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Scalable and robust quantum computing on qubit arrays with
fixed coupling
N. H. Le1✉, M. Cykiert 1 and E. Ginossar 1

We propose a scheme for scalable and robust quantum computing on two-dimensional arrays of qubits with fixed longitudinal
coupling. This opens the possibility for bypassing the device complexity associated with tunable couplers required in conventional
quantum computing hardware. Our approach is based on driving a subarray of qubits such that the total multi-qubit Hamiltonian
can be decomposed into a sum of commuting few-qubit blocks, and efficient optimisation of the unitary evolution within each
block. The driving pulses are optimised to implement a target gate on the driven qubits, and at the same time identity gates on the
neighbouring undriven qubits, cancelling any unwanted evolution due to the constant qubit-qubit interaction. We show that it is
possible to realise a universal set of quantum gates with high fidelity on the basis blocks, and by shifting the driving pattern one
can realise an arbitrary quantum circuit on the array. Allowing for imperfect Hamiltonian characterisation, we use robust optimal
control to obtain fidelities around 99.99% despite 1% uncertainty in the qubit-qubit and drive-qubit couplings, and a detuning
uncertainty at 0.1% of the qubit-qubit coupling strength. This robust feature is crucial for scaling up as parameter uncertainty is
significant in large devices.
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INTRODUCTION
Great progress has been achieved recently in various physical
platforms for quantum computing, most notably is the 54-qubit
programmable superconducting processor1. High-fidelity two-
qubit gates were also demonstrated for trapped ions2, neutral
atoms in optical tweezers3, and spin qubits in silicon4,5 and GaAs6.
These experimental implementations are based on tunable
coupling between qubits where the interaction is switched on
only when two qubit gates are needed. In solid-state quantum
computers, tunable couplers typically involve more circuit
elements and require their own external control for tuning the
interaction1,4,7, leading to overheads in fabrication and wiring. For
solving real-world problems, a quantum computer needs a large
number of qubits8, and the complexity of tunable couplers adds
to the technological difficulties in scaling up the device. In
contrast, fixed couplers do not require the extra components for
controlling the interaction, resulting in a substantial simplification
of the hardware architecture and hence a significant advantage
for scaling up.
An important requirement for quantum computing with fixed

coupling is the ability to cancel the unwanted evolution due to
the fixed interaction on qubits where no gate is needed. In NMR
quantum computing, where the qubits have fixed longitudinal
couplings, this is achieved by applying a series of cleverly
designed refocusing pulses9,10. For large arrays of qubits these
series become increasingly complex, which is a bottleneck for
scaling up10. In this paper, we describe a simple method for
quantum computing on qubit arrays with fixed coupling without
refocusing pulses. Instead, we rely on a key observation that, by
driving a specific subarray, one can implement any gate on the
driven qubits, and at the same time implement an identity
operator on all undriven qubits, effectively cancelling the
unwanted evolution on these undriven qubits. Any arbitrary
quantum circuit can then be implemented by changing the
driven subarray between the time steps. An overview of the

driving pattern and the implementation of gates is given in
Fig. 1, with more technical details provided later. Our method
can be scaled up to an arbitrarily large array in a straightforward
manner, opening an alternative pathway for a simplified
quantum computer hardware architecture based entirely on
fixed coupling.
In principle, designing the subarray could be difficult. This is

because simulating a constantly interacting system of qubits is in
general not possible due to the exponential wall: the cost in
memory and time increases exponentially with the number of
qubits. Thus, one cannot predict the unitary gate implemented by
a driving pulse. In our method this problem is avoided, because
the driven subarray can be chosen such that the total Hamiltonian
of the system can be decomposed into a sum of commuting
blocks of only a few qubits. Each block has a low dimensional
Hilbert space, and thus its unitary evolution can be simulated and
optimised efficiently. This decomposition exists when the qubit-
qubit coupling term is longitudinal, i.e., diagonal in the computa-
tional basis, for example, the ZZ interaction.
An appealing feature of our method is the robustness of the

gates against uncertainty in all the physical parameters of the
array. By using robust optimal control we find pulses for
realising gates with fidelities around 99.99% despite a 1%
uncertainty in all the qubit-qubit and drive-qubit couplings,
and a detuning uncertainty at 0.1% of the qubit-qubit coupling
strength. This robustness of the fidelity against uncertainties is
crucial for an architecture with entirely fixed couplers because
it is not possible to isolate a qubit or qubit pair for a precise
measurement of the parameter values, and hence there is
always a significant residual uncertainty even after device
characterisation.
This paper is organised as follows: In “Results” section we

describe the key details of our method, including the driving
pattern to make the Hamiltonian decomposable, the application
of a universal set of gates, and the implementation of an arbitrary
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circuit. Next, we show how to use optimal control to make the
gates robust against parameter uncertainty in the Hamiltonian.
Finally, we discuss potential physical realisations and provide
details of our optimisation algorithm in Methods.

