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Many-body localization in the infinite-interaction limit and the
discontinuous eigenstate phase transition
Chun Chen 1,2✉, Yan Chen3✉ and Xiaoqun Wang1,4,5,6✉

We study many-body localization (MBL) in a spin-chain model mimicking the Rydberg-blockade quantum simulator with infinite-strength
projection and moderate quasiperiodic modulation. Employing exact diagonalization, Krylov-typicality technique, and time-evolving
block decimation, we identify evidence for a constrained MBL phase stabilized by a pure quasirandom transverse field. Intriguingly, the
constrained MBL transition may embody a discontinuous eigenstate phase transition, whose discontinuity nature significantly suppresses
finite-size drifts that plague most numerical studies of conventional MBL transition. Through quantum dynamics, we find that rotating
the modulated field from parallel toward perpendicular to the projection axis induces an eigenstate transition between diagonal and
constrained MBL phases. The entanglement-entropy growth in constrained MBL follows a double-log form, whereas it changes to a
power law in approaching the diagonal limit. By unveiling confined nonlocal effects in integrals of motion of constrained MBL, we show
this insulating state is not a many-body Anderson insulator. Our predictions are testable in Rydberg experiments.
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INTRODUCTION
The framework of many-body localization lays its foundation on
the noninteracting Anderson insulator1 to address the quest of
ergodicity breaking2,3 and instability toward delocalization and
eigenstate thermalization4,5 under weak many-body interactions
in low spatial dimensions6,7.
This short-range, weak-interaction picture forms the backbone

of conventional MBL. Nonetheless, it also raises a question of
whether there can arise many-body non-Anderson localization in
circumstances where interaction strengths are not weak but
infinitely strong. See refs. 8–16 for different considerations on the
uniform or random-interaction systems.
Phenomenologically, isolated many-body Anderson insulators

may be describable by the emergent extensive set of local
integrals of motion (LIOMs or ℓ-bits)17–20, at least in one
dimension (1D)21. Then, is it conceivable that localization persists
but owing to restriction or frustration, the LIOM-based picture
breaks down? It is known that finite interaction activates more
resonance channels for dephasing, so it is expected to suppress
localization. In this regard, a better and affirmative route to
achieving the unconventional MBL might be associated with the
presence of restriction or frustration, for instance, in disordered
Rydberg-blockade chains22,23, where, as a consequence of strong,
coherent dipole-dipole van der Waals repulsions, two nearest-
neighboring Rydberg atoms cannot be simultaneously excited.
This energy-constrained dynamics is modeled by a projection
action of infinite strength.
Specifically, would there be a singular boundary separating

different phases of MBL due to abrupt distortion rather than a
progressive dressing of ℓ-bits?
MBL phase and MBL transition are two interdependent topics

central to ergodicity breaking in statistical mechanics. Recently,
there is a debate questioning whether MBL is a viable state in the

thermodynamic limit. The issue stems from the strong finite-size
drift of the MBL-thermal phase boundary seen in nearly all
numerical scaling analyses of small chains24–38. Because the critical
disorder strength keeps shifting toward infinity under the increase
of the system’s size, it was inferred that no MBL transition occurs
within these models such that MBL might be a finite-size crossover
phenomenon that ultimately gives way to the normal process of
thermalization.
What about the nature of MBL transition in the presence of

infinite interparticle interaction?
Counterintuitively, we find through solving a concrete lattice

model that the eigenstate transition between MBL and thermal
regimes may contrastingly be discontinuous when the (off-
diagonal) constrained limit is taken, a feature probably enabled
by the infinite interaction that considerably reduces the adverse
effects of finite-size drifts at transition points. Consequently, both
the stabilization of the unconventional constrained MBL state and
the robustness of the diagonal MBL phase are strengthened.

