probe
of any spin quantum number, the energy E depends on inter-spin
distance z as E � 1

z3, and thus the forces F scale as
F ¼ � d

dz E � � 3
r4 � � 3

r E. Therefore, the set of forces equals the
set of energies up to a constant, which cancels in the uncertainty
calculation. The probabilities corresponding to the eigenenergies
� 1

2 ; 0; 1 are cos2 θ
2 ;

1
2 sin

2 θ
2 ;

1
2 sin

2 θ
2, respectively. The mean of the

force distribution is cos θ, exactly as classical calculations predict.
The variance is sin2 θ

2 þ sin2θ, and the mean-force range is 9
2. Using

the definition of the uncertainty (Eq. (11)), Eq. (23) yields

uncertainty ¼ sin2 θ
2 þ sin2θ

4
; (23)

with minimal value of 0 (θ = 0), maximal value of 25
48 cosθ ¼ � 1

4

� �
and averaged value of 7

24. Note that all of the spin-1/2 results
above are consistent with Fig. 2 that displays uncertainty and
back-action maps for a spin-1/2 probe.

Calculation for a probe of arbitrary spin s
We now generalize our results to higher spin quantum numbers.
We denote the total spin of the probe by s. The Hamiltonian
remains the same, with S2 being the spin-s operators. In this case,
the probe’s initial state can be one of �sj i; �sþ 1j i; ¼ ; sj i, each
yielding different values of back action and uncertainty, which we
now explore. By using total spin conservation, the eigenstates and
eigenvalues of the Hamiltonian, Φmj i; λm, are obtained

Φ±
m

�� � ¼ ± s; ± 1
2

�� �
; m ¼ s

α±
m m; 12
�� �þ β±

m mþ 1;� 1
2

�� �
; �s � m<s

(
(24)

λ±m ¼
�s; m ¼ s

1 ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mþ1ð Þ2þ mh jSþ2 mþ1j ij j2

q
2 ; �s � m<s

8<
: (25)

where Sþ2 is the raising operator for the probe spin. It holds that

mh jSþ2 mþ 1j i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s sþ 1ð Þ �m mþ 1ð Þ

p
; (26)

� β±
m

α±
m
¼ 2mþ 1

mh jSþ2 mþ 1j i ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mþ 1
mh jSþ2 mþ 1j i

� �2

þ1

s
; (27)

1

α±
mβ

±
m

� �2 ¼ 4
2mþ 1

mh jSþ2 mþ 1j i
� �2

þ1

 !
; (28)

α�m; β
�
m

� � ¼ �βþm; α
þ
m

� �
: (29)

where Eqs. (26–28) are obtained from algebraic manipulations on
the eigenvalue problem, and Eq. (29) from eigenvector
orthogonality.
Using the spectral decomposition of the Hamiltonian, we

calculate the uncertainty and back action for a specific initial
source state of angles θ, ϕ, as before. The probe initial state is |m〉
for mj j � s. In this case, we note two important remarks. First, the
forces are simply −3 times the energies, as in the spin-1/2 case.
Second, there is a strong degeneracy in this system: almost every
eigenvalue has multiplicity of two, since the eigenvalue expression
is symmetric under the exchange m $ �m� 1 for
�s � m � s� 1. The only exception is the eigenvalues of m ¼ 1

2,
each appearing only once. Fortunately, this strong degeneracy
only affects the back-action calculation for m = 0, since only this
case features non-zero overlaps of the system state with two
degenerate eigenstates. Therefore, we first treat the case of m ≠ 0
and then m = 0.
Given m ≠ 0, the system is initially at the state mj i ψ0j i, which

overlaps with the eigenstates
��Ψ±

j

� ¼ α±
j

��j; 12�þ β±
j

��j þ 1;� 1
2

�
for

j = m − 1, m (two eigenstates for each j), and with ± s; ± 1
2

�� �
if m

= ±s. We assume without loss of generality that m > 0, since
symmetry arguments force both criteria to be even functions of m.
Therefore, for 0 < m < s, there are four relevant non-degenerate
eigenstates, Ψþ

m�1

�� �
; Ψ�

m�1

�� �
; Ψþ

m

�� �
; Ψ�

m

�� �
, for which the overlaps

with the initial system state are βþm�1 cos
θ
2 ; β

�
m�1cos

θ
2 ; α

þ
me

iϕ

sin θ
2 ; α

�
me

iϕ sin θ
2. The back action in this case is 1

2 sin
2θþ 2cosθ

cos2 θ
2 αþm�1β

þ
m�1

� �2�sin2 θ
2 αþmβ

þ
m

� �2� �
, and its average is 1

3 ððαþm�1

βþm�1Þ2 þ ðαþmβþmÞ2 þ 1Þ.
For m = s, there are only three eigenstates: Ψþ

s�1

�� �
; Ψ�

s�1

�� �
; s; 12
�� �

,
with the corresponding overlaps βþs�1 cos

θ
2 ; β

�
s�1 cos

θ
2 ; e

iϕ sin θ
2. A

similar calculation yields back action of 1
2 sin

2 θ� 2 αþs�1β
þ
s�1

� �2
sin2 θ

2 cos θ, with average 1
3 ððαþs�1β

þ
s�1Þ2 þ1Þ, where αþs�1β

þ
s�1

� �2¼
1
2

s
4s2�2sþ1.
The case m = 0 deserves special treatment and yields peculiar

results. In this case, there are two doubly-degenerate eigenstates
that have non-zero overlap with the initial spins state: Ψþ

�1

�� �
;

Ψ�
�1

�� �
; Ψþ

0

�� �
; Ψ�

0

�� �
, where the degeneracy is among the pairs

jΨþ
�1;0i and jΨ�

�1;0i, for which α±
�1; β

±
�1

� � ¼ β±
0 ; α

±
0

� �
. Therefore,

the final source state is ρsource ¼ αþ2
0 þ βþ2

0

� �
ψ0j i ψ0h j þ

1� αþ2
0 þ��

βþ2
0 ÞÞ sin2 θ

2 � 1
2

�� � � 1
2 þ cos2 θ

2

�� �� 1
2

� �
1
2

� ��� �
, yielding back

action of αþ0 β
þ
0

� �2
2� sin2 θ
� �

; 1
αþ0 β

þ
0ð Þ2 ¼ 1þ 1

s2þs, with average of

4
3 αþ0 β

þ
0

� �2
. Note that for a given s, the back action for m = 0 is

minimal, yet this measurement setup does not extract any
information, as discussed below.
For the uncertainty, we first calculate the mean force using the

force values and probabilities. Interestingly, in all cases, the mean
force equals the classical value m cos θ. The variance equals
1
4 s sþ 1ð Þ þ 3m2 þm cos θ� 4m2 cos2 θð Þ, with average value of
1
4 s sþ 1ð Þ þ 5

3m
2

� �
. After normalizing by the mean-force range, the

C. Mechel et al.

9

Published in partnership with The University of New South Wales npj Quantum Information (2023)    12 



uncertainty reads 1
16

s sþ1ð Þ
m2 þ 5

3

h i
. Note the −m ↔ m symmetry, as

well as the monotonous decrease as a function of s (for m = s) and
as a function of m (for a given s). Additionally, note the limit ! 1

6
for m = s → ∞. Finally, note the divergence at m = 0. This
divergence stems from the vanishing mean-force range, implying
that the measurement in this case gives zero information. This fact
is quite intuitive, since m = 0 implies no magnetic interaction,
implying no measurement.
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