RESULTS
The system’s Hamiltonian
We first describe our method for implementing an arbitrary
quantum circuit on qubit arrays with fixed longitudinal coupling.
We consider a system of qubits coupled by fixed nearest-
neighbour longitudinal interaction, i.e., an interaction that
commutes with the bare qubit’s Hamiltonian. For simplicity we
choose the ZZ interaction, which has been realised experimentally
for superconducting qubits11,12. When a subset of qubits is driven
by external fields, the system’s Hamiltonian is

HðtÞ ¼ �
P
j

ωj

2 σ
z
j þ

P
j2L

djEjðtÞσx
j þ

P
jk
Jjkσz

j σ
z
k ;

EjðtÞ ¼ Exj ðtÞ cos νj t
� �

þ Eyj ðtÞ sin νj t
� �

;

where νj is the frequency of the drive on the j-th qubit, Exj ðtÞ and
Eyj ðtÞ the two quadratures of the field, dj the j-th qubit’s dipole
matrix element, and L the driven subset. Typically, the qubit’s
transition energy, ωj, is much larger than the interaction, Jjk, and
hence 0; 0; :::; 0j i is the ground state of the undriven Hamiltonian
and can be initialised by cooling.
In the frame rotating with the qubits’ frequencies, described by

the unitary transformation U0ðtÞ ¼ e
i
P

j

ωj
2 σ

z
j t , the Hamiltonian is

HðtÞ �
X
j2L

1
2

ΩjðtÞσx
j þ Ω0

jðtÞσ
y
j

h i
þ
X
jk

Jjkσ
z
j σ

z
k ; (1)

where

ΩjðtÞ ¼ Ωx
j ðtÞ cosðδj tÞ þ Ωy

j ðtÞ sinðδj tÞ;
Ω0

jðtÞ ¼ Ωy
j ðtÞ cosðδj tÞ � Ωx

j ðtÞ sinðδj tÞ:
(2)

Here, Ωx;y
j ðtÞ � djE

x;y
j ðtÞ is the Rabi frequency and δj≡ νj−ωj is

the detuning.

Decomposition into commuting blocks
Computing the unitary evolution of a many-body Hamiltonian like
H(t) is in general intractable due to the exponential complexity of
the wave function, unless one can decompose the Hamiltonian
into a sum of commuting few-qubit blocks, i.e., H(t)= ∑lHl(t),
where all the Hl(t) are mutually commuting. The unitary evolution

after a time duration T is then U(T)= ∏lUl(T) where UlðTÞ ¼

T e�i
R T

0
dt0Hlðt0Þ and T is the time-ordering operator. Ul(T) can be

efficiently computed since it involves only a few qubits. The Ul(T)
factors are also mutually commuting and can be seen as parallel
gates applied on separate qubit blocks.
We find that the simplest geometry that allows the decom-

position of H(t) into few-qubit commuting blocks is a honeycomb
array of qubits with nearest-neighbour ZZ coupling, as shown in
Fig. 2. We consider an alternating driving pattern where only
the subarray coloured in yellow in Fig. 2a is driven, then

Fig. 1 Overview of the proposal. a An example of implementing quantum gates on an array of qubits with fixed couplings. In any given step
only a subarray can be driven. This subarray can be chosen to satisfy specific requirements so that the array’s Hamiltonian can be decomposed
into commuting few-qubit blocks. Each drive can implement a gate on the driven qubit, and through its combination with the fixed qubit-
qubit couplings also implements an identity operator on the neighbouring undriven qubits. In the next step, a different subarray is driven for
implementing gates on a different set of qubits. Here C-X on two adjacent qubits denotes the CNOT gate and/the identity gate. b Illustration
of a quantum circuit in our scheme. The key feature is that any idle interval between gates is filled with an identity gate for preventing
unwanted evolution due to the fixed couplings.

Fig. 2 Hamiltonian decomposition. a An arbitrarily large 2D array
of coupled qubits in a honeycomb array. Each link represents a ZZ
coupling term. A yellow (cyan) vertex represents a driven (undriven)
qubit. The total Hamiltonian can be decomposed into a sum of
identical four-qubit blocks that commute with each other (enclosed
in the dashed circles). An undriven qubit is shared by three
neighbouring blocks. b The pattern of driving for implementing a
two-qubit gate, resulting in a central row of identical six-qubit
blocks (enclosed by the dashed rectangles). The rest of the array can
be decomposed into the four-qubit blocks as in a.

N.H. Le et al.

2

npj Quantum Information (2023)     1 Published in partnership with The University of New South Wales

1
2
3
4
5
6
7
8
9
0
()
:,;



HðtÞ ¼
P

j2LHjðtÞ where L is the driven subarray and

HjðtÞ ¼
1
2

ΩjðtÞσx
j þ Ω0

jðtÞσ
y
j

h i
þ

X
k2NBj

Jjkσ
z
j σ

z
k ; (3)

where NBj is the set of the three nearest neighbours of qubit j.
Each of the block Hamiltonians, Hj, has only four qubits and they
commute with each other. This can be seen in a more transparent
way by the graphical representation in Fig. 2a. Each link in the
graph represents a ZZ coupling term; a yellow vertex represents a
single qubit driving term, and a cyan vertex represents an
undriven qubit. All the ZZ terms commute with each other. A
yellow vertex does not commute with only the three links
connected to it, because σx and σy do not commute with σz. Thus,
the total Hamiltonian can be expressed as a sum of commuting
four-qubit blocks enclosed by the dash circles in Fig. 2a. Note that
each block has only one driven qubit in the centre. The qubits at
the intersection of two neighbouring blocks must not be driven
for the commutativity to hold. We will show below that it is
possible to implement a single qubit gate on the driven qubit
without changing the state of the undriven qubits at the end of
the gate, despite the permanent ZZ interaction in the block.
The driving pattern needs to be modified slightly for