RESULTS
The minimal model
The aforementioned physics might be visible in disordered and
locally constrained chain models23. The simplest of such category
takes the following archetypal form,

Hqp ¼
X
i

gieXi þ hieZi

� �
; (1)

where eXi; eZi are projected Pauli matrices, eXi :¼ Pσx
i P andeZi :¼ Pσz

i P. The global operator P :¼ Q
ið
3þσzi þσziþ1�σzi σ

z
iþ1

4 Þ prohibits
motifs of ↓↓-configuration over any adjacent sites, hence
rendering the Hilbert space of model (1) locally constrained.
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In ref. 23, we showed that a random version of the model (1) by
quenched disorder exhibits tentative signatures of a constrained
MBL (cMBL) phase; nevertheless, the Griffiths effect arising from
the nearby transition impedes an unambiguous identification of
this nonergodic eigenstate matter. In the current work, we
improve our prior construction by conceiving an experiment-
pertinent quasiperiodic constrained model with open and periodic
boundary conditions (BCs), i.e., choosing39–55

gi ¼ gx þWx cosð2πξi þ ϕxÞ; hi ¼ Wz cosð2πξi þ ϕzÞ; (2)

where the wavenumber ξ ¼ ffiffiffi
2

p
is irrational, i= 1, …, L, and

ϕx, ϕz∈ [−π, π) are different sample-dependent random overall
phase shifts.
Since Hamiltonian (1) is real, time-reversal symmetry T := K is

preserved, giving rise to the Gaussian orthogonal ensemble (GOE)
in phases obeying the eigenstate thermalization hypothesis
(ETH)56. Additionally, when Wz= 0, there is a particle-hole
symmetry P :¼ Q

iσ
z
i that anticommutes with Hqp. To our knowl-

edge, no discrete Abelian symmetry is present in Hamiltonian (1),
so the possibility of a localization-protected spontaneous sym-
metry breaking57 is excluded.
To manifest the fundamental interplay between finite tunable

randomness and infinite interparticle interaction, we introduce
hardcore boson operators b†, b on each site to describe the local
pseudospin-12 system that emulates the Rydberg lattice gas with
ground state gj i ¼ "j i and Rydberg excitation state rj i ¼ #j i. In
terms of hardcore bosons, the Pauli spin matrices can be couched
as follows,

by þ b ¼ rj i gh j þ gj i rh j ¼ #j i "h j þ "j i #h j ¼ σx ; (3)

byb ¼ n ¼ rj i rh j ¼ #j i #h j ¼ ð1� σzÞ
2

; (4)

where n= 0, 1 is the local occupation number of boson. Armed
with the above expressions, Hamiltonian (1) can then be exactly
mapped onto an array of neutral atoms in the Rydberg-blockade
regime,

Hqp ¼ Hx þ Hz þ HV ; (5)

Hx ¼
X
i

giðbyi þ biÞ; (6)

Hz ¼
X
i

hið1� 2niÞ; (7)

HV ¼
X
i

V1niniþ1; V1 ¼ 1: (8)

Here gi, hi are proportional to onsite Rabi frequency and frequency
detuning, respectively; the repulsive van der Waals interaction in
Eq. (8) is truncated to retain only the nearest-neighbor interaction
whose strength V1 is lifted to infinity, producing a blockade radius
of a < Rb < 2a. Clearly, Hx breaks the system’s particle-number
conservation, so the total energy is the only conserved quantity of
the model.
Instructively, using spin operators in Eqs. (3) and (4), Hamilto-

nian (5) can also be recast into the standard mixed-field Ising
model, for which Imbrie21 proved in a mathematically quasiexact
way the existence of many-body-generalized Anderson insulator
under conditions of limited level attraction, weak-interaction
strengths, and sufficiently strong disorders. In this regard,
although we focus on the infinitely interacting version of such a
particular model, the gained results bear the originality and
significance to stimulate the research about many-body non-
Anderson localization. Further, without HV, H0= Hx+ Hz is a free
Hamiltonian describing decoupled spins, each undergoing an
independent Larmor precession about the local random fields.