implementing two-qubit gates. In a conventional device with
tunable couplers the qubit-qubit interaction is turned on only
when a two-qubit entangling gate is applied. In our case, the ZZ
coupling is always on, and in general it entangles all the qubits at
all times. However, we find that it is still possible to implement a
specific two-qubit entanging gate, for example, the CNOT gate,
between two targeted qubits by driving both. Turning on the
drives on two neighbouring qubits results in the pattern of Fig. 2b
where the central row is built from identical six-qubit blocks. The
rest of the array can be driven in the alternating pattern as before.
The reader may wonder why the six-qubit blocks are required for
the entire central row when only one two-qubit gate is needed.
This is necessary for applying the identity operators on all

undriven qubits for cancelling the actions of the fixed ZZ coupling,
which requires that any undriven qubit must have at least one
neighbouring driven qubit (more details below). If a link, Jjkσz

j σ
z
k , is

not connected to any driven qubit, then it commutes with all
other terms in the Hamiltonian, and its contribution to the total
unitary evolution is simply the factor e�iJjkσzj σ

z
kT , which cannot be

cancelled due to the absence of control.

Applying gates using optimal control
We now describe how to apply targeted gates on the driven
qubits while at the same time apply the identity operators on the
neighbouring undriven qubits. Note that the four and six qubit
blocks in Fig. 2a, b have the form of a star graph where only a
central subset of qubits is driven, as depicted in Fig. 3a. Our
method lies in the key numerical finding that, for such a star
graph, it is possible to use optimal control algorithm to find pulse
shapes, Ωx;y

j ðtÞ where j∈ driven subset, to implement a unitary
operation of the type UC � IB , where UC is a unitary acting on the
driven subset, and IB the identity matrix acting on the undriven
subset at the boundary. The net effect is that the gate UC is
applied to the driven subset while the rest remains unchanged. If
the driven subset has one (two) qubit, then UC is a single qubit
(two-qubit) gate.
Obviously the qubits on the boundary are acted on by the ZZ

interactions, and hence their states are changed during the pulse,
but by choosing the right pulse shape one can use the combined
effect of the central driving term and the ZZ connectors to ensure
that the identity operators are applied at the end of the pulse,
removing the ZZ interactions in a stroboscopic fashion. This can
be partly understood by looking at the Baker-Campbell-Hausdorff
(BCH) formula. For the four-qubit block with the Hamiltonian of
Eq. (3), for example, the unitary evolution in a small time step is

e�iHjðtÞdt ¼ e�i Hd
j ðtÞþHint

jð Þdt

� e�iHd
j ðtÞdte�iHint

j dte�½Hd
j ðtÞ;Hint

j �dt2=2;
(4)

where the last step follows from the BCH formula13. Here Hd
j ðtÞ �

ð1=2Þ½ΩjðtÞσx
j þ Ω0

jðtÞσ
y
j � is the driving term, Hint

j �
P

k2NBj Jjkσ
z
j σ

z
k

the ZZ interaction terms, and ½Hd
j ðtÞ;Hint

j � the commutator of the
two. While the first term is responsible for applying a gate on the
driven qubit, the second is the unwanted evolution due to the ZZ

interaction. Since ½Hd
j ðtÞ;Hint

j � ¼
P

k2NBj iJjk ΩjðtÞσx
j � Ω0

jðtÞσ
y
j

h i
σz
k , it

follows that the third exponential term of Eq. (4) allows partial
control of the undriven qubits, labelled by k, through shaping
Ωx;y
j ðtÞ; and we find that this is sufficient for undoing the evolution

due to the ZZ interaction.
Using optimal control we are able to obtain pulses for realising the

unitary operator UC � IB with maximum fidelity, F= 1, up to
numerical precision, where UC is the Hadamard, π/8 and the direct
identity gate on the single driven qubit of the four-qubit block. Here,
we use “direct identity gate” to refer to an identity gate applied on a
driven qubit to differentiate it from the identity operators applied on
the undriven qubits. These results are demonstrated later in Table 1.
The same results are achieved where UC is the CNOT gate and the
direct two-qubit identity gate, I⊗ I, on the two driven qubits of the
six-qubit block of Fig. 3b. Note that in all cases the identity operators
are applied on the undriven qubits. These one and two qubit gates
form a universal set, i.e., a set from which any muti-qubit unitary can
be approximated with arbitrary precision, allowing the implementa-
tion of an arbitrary quantum circuit14. More details of the optimal
control algorithm and pulse shapes are given later when we discuss
the robustness of these gates against parameter uncertainty in the
Hamiltonian.

Fig. 3 Applying gates on star graphs. a A star graph with undriven
qubits on the boundary and a driven subset of one or more qubits
in the centre. Each undriven qubit must be connected to at least
one driven qubit. By utilising optimal control on the driven subset it
is possible to apply a unitary of the form UC � IB where UC is a target
unitary on the central driven subset, and IB � I � I � � � � � I is the
identity in the Hilbert space of the undriven qubits on the boundary
(see text). b Examples of applying a Hamadard gate on the four-
qubit block and CNOT (CX) gate on the six-qubit block of Fig. 2. In
both cases the identity operators are applied on all undriven qubits.

N.H. Le et al.