Therefore, the constrained Rydberg atomic chain we consider
consists of two pieces: a randomized but noninteracting term H0

and a nearest-neighbor density-density interacting term HV

featured by an infinite repulsion.
Such a compact form with a single “spin-like” sector and the

reduction of onsite Hilbert-space dimension from the usual value
of 2 to the golden ratio ϕ= 1.618… prompt us to regard the bare
bones model (5) [or Eq. (1)] as the fundamental building block for
studying the more generic constrained quantum systems, such as
the t-J model.
Moreover, in light of the following commutation relations,

½Hx;HV �≠ 0; ½Hz;HV � ¼ 0; (9)

the constrained Hamiltonian (5) may accommodate two distinct
physical extremes. (i) When ∣Wz∣ ≫ ∣gx∣, ∣Wx∣, the system
approaches the diagonal limit during which the role of the
infinite interaction is effectively minimized and the resulting
diagonal MBL (dMBL) state represents a variant of many-body
Anderson insulator with enhanced robustness58. To be pedantic,
throughout this paper, we define the diagonal limit, an analog of
Anderson limit, as specified by hi ≠ 0 and gi= 0 in (1); while for
dMBL, the analog of many-body Anderson localization, ∣gi∣,
although perturbatively smaller than ∣hi∣, is not identically zero.
(ii) In comparison, once ∣gx∣, ∣Wx∣ ≫ ∣Wz∣, the system enters the off-
diagonal constrained limit—the true “infinite-interaction limit”
quoted in the paper’s title—where mutual impacts from modest
randomness and infinite interaction are contrastingly maximized.
Particularly, their constructive interplay gives rise to the sought
infinite-interaction-facilitated MBL state, which is different from
the “infinite-randomness-controlled” many-body Anderson locali-
zation stabilized in the opposite limit of weak interaction. Naïvely,
no apparent duality would directly link these two.
It is worth stressing that the kinetic constraint was realized in a

Rydberg-blockade chain22 and the quasiperiodic modulation
played a vital role in experiments59–61 to achieve the first
signature of MBL in unconstrained systems. Accordingly, the
actual value of model (1) resides right in its high experimental
relevance.
Throughout this paper, Wx= 1 sets the energy scale, i.e., the

system is quasirandom, at least along the x direction.

Discontinuous cMBL-cETH transition: spectral analyses
The configuration averaged level-spacing ratio [r] is the unique
single-value quantity routinely adopted to characterize the
dynamical states of matter. One defining feature of robust
localization is the vanishing repulsion between contiguous gaps
and the resulting Poisson distribution of

rn :¼ minfδn; δn�1g
maxfδn; δn�1g (10)

with mean [r]= rPoi ≈ 0.386 where δn := En− En−1 assuming {En} an
ascending list of eigenvalues31,32,62–64.
Figure 1a, b show the finite-size evolutions of [r] as a function of

gx along the Wz= 0 axis. Via optimization of the ED algorithm
targeting only the eigenvalues, we obtain the full eigenspectra of
the chain for 1000 independent quasirandom samples up to
system size L= 26 and the corresponding Hilbert-space dimen-
sion for such a single sample is 317811 under OBCs. (Parenthe-
tically, the maximal chain length examined by a similar work30 is
also L= 26, as they used PBCs, the corresponding Hilbert-space
dimension increases to 271443.) Within 0.5 < gx ⩽ 1, we find that
[r] steadily converges to rPoi under the successive increase of L,
verifying the stabilization of a desired cMBL phase.
The peculiarity of the quasiperiodic Rydberg chain may be

rooted in the discontinuous eigenstate phase transition between
cMBL and its nearby constrained ETH (cETH) phase. To pin down
the potential discontinuity, we perform a finite-size scaling
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analysis of [r] by pushing the chain length to L= 26 and
simultaneously selecting a compatibly high resolution 0.1Wx

when tuning gx. Figure 1a targets the left discontinuous transition
point, from which one observes that for 0⩽ gx ⩽ 0.5, there exists a
turning point of L beyond which [r] starts to increase continually
toward GOE. More precisely, we find the following correspon-
dence between gx and its turning position of the length:

gx
L

� �
¼ 0

13

� �
;

0:1

15

� �
;

0:2

17

� �
;

0:3

19

� �
;

0:4

21

� �
;

0:5

20

� �
; (11)

namely, the turning point of L increases along with gx up to
gx= 0.5. Surprisingly, this trend terminates abruptly once gx > 0.5.
For instance, even after moving upward to L= 26, we find no
signs of such a turning length for gx= 0.6 and its [r]-value keeps
rolling down toward rPoi. This continual decrease of [r] becomes
more transparent for gx= 0.7, 0.8, 0.9, 1, which suggests the
realization of cMBL within gx ∈ (0.5, 1]. Therefore, the sharp
distinction of the two trends induced by an incremental change of
gx indicates that the assumed discontinuity of the transition
occurs at gx= 0.5.
The discontinuity between the two contrasting trends show-

cases more vigorously at the right discontinuous transition point.
As presented by Fig. 1b, although working on the small chain of
L= 26, the [r]-value for gx= 1 is already extremely close to the
ideal value of the Poissonian distribution; while, in a striking
comparison, the [r]-value for gx= 1.2 appears to shoot up toward
GOE at the very similar length scale. See also Fig. 3a, b. Crucially,
the equality of [r] at gx= 0.9, 1 and the finite jump of [r] at gx= 1.1
comprise a vivid definition of discontinuity.
Based on the insights gained from extrapolating the scaling

analysis of [r], we draw in Fig. 1c the schematic phase diagram of
the quasirandom Rydberg chain in the thermodynamic limit. Here

we exclusively focus on the constrained limit by fixing Wz= 0.
After taking random averages, the sign of Wx makes no difference.
Together with the unitary transformation rotated by σz

i , the sign of
gx does not matter either. One can thus take Wx= 1 and consider
gx
Wx

2 ½0;þ1Þ without loss of generality. There are several features
of the phase diagram. (i) There exist only two eigenstate phases
along the constrained line Wz= 0, the cMBL phase and the cETH
phase. (ii) The cMBL phase occupies a finite interval gx∈ (0.5, 1]
and the cMBL-cETH transition is likely discontinuous whose
transition points are located at the phase boundaries gx ¼ 1

2 and
gx= 1. (iii) The system appears thermalized at gx ¼ 1

2; while on
gx= 1, the chain maintains its full localization character. (iv) At the
special point gx= 0, where the relative randomness strength is
infinite Wx/gx=∞, the chain is well within the cETH phase.
The robustness of cMBL implies the existence of dMBL in the

thermodynamic limit, because adding another source of random-
ness can only enhance localization. In this sense, the constraint-
induced delocalization reported by ref. 30 does not lead to
contradictions but rather highlights the importance of cMBL as the
state to foster dMBL. It also becomes clear about the necessity to
include both terms of gx and Wx on an equal footing to achieve
the stabilization of localization in a generally constrained setting.
Nonetheless, this type of randomness encapsulated by the term gi
is not the topic of ref. 30.

Transition points refined. We examine the postulated discontinuity
of [r] at the transition points a bit further in Fig. 2, where by zooming
in the left [panel a] and right [panel b] transition zones, we highlight
the opposite scaling trends of [r] for the two gx’s that are close in
magnitude. In accordance with the emergent integrability of cMBL,
Fig. 2c, d show up to L= 26, the decrease and the convergence of [r]
onto the Poisson value at gx= 0.6, 1. The degree of discontinuity of

Fig. 1 Spectral diagnostics of the cMBL-cETH transition based on the scaling analysis of [r] using OBCs. The maximal chain length is
pushed to L= 26. Under the constrained limit Wz= 0, the model’s [r]-value forms a systematic trend in approaching rPoi when

gx
Wx

2 ð0:5; 1�,
demonstrating the realization of cMBL. Panels a, b show the proposed respective discontinuity for the left and right boundary of the
transition. Panel c schematizes the ideal phase diagram along the (off-diagonal) constrained line in the thermodynamic limit where, as
denoted by black dots, the chain at the left discontinuous transition point gx= 0.5 is thermalized, whereas it remains fully localized at the right
discontinuous transition point gx= 1. This cMBL phase survives to finite Wz