3

Published in partnership with The University of New South Wales npj Quantum Information (2023)     1 



Implementing quantum circuits
An implementation of quantum computation on the array is
illustrated in Fig. 1 where the driven subarray is varied from one
step to the next to apply the target gate on the right qubits. As
can be seen in Fig. 1 the identity operators are applied on the
undriven qubits at all steps. Note that the commuting blocks are
not fixed, but may vary constantly during the execution of a
quantum circuit, depending on where the gates are applied and
whether they are single or two-qubit gates.
We show in Fig. 4a simple example of how the driven/undriven

subarrays and the blocks are varied during the implementation of
a simple quantum circuit. Consider the following sequence of
gates on two qubits, denoted by A and B: a two-qubit gate on A
and B, followed by a single qubit gate on A, and then a single
qubit gate on B. Note how the driven/undriven subarrays and the
blocks are changed at each step. In step 1 both qubits, A and B,
are driven in a six-qubit block, in step 2 only qubit A is driven in a
four-qubit block and qubit B now becomes an undriven qubit, and
in step 3 qubit B is driven and qubit A undriven. At each step gates
can also be implemented in parallel on the driven qubits other
than A and B. This parallel processing helps reduce the number of
steps in a computation. If there is no gate on a driven qubit at a
given step one simply applies the direct identity gate to keep its
state unchanged. Following this example it is straightforward to
derive the driving pattern for an arbitrary quantum circuit.
In our method, the undriven subarray is crucial for the Hamiltonian

decomposition into commuting blocks, but this means that there are
always qubits that have no gate at a given step, leading to an
overhead in the number of steps compared with conventional
quantum computation with tunable couplers. The exact amount of
this overhead depends on the gate configuration of a circuit, and
also on the topology of the array. However, as shown in Fig. 2, when
building the array from four-qubit, or six-qubit, blocks, or a
combination of them, the number of undriven qubits is less than
half of the total. In addition, the best case scenario for conventional
quantum computation is when parallel gates are applied to all qubits
at the same time step; hence, the overhead is at worst a factor of 2,
which does not change the computational complexity order of an
algorithm.
Now we discuss readout for the qubit array which takes a finite

duration. At the end of the computation the drives are turned off
and the system evolves according to the background Hamiltonian
H0 ¼

P
j;kJj;kσ

z
j σ

z
k . The final wavefunction can be expanded in the

computational basis, ψfj i ¼
P

j1 ;:::;jN¼0;1cj1;:::;jN j1; :::; jNj i. Since H0

consists of exclusively σz terms, j1; :::; jNj i is an eigenstate of H0

and the evolution under H0 introduces only addition phases in the
coefficients cj1;:::;jN . These phases can be neglected if the qubits are
read out in the Z basis at the end of a computation.
For quantum error correction, however, one must measure the

qubits in the middle of a computation, and it is important to
cancel the accumulated phases due to the fixed ZZ couplings
during the measurement process. We find that this is possible if
the qubit is measured by coupling to an external quantum system,
for example, a resonator in the case of superconducting qubits,
and that the coupling Hamiltonian commutes with the ZZ qubit-
qubit interaction, for example σzVe, where Ve is an operator acting
on the external quantum system alone. We first consider the
simplest case of two ZZ-coupled qubits where the second qubit is
coupled to the external system. As σz

1σ
z
2 commutes with σz

2Ve, we
can use the same method as for applying the direct identity gates
for the star graph of Fig. 3. Again, we drive only the 1st qubit, so
the Hamiltonian of the whole system,

HðtÞ � Ω1ðtÞσx1 þ Ω0
1ðtÞσ

y
1 þ J12σ

z
1σ

z
2 þ J2eðtÞσz

2Ve þ HeðtÞ; (5)

is a sum of two commuting terms: H12ðtÞ � Ω1ðtÞσx
1 þ Ω0

1ðtÞσ
y
1 þ

J12σz
1σ

z
2 and H2eðtÞ � J2eðtÞσz

2Ve þ HeðtÞ, where He(t) is the
Hamiltonian of the external system. The measurement is done
through the coupling H2e(t) and local operations (LOs) acting on
the external system alone, for example a homodyne detection of
the resonator mode. These LOs do not share support with H12(t),
and H12(t) commutes with H2e(t), thus, the action of H12(t) on the

system is simply U12ðTÞ ¼ T e�i
R T

0
H12ðt0Þdt0 where T is the pulse

duration. One now uses optimal control to apply the identity gate,
U12(T)≡ I⊗ I, thus cancelling the effect of the ZZ interaction
during the measurement process. Any change in the system’s
state is now due to the effect of the measurement alone, and our
scheme is now equivalent to a measurement on non-interacting
qubits. A formal description of this measurement process is given
in Supplementary Information.
Extending this result to the honeycomb array of Fig. 2, the effect

of all the ZZ terms can be cancelled by driving the three
neighbouring qubits of the measured qubit to apply the identity
gates. For superconducting qubits, this measurement procedure
can be realised with the non-demolition readout of ref. 15, which
utilises a longitudinal coupling between the qubit and a resonator,
Jzzσz(a+ a†), where a is the annihilating operator of the resonator
mode. The reader can refer to ref. 16 for a review of longitudinal
readouts for superconducting qubits.

Robustness against parameter uncertainty
We now describe the optimal control algorithm for maximising the
fidelity of the unitary UC � IB and how to make this unitary robust
against parameter uncertainty in the Hamiltonian. We divide the
pulse duration, T, intoM time bins of interval Δt. In each time bin the
field amplitudes are kept constant. The set of the Rabi frequencies
form the control vector, c ¼ fΩμ

jn : 1 � n � M; μ ¼ x; y; j 2 Cg,
where C is the driven subset. The unitary evolution UGðTÞ of the
star graph G is then a function of c. Each qubit-qubit coupling, Jjk,
and detuning, δj, is allowed to vary independently in the uncertainty
intervals ½J � ΔJ=2; J þ ΔJ=2�, and ½δ� Δδ=2; δþ Δδ=2�, respec-
tively. The uncertainty in the Rabi frequencies can be caused by that
in the dipole-matrix elements, or a slow drift in the drive leading to
changes in the field amplitudes from one experiment to the next.
This can be modelled by replacing Ωx;y

j ðtÞ in HG by αjΩ
x;y
j ðtÞ where

αj is a dimensionless parameter that varies in the interval [1− Δα/
2, 1+ Δα/2]. Now the unitary UGðTÞ also depends on Jjk, αj, and δj.
The qubit-qubit coupling and dipole-matrix element of a qubit
usually cannot be measured with high precision, and they can
change substantially due to experimental drift. In contrast, we find
that it is possible to determine the frequency of every qubit in the

Fig. 4 Quantum circuit implementation. An illustration of how the
blocks are changed/shifted during an implementation of the simple
quantum circuit described in the text.
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array with precise spectroscopic measurement. In the array the
resonant frequency of each qubit is shifted due to the ZZ
interactions, but there exists a procedure of one and two-photon
absorption measurements that can be combined to cancel these
shifts and obtain the bare qubit frequency, ωj (see Supplementary
Information). Thus, we assume that the driving fields are tuned to
resonance, δ ¼ 0, with residual detuning uncertainties much smaller
than the average qubit-qubit interaction, Δδj=J ¼ 0:1%, which is
typical for superconducting qubits (For superconducting qubits with
~10 kHz frequency drift17 and ~ 10 MHz coupling12, Δδ/J ~ 0.1%).
This small detuning uncertainty should be achievable in most
physical realisations of qubits owing to the high accuracy of
spectroscopic measurements.
Denote the set of these uncertain parameters as v, then the

robust optimal control problem can be defined as a max-min
optimisation problem: We find an optimal control that maximises
the minimum fidelity over v,

Fmax ¼ max
c

FðcÞ; FðcÞ ¼ min
v2V

Fðc; vÞ; (6)

where V is the hypercube containing the possible values of v, and
F(c, v) the gate fidelity based on the trace distance

Fðc; vÞ ¼ 1
D
tr Uy

GðTÞ UC � IBð Þ
h i����

����
2

; (7)

where D is the dimension of the Hilbert space of G, IB the identity
matrix of the subset of undriven qubits on the boundary, and UC
the target unitary that we want to apply on the central driven
subset.
Finding the minimum of a high dimensional fidelity function is

in general intractable, and one usually chooses a grid of points, vi,
in V , and optimise the minimum fidelity in this set. However,
having a dense grid is not possible when there are many uncertain
variables. For example, the 6-qubit block in Fig. 2b has 9 uncertain
parameters, five Js, two αs, and two δs. A grid with 10 points in
each parameter has a billion points in total, and one has to
compute a billion fidelities at every step of the optimisation. We
use a two-step optimisation process to reduce the computational
cost. We first maximise the fidelity at the centre of the hypercube,
making the fidelity function concave in the hypercube V , which
means that its minimum over v lies at one of the extreme points,
i.e., one of the corners of the hypercube. Next, we maximise the
fidelity at the extreme points. We find that this two-step process is
sufficient to make the fidelity high in the entire hypercube. At the
end of the optimisation, we obtain the fidelity distribution in the
hypercube by calculating the fidelities at a large number of points
generated uniformly at random, and we simply take the smallest
value in this set, including the values at the extreme points, as our
worst-case fidelity. More details and justifications can be found in
Methods.
Optimising only the extreme points drastically reduces the

number of points where F(c, v) has to be computed during the

optimisation. There are 2nu extreme points in a hypercube of nu
uncertain parameters. For the 6-qubit block we need to compute
29≡ 512 values of F(c, vi) for any given c. Using the symmetry of
the problem we find that some extreme points always give the
same fidelity, and thus the number of extreme points can be
further reduced (see Methods). Gradient-based algorithms are
used for all optimisations in this work.
For the four-qubit block of Fig. 2a, we derive optimal pulses to

realise UC � IB where UC is the Hadamard, π/814, and the single-
qubit identity gate. And for the six-qubit block of Fig. 2b we want
UC to be the CNOT and the two-qubit identity gate. These gates
form a universal set; and we recall that the identity gates are
necessary for keeping the state of all qubits in a block unchanged
when there is no gate on these qubits at any step in the circuit.
In Table 1 we show the robust fidelities obtained for the

universal set and the identity gates at increasing levels of
uncertainty. The gate duration is T ¼ 2π=J, divided into 100 time
bins. For 1% uncertainty the fidelity is higher than 99.99% for both
the single qubit and two-qubit gates. Even if the uncertainty is as
high as 5% four-nine fidelities are still achieved for the single qubit
gates, and above 99.94% for the two-qubit gates. This can be
improved by increasing the number of initial guesses, relaxing the
constraints, or raising the number of control variables. The optimal
pulse shape for the Hadamard gate is shown in Fig. 5, and the
pulse shapes for the other gates are given in Supplementary
Information. We choose T ¼ 2π=J for all gates but this exact value
is not essential. The same order of magnitude is achieved for
the fidelities when T is changed by 10%. In order to see the
effectiveness of robust optimal control we also calculate the

Fig. 5 Pulse shapes. Optimal pulse for the Hadamard gate at 1%
uncertainty in Table 1. The gate duration is T ¼ 2π=J.