Wx
� 0:5, hence forming a dome separated from both the constrained

thermal phase at leading gx and the dMBL state at dominant Wz.
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the transition may be quantified in terms of the [r]-difference ratio
defined by comparing the [r]-values at three adjacent gx’s, viz., with
a particular L, for ordered gx= g1; g2; g3,

½r� -difference ratio :¼ max ½r�ðg1Þ � ½r�ðg2Þj j; ½r�ðg2Þ � ½r�ðg3Þj jf g
min ½r�ðg1Þ � ½r�ðg2Þj j; ½r�ðg2Þ � ½r�ðg3Þj jf g :

(12)

For continuous transitions, the [r]-difference ratio is on the order
of 1; whereas, if discontinuity arises, then it is predicted to diverge
right at the transition once the thermodynamic limit is taken. By
choosing four gx-tuples involving the two transition points, we
illustrate via Fig. 2e, f the growth of [r]-difference ratio above unity
under the increase of L. Within the system sizes we probe, the
degree of discontinuity on the right transition point appears
stronger than that of the left one. This is attributed to the different
eigenstate phases realized at these two transition points.
In Supplementary Note 1, we provide additional evidence to

support the discontinuity of the cMBL-cETH transition via a direct
comparison to the continuous change from ETH to MBL driven by
purely diagonal disorders.

Purely random point. In phase diagram Fig. 1c, the point ð gxWx
¼

0; Wz
Wx

¼ 0Þ bears multiple physical meanings. (i) It represents the
purely random limit. Figure 3a evidences that in the presence of

infinite interaction, the purely random Rydberg chain likely
reaches full thermalization under the constrained limit with no
signature of localization. This contrasts to the full localization at
ð gxWx

¼ 1;Wz
Wx

¼ 0Þ as is displayed in Fig. 3b. (ii) An implication of (i)
pertains to the probable connection between the existence of
cMBL and the discontinuity of the cMBL-cETH transition. This is
because if assume the cMBL transition is continuous, then the
inevitable finite-size drifts would dominate and consequently cast
cMBL into doubt. (iii) When Wz= 0, by implementing the unitary
symmetry involving σz

i to alter the sign of gi combined with an
energy-scale redefinition, one can exactly map ð gxWx

¼ 0; Wz
Wx

¼ 0Þ
onto ð gxWx

¼ 1; Wz
Wx

¼ 0Þ; however, this mapping is valid if the
randomness is quench disorder and obeys the uniform box
distribution23. For quasiperiodic randomness, such a formal
equivalence breaks down, but our numerical data hint that ð gxWx

¼
0; Wz

Wx
¼ 0Þ might still be equivalent to a point infinitesimally close

to but different from ð gxWx
¼ 1; Wz

Wx
¼ 0Þ. Symbolically, it reads

ð gxWx
¼ 1þ 0þ;Wz

Wx
¼ 0Þ. This reasoning implies that the two disjoint

cETH regions on the left and right side of the cMBL phase are
physically equivalent, and the robustness of cMBL may thus be
cemented by the significant degree of discontinuity of the
transition at gx= 1. In parallel, one can hypothesize that the

Fig. 2 [r] data at the left and right transition points. Dashed lines in a, b mark the lengths exceeding which the [r] values for gx= 0.5, 1.1
begin to grow. By contrast, c, d show the monotonic decrease of [r] at gx= 0.6, 1 toward rPoi. All data are taken from Fig. 1 with Wz= 0. e, f plot
the [r]-difference ratios near the two transition points to assess the sharpness of the discontinuity for the underlying transition.
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phase diagram for the quench-disordered Rydberg chain is
identical to Fig. 1c, except that the black dot at gx= 1 moves
from Poisson to GOE. This conjecture overlooks the Griffiths rare-
region effects and the ensuing avalanche-driven delocalization65

in disordered models, which can be detrimental to cMBL phase
and transition alike.