Table 1. Maximum worst-case fidelities.

ΔJ=J (%) Δα (%) Δδ=J (%) Had � IB π=8� IB I � IB CX�IB I2 � IB

0 0 0 15 15 15 11 13

0.1 0.1 0.1 5.6 (4.7) 5.5 (4.7) 5.5 (4.6) 4.4 (4.2) 4.6 (4.3)

1 1 0.1 5.6 (2.9) 5.5 (2.8) 5.6 (2.6) 4.2 (2.3) 4.6 (2.3)

5 5 0.1 5.1 (1.5) 4.8 (1.4) 5.0 (1.2) 3.1 (0.9) 3.9 (1.0)

The figures shown are the exponents of the infidelity, i.e., �log10 1� Fmaxð Þ, which is the number of nines in Fmax . The fidelities are calculated for the single
qubit gates on the four-qubit block, and the two-qubit gates on the six-qubit block of Fig. 2. Four levels of uncertainty in the qubit-qubit coupling strength
and control amplitude are considered, while the uncertainty in the detuning is kept at 0.1% of the coupling strength. The maximum amplitude of the Rabi
frequencies is constrained to less than 10J. I and I2≡ I⊗ I are the direct identity gates on one and two qubits, respectively. The gate duration is T ¼ 2π=J,
divided into 100 time bins. The figures inside the parentheses are results obtained with non-robust optimisation.
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fidelities with non-robust optimal control: We first neglect all the
uncertainties and optimise the fidelity for the ideal case where
Jj ¼ J, αj= 1 and δj= 0 for all j, then we use the obtained optimal
control, cideal, to calculate the minimum fidelity in the hypercube,
F ¼ min

v2V
Fðcideal; vÞ. The results are shown in the parentheses of

Table 1. robust optimisation improves the fidelities by two to three
nines when the uncertanties are significantly large (1% and 5%).

DISCUSSION
A promising physical realisation of our model is the super-
conducting flux and transmon qubits. A direct ZZ interaction
between flux qubits can be realised by coupling the qubits
inductively, as demonstrated in quantum annealers11,18. There is
another interesting scheme based on the inductive longitudinal
coupling of the flux qubits with a common bus resonator15,16,19,
which can be scaled up to 2D arrays20. A cross-Kerr ZZ interaction
was utilised for implementing a CZ gate between two transmon
qubits12. More recently, a universal set of gates, including the
CNOT, was realised with always-on ZZ interaction on a two-
transmon device, where pulse-shaping is used for cancelling the
effect of the ZZ interaction on the single-qubit gates21. Thus, the
feasibility of our proposal were partially demonstrated in
experiments. While flux qubits are very good two-level systems
and hence our results are immediately applicable, for transmons,
leakage to higher excited states must be addressed in the optimal
control algorithm22. This leakage can be suppressed at all time by
including the leakage population as a penalty in the fidelity cost
function23. Alternatively, one can optimise the pulse to allow the
system to explore the leakage levels, but bring it back into the
computational subspace at the end23,24. Other than super-
conducting qubits, the ZZ coupling is also the natural interaction
in nuclear magnetic resonance quantum computers9, for which
sophisticated pulse shaping is available25, making it a good test
bed for our model.
Our approach relies on the ZZ qubit-qubit interaction for the

total Hamiltonian to be decomposed into a sum of commuting
blocks. However, in experimental realisations, especially with
superconducting qubits, the interaction normally has both XX and
ZZ components. The XX components can be suppressed by a
large detuning between the qubit’s transition frequencies, i.e.,
∣ω2−ω1∣ ≫ Jxx where Jxx is the strength of the XX component. To
see this consider a two-qubit Hamiltonian

H12 ¼ �ω1

2
σz
1 �

ω2

2
σz
2 þ JXXσ

x
1σ

x
2 þ JZZσ

z
1σ

z
2: (8)

In the frame rotating with the qubit frequencies, described by
the unitary operator U0 ¼ eið

ω1
2 σ

z
1þ

ω2
2 σ

z
2Þt , this becomes

H12 � JXXðσþ
1 σ

�
2 e

iðω2�ω1Þt þ h:c:Þ þ JZZσ
z
1σ

z
2; (9)

where we have neglected the anti-rotating terms. When
∣ω2−ω1∣ ≫ JXX the XX term is fast oscillating and hence can be
neglected. A large detuning is indeed used in the experiment of
ref. 12 to suppress the effect of the XX component. Note that the
ZZ term does not change in the rotating frame, i.e., its effect is
independent of the qubit detuning. For our honeycomb array of
Fig. 2, one can detune one subarray from the other such that any
two neighbouring qubits have large detuning.
The pulse duration, T, is also limited by the coherence time, T2,

of the qubits. The decoherence rate of a block of N0 qubits is
enhanced by a factor of approximately N0 in the worst case, giving
rise to a lifetime of T 0

2 ¼ T2=N0. The fidelity of a multi-qubit unitary
on the block is then bounded by F � 1� T=T 0

2 ¼ 1� N0T=T2.
Therefore, to achieve a fidelity F for the four-qubit and six-qubit
blocks in Table 1, the pulse duration needs to be shorter than
T2ð1� FÞ=N0 where N0 ¼ 4 and 6, respectively. In our simulation
T ¼ 2π=J � 40ns when J � 2π ´ 30 MHz, which is typical for

superconducting qubits12. A fidelity of 99.9% is then possible with
T2 ~ 100 μs.
Although a honeycomb array is the focus of this paper, the

qubits can be arranged in any physical shape that has the same
connectivity, for example a square array with each qubit
connected to only three nearest neighbours. Moreover, there
exist driving patterns that satisfy the conditions of commutitativity
and robust control for other geometries such as square arrays and
one-dimensional chains (see Supplementary Information). One
can also envisage a hybrid architecture where large clusters of
fixed couplers are connected with tunable couplers, keeping the
number of required tunable couplers low. Such a modular
structure can help ease the technological difficulties in scaling
up quantum computers.
To conclude, we find that it is feasible to implement quantum

computing with accurate operations on 2D qubit arrays with
exclusively fixed couplers. The quantum gates are robust against
significant uncertainty in the qubit’s frequency, qubit-qubit, and
drive-qubit coupling caused by imperfect characterisation and/or
slowly fluctuating fields. Our proposal shows that scalability can
be accelerated with simplified architecture based on fixed
longitudinal coupling, motivating further development of this
coupling in various physical platforms.

METHODS
Calculating fidelity and gradient
We first describe how the fidelity and its gradients are calculated
with the midpoint rule. The time duration is divided into M equal
time bins with t0= 0 and tM= T. The field amplitudes are kept
constant during each time bin. The Hamiltonian of a star graph, G,
at the midpoint of the n− th interval from tn−1 to tn is

HG;n ¼
X
j2C

αj Ωjnσ
x
j þ Ω0

jnσ
y
j

h i
þ

X
j;k2G

Jjkσ
z
j σ

z
k ;

where αj is the dimensionless factor introduced to model the
uncertainty in the Rabi frequencies, C the driven subset at the
centre of the graph, Jjk ≠ 0 only for nearest neighbours, and

Ωjn ¼ Ωx
jn cosðδjðtn � Δt=2ÞÞ þ Ωy

jn sinðδjðtn � Δt=2ÞÞ;
Ω0

jn ¼ Ωy
jn cosðδjðtn � Δt=2ÞÞ � Ωx

jn sinðδjðtn � Δt=2ÞÞ;

where Ωx;y
jn are the Rabi frequencies of the driving field on the j-th

driven qubit during the interval from tn−1 to tn. They are the
elements of the 2MNC ´ 1 control vector, c, where NC is the
number of qubits in the driven subset. The unitary evolution from
tn−1 to tn, Un ¼ e�iHG;nΔt þ OðΔt3Þ, is computed with the expm
function in Matlab. For an efficient calculation of the fidelity and
the gradients we compute and store all the Un, and then obtain
the forward and backward unitary propagation operators26,27,
defined by

Uf
n ¼ UnUn�1 ¼U1;

Ub
nþ1 ¼ UMUM�1 ¼Unþ1;

using the recursive relations Uf
n ¼ UnUf

n�1 and Ub
nþ1 ¼ Ub

nþ2Unþ1.
Then the fidelity is

Fðc; vÞ ¼ 1

2NG
tr Uf

M
y
UC � IBð Þ

h i����
����
2

;

where NG is the number of qubits in the star graph.
For computing the gradients, we note that

HG;n ¼
X
μ¼x;y

X
j2C

Ωμ
jnK

μ
jn þ

X
j;k2G

Jjkσ
z
j σ

z
k ;
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where

Kx
jn ¼ αj σ

x
j cosðδjðtn � Δt=2ÞÞ � σy

j sinðδjðtn � Δt=2ÞÞ
h i

;

Ky
jn ¼ αj σ

y
j cosðδjðtn � Δt=2ÞÞ þ σx

j sinðδjðtn � Δt=2ÞÞ
h i

:

The derivative of Un � e�iHG;nΔt with respect to Ωμ
jn is26

∂Un

∂Ωμ
jn

¼ �iΔtKμ
jn þ

Δt2

2
½HG;n; K

μ
jn�

� �
Un þ OðΔt3Þ;

where HG;n; K
μ
j;n

h i
is a commutator. It follows that the derivative of

Uf
M � Ub

nþ1UnUf
n�1 is

∂Uf
M

∂Ωμ
jn

� Ub
nþ1 �iΔtKμ

jn þ
Δt2

2
HG;n; K

μ
jn

h i� �
Uf
n;

and from this it is straight forward to compute the gradient of the
fidelity. The most computationally expensive part of the calcula-
tion is the matrix exponentiation for obtaining Un, which is done M
times. This matrix exponentiation can be sped up by using the
Krylov subspace method on sparse matrices.