Continuous cMBL-dMBL transition: entanglement variances
The bipartite entanglement entropy [SvN] is another useful proxy
for analyzing MBL as is [r]31,32,66. For each eigenstate ψnj i, the half-
chain von Neumann entropy is defined by SvN :¼ �TrR ρRlog2ρR½ �
where ρR :¼ TrL½ ψnj i ψnh j� is the reduced density matrix of the
right half chain. Using ED, we compute SvN for the entire
eigenspectrum of a given sample and obtain [SvN] after averaging
over all available eigenstates for more than 1000 independent
quasirandom realizations.
Figure 4a, b show the respective evolutions of [r] and [SvN]/SP as

a function of Wz along the gx= 1 axis. Upon increasing L, both [r]
and [SvN]/SP converge to a flattening curve centering around rPoi
and 0, respectively, demonstrating the system retains full
localization as Wz varies from cMBL to dMBL. Because no
discontinuity is found in [r] and [SvN]/SP, the change of the phase
structure is expected to be continuous. Here [SvN] is normalized
with respect to the Page value of the thermal entropy67 whose
estimate suitable for constrained circumstance equals SP �
log2ðFL=2þ2Þ � 1=ð2 ln 2Þ where the half-chain Hilbert-space
dimension equals the Fibonacci number FL/2+2

23.
Differing in entanglement patterns, continuous transition

between unconstrained MBL and ETH phases can be probed via
the standard deviation of SvN. As first demonstrated by refs. 68,69,
the explicit dependence of SvN on eigenstate wavefunction (“E”),
randomized sample (“s”), and partition cut (“c”) brings about three
measures for the quantity. In the following, we adopt this strategy
for the continuous cMBL-dMBL transition. We borrow the
convention of ref. 23, viz., using […]E/s/c to denote the respective
averages over the eigenspectrum entirety, all samples, and all cuts

with the unspecified subscripts holding fixed. Similar definitions
carry over to the standard deviations ΔE/s/c(…).
In accordance with the continuous changes of [r] and [SvN]/SP in

Fig. 4a, b, 4c illustrates the subvolume scaling law of ½ΔE ½SvN�c�s=SP,
the state-to-state intrasample deviation of SvN, upon raising L and
its overall smooth lineshape as a function of Wz. Likewise, the cut-
to-cut entanglement-entropy deviation, as given in Fig. 4d,
exhibits the qualitatively consistent tendency for the same
evolution between the two MBLs.
By comparison, albeit being less prominent for quasiperiodic

arrangements, the sample-to-sample entanglement-deviation
curve presented by Fig. 4e gives the indication of an emergent
peak around Wz

Wx
¼ 1, hinting that the rise of Wz at fixed gx= 1 may

drive a continuous transition from cMBL toward dMBL. Intuitively,
although both MBLs are dominantly constituted by area-law
entangled eigenstates, on finite-length chains, the rates of how
they approach the area scaling law may differ in magnitude and
form, which potentially allows for the entropy variance across
different samples near the phase boundary. Nonetheless, in view
of the fact that the absolute value of the deviation is not
pronounced and the shape of the curve keeps flattening, it is
possible that cMBL and dMBL might vaguely be distinguishable
from pure static diagnostics.

Eigenstate transition from entanglement growth
Alternatively, the qualitative difference between cMBL and dMBL
can be demonstrated from the angle of real-time evolution of
entanglement. Notably, we find an eigenstate transition between
these two dynamical regimes in the numerical quantum quench
experiments.
We use two quantities, the bipartite entanglement entropy and

the quantum Fisher information (QFI). The initial state is randomly
selected from the complete basis of nonentangled product states
of σz

i -spins that respects the local constraint. For each L, we
generate more than 1000 random pairs of (ϕx, ϕz) for the
Hamiltonian, and for each quasiperiodic arrangement, we let the
chain evolve and calculate SvN, QFI by ED and TEBD70 before
averaging (see methods section).
Figure 5a compiles time evolutions of [SvN] along the cut gx= 1