Robust optimisation
To make the fidelity robust against uncertainty we use a two-step
optimisation method:
Step 1: We fist optimise the fidelity at the centre of the

hypercube, i.e, F(c, v0) where v0 is the centre of V . Starting from a
random control, c0, we use gradient ascent to find c1 such that
F(c1, v0) is extremely close to 1 (see the 2nd row of Table. 1 for
example). Now v0 is essentially a global maximum of F(c1, v), as a
function of v, in the hypercube, hence its 1st derivatives with
respect to v are zeros and the Hessian matrix of the 2nd
derivatives are negative semidefinite. Since the uncertain region is
typically small, Fðc1; vÞ � 1þ ðv � v0ÞTMðc1; v0Þðv � v0Þ where
Mðc1; v0Þ is the Hessian matrix, which follows from Taylor
expansion up to 2nd order around v0. As Mðc1; v0Þ is negative
semidefinite, this approximate function is a concave quadratic
function and thus has its minimum at one of the extreme points of
the hypercube (it is a multidimensional analogue of an inverted
parabola). We verify that the exact fidelity function indeed has its
minimum at one of the extreme points by calculating the fidelity
at 106 points generated uniformly at random in the hypercube.
This number of sampling points is large enough such that adding
more points leads to no noticeable change in the shape, the mean
value, and the standard deviation of the sampled distribution.
Step 2: Starting with c1 as the initial control, we now optimise the

fidelity F(c, v) at the extreme points, v ex
i , of V using gradient ascent,

obtaining an optimal control coptm. At the end of this step there is
no guarantee that F(coptm, v) is still concave, i.e, its minimum over v
may no longer remains at one of the extreme points. However, we
find that after this step the fidelity is very high in the entire
hypercube. To verify this we again calculate a fidelity distribution of
106 points generated uniformly at random, and we take the smallest
value in this set, including the values at the extreme points, as the
worst-case fidelity. For most cases of Table. 1 the minimum fidelity
does remain at one of the extreme points after step 2, except for the
π=8� IB and I � IB gates at 5% uncertainty, where the minimum of
the sampled distribution is lower than the extreme point minimum,
but the difference is less than 10−5.
The optimisation problems in Table 1 is highly symmetric.

Interchanging the boundary qubits of the four-qubit block does
not change the fidelity, and neither does interchanging the top
two, or the bottom two, of the six-qubit block. Therefore, many
extreme points have the same fidelity, and we utilise this
symmetry to reduce the number of extreme points in our
calculation from 32 to 16 for the four-qubit block, and from 512
to 288 for the six-qubit block.
Figure 6 shows the fidelity distributions in the uncertain region

at the end of steps 1 and 2 for the Hadamard gate in Table. 1 at
5% uncertainty. Although the fidelity at the centre is 1, the
distribution after step 1 has a long tail in the 98–99% range,
showing the inadequacy of non-robust optimisation. After the
extreme-point optimisation of step 2, the entire distribution is
squeezed up to a very narrow range between 99.999% and 1,
showing the effectiveness of our two-step optimisation algorithm.
We use two gradient ascent methods to optimise the fidelity at

the extreme points. The first is based on sequential convex
programming28. We start with initial control c1 and u0 for the
control vector and the upper limit (trust region) of the step,
respectively. Then, a step ∣δc∣ < u0 is found to maximise
min

i
∇cFðc; v ex

i Þ � δc, i.e., to maximise the minimum first-order
increment. This ensures all the fidelities at the extreme points are
increased. The above optimisation problem can be solved by
using the YALMIP toolbox and SPDT3 package in Matlab. If a step
can be found such that min

i
∇cFðc; v ex

i Þ � δc is positive then we
increase the upper bound u0 by 1.15, otherwise we decrease it by
2. We chose these factors as they give the fastest convergence in
our numerical tests. The procedure is repeated until either the

Fig. 6 Two-step optimisation. Fidelity distribution in the hypercube
for the Hadamard gate at 5% uncertainty in the control amplitude
and the coupling (last row of Table 1). a Distribution after the centre
optimisation of step 1 (see text). b Distribution after the extreme-
point optimisation of step 2. The three lines indicate, from left to
right, the minimum fidelity at the extreme points, the fidelity at one
standard deviation below the average fidelity, and the average
fidelity.
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maximum iteration is reached or the step’s upper bound drops
below a small tolerance.
The second approach is to simply maximise the average fidelity at

the extreme points, FðcÞ ¼
Pnex

i¼1 Fðc; v ex
i Þ=nex; where nex is the

total number of extreme points, using a quasi-Newton method.
Obviously this does not guarantee that the worst-case fidelity is
increased, as the mean can be increased without increasing the
minimum value in the set. However, we found that in our
calculations the worst-case fidelity is always improved substantially
when we maximise the average fidelity. We optimise FðcÞ using the
interior-point method implemented in Matlab’s fmincon function,
where the Hessian is computed from the gradients with the BFGS
approximation. In our tests the first algorithm is more sensitive on
the initial guesses of the control parameters. For the two-qubit gates
in Table 1 the computation is expensive so it is not practical to run
the optimisation with too many initial guesses. We find that for the
same running time the second algorithm gives higher fidelities, and
the results in Table 1 are obtained with it. The number of function
and gradient evaluations in each optimisation is around 5000 for the
four-qubit block and 10000 for the six-qubit block.

DATA AVAILABILITY
The simulation data and computer code for this work are available without
restriction29.
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