with ascendingWz at L= 20 in a log-log format. The salient feature
there is the qualitative functional change in the time-evolution
profiles. This eigenstate transition is elaborated by Fig. 5c and e,
where we focus on the entanglement growth deep inside cMBL
and dMBL, respectively. For concreteness, after a transient period
t≲ 1 of the initial development, [SvN] in dMBL grows steadily as a
power law of t [with an exponent (≈0.1)] within the next
prolonged window (up to t ≈ 1014 at L= 20) but its saturated
value is far less than the thermal entropy
ST � log2ðF2þL=2Þ � 1=ð2 ln 2Þ � 0:0623. In stark comparison, the
growth of [SvN] in cMBL as displayed by Fig. 5c follows a different
functional form: within 102≲ t≲ 109 at L= 20, the double-log
function fits the entropy data reasonably well. Moreover, the
equilibrated [SvN] reaches a subthermal value in cMBL and obeys a
volume scaling law.
Experimentally, the QFI, which sets the lower bound of

entanglement, was measured in trapped-ion chain71 to witness
entanglement growth under the interplay between MBL and long-
range interactions. Following71, we start from Néel states in even
chains, ψðt ¼ 0Þj i ¼ #" ¼ #"j i, characterized by a staggered Z2
spin-imbalance operator, I :¼ 1

L

PL
i¼1 ð�1Þiσz

i , then the associated
QFI density reduces to the connected correlation function of I,
fQ(t)= 4L(〈ψ(t)∣I2∣ψ(t)〉− 〈ψ(t)∣I∣ψ(t)〉2), which links multipartite
entanglement to the fluctuations encoded in measurable quan-
tum correlators. Figure 5b is a semi-log plot of averaged [fQ] along
the line gx= 1 with different Wz color-coded the same way as in
Fig. 5a. Likewise, the notable change in the functional form of [fQ]
echoes the same cMBL-dMBL eigenstate transition. Specifically,

Fig. 3 Thermalization at a purely random point. a [r]-values of the
chain for the two parameter sets (gx= 0,Wz= 0) and (gx= 1.2,Wz= 0).
Both grow promptly toward the value of GOE with L, suggesting the
system at both parametric points obeys ETH in the thermodynamic
limit. b The probability distribution of the level-spacing ratio P(r) in
cMBL (ensured by gx= 1, Wz= 0), which closely traces the prediction
of Poisson statistics [solid line, PPoi(r)= 2/(1+ r)2] under the increase
of L, indicating the realization of a full MBL. By selecting gx= 0,Wz= 0,
the P(r) distribution switches to follow the Wigner surmise [dashed

line, PGOEðrÞ ¼ ð27=4Þðr þ r2Þ=ð1þ r þ r2Þ5=2], signaling that therma-
lization sets in.
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Fig. 5d shows that the long-time growth of [fQ] in cMBL matches a
triple-log form, which reinforces the double-log fit of [SvN] in c. The
parallel relation between [SvN] and [fQ] carries over to the dMBL
phase, where the power-law growth of [SvN] in e transforms into a
logarithmic growth of [fQ] in f.
Table 1 recaps the cMBL-dMBL distinction in the fundamental

dynamical aspects of entanglement and its witness.
To supplement the ED simulation in main panels, we employ

TEBD and matrix-product-operator techniques to verify the cMBL-
dMBL transition in a larger system size L= 28. A 4th-order Suzuki-
Trotter decomposition is implemented at a maximal time step of
unity (the appropriate time step is set by the inverse mean gap
and for large Wz, we find that a smaller time step of about 0.1 is
needed, but as the entanglement growth deep inside dMBL is very
slow, TEBD maintains its efficiency at this small time step), and the
truncation error per step is controlled lower than 10−6 by selecting
a large bond-dimension threshold 1500. We check that for t⪅ 103,
the accumulated total truncation error in typical quasirandom
samples is well below 10−5. The corresponding results and the fits
are consistently presented in the insets of Fig. 5. However, due to
entanglement accumulation, matrix-product-state algorithms of
this type retain effectiveness within limited time scales (t⪅ 103).

Double-log entanglement growth. As a refinement, Fig. 6a, c
manifest that for cMBL, the double-log fitting function log logðtÞ
matches the [SvN] data significantly better than the single-log
fitting function logðtÞ, the hallmark of the unconstrained MBL72–75.
Likewise, Fig. 6b, d show the entanglement data for larger chain’s
length L= 22 with the model parameters, gx

Wx
¼ 1; Wz

Wx
¼ 0, intact.

As indicated by pairs of dashed lines there, it is estimated that the

duration that best traces the double-log fit increases progressively
from t ∈ (100, 107.5) [Δt ≈ 3.162 × 107] in system L= 18 to t ∈ (360,
109) [Δt ≈ 109] in system L= 22, thus supporting the double-log
entanglement buildup in cMBL.

Triple-log rise of QFI. Complementarily, Fig. 6e, f reproduce the
temporal evolutions of [fQ] for two chosen parameters Wz= 0, 0.5
on longer chains. The fits on top of data from various lengths
corroborate the speculation that this triple-log growth of [fQ] may
comprise a feature shared within the dome of cMBL. Similar to
Fig. 6a, b, here we resort to ED and raise the maximum open-chain
size to L= 22.

Eigenstate transition from transport
Additionally, there are marked differences between cMBL and
dMBL, as reflected through the chain’s relaxation from the
prepared Néel state and the spread of initialized local energy
inhomogeneity. In accordance with the time evolution of [SvN] and
[fQ], the decay of I(t) := 〈ψ(t)∣I∣ψ(t)〉 is examined in Fig. 7a. Apart
from a quick suppression during t⪅ 1, both MBLs relax to a steady
state with finite magnetization. They thus retain remnants of the
initial spin configuration in contrast to the thermal phase where
[I(t)] vanishes irrevocably. Notice that under the increase ofWz, the
frozen moment [I∞] at infinite t develops monotonously from ~0.5
in cMBL up to ~0.9 in dMBL; before equilibration, the intermediate
oscillation of [I(t)] is also damped more severely in dMBL than in
(off-diagonal) cMBL.
Following76, the energy transport of the constrained model is

scrutinized by monitoring the spread of a local energy

Fig. 4 Static diagnostics of the continuous cMBL-dMBL transition using the variance of SvN under OBCs. a, b Finite-size scaling analyses
show that at fixed gx

Wx
¼ 1, [r] and [SvN]/SP stay around rPoi and 0 under the adjustment of Wz from cMBL toward dMBL. No discontinuity is

observed. c The intrasample deviation of the entanglement entropy across the entirety of the eigenspectrum, ½ΔE ½SvN�c�s=SP . The
accompanying cut-to-cut and sample-to-sample parsings of this entropy deviation are plotted by d and e, respectively. The peak forming at
Wz
Wx

¼ 1 in e points toward a transition between cMBL (shaded) and dMBL.
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inhomogeneity initialized on the central site of an odd chain at
infinite temperature, i.e., the system’s initial density matrix
assumes ρðt ¼ 0Þ ¼ 1

dimH ð1þ εeXLþ1
2
Þ, where dimH the dimension

of projected Hilbert space and ε the disturbance of energy on site
ic := (L+ 1)/2. The quantity measuring the effective distance ε

travels is RðtÞ :¼ 1

Tr eρðtÞHqp

� �PL
i¼1 i � icj jTr eρðtÞHi½ �f g, where Hi :¼

gieXi þ hieZi and the time-independent background is subtracted
via inserting eρðt ¼ 0Þ :¼ 1

dimH εeXLþ1
2
. As per ETH, ε is eventually

smeared uniformly over the chain by unitary time evolution and in
that circumstance [R(t=∞)] ≈ L/4. Figure 7b contrasts the
behavior of [R(t)] between cMBL and dMBL. Concretely, for dMBL,

[R] stays vanishingly small; thereby, ε remains confined to ic and
shows no diffusion toward infinite t. In comparison, as the
consequence of a fast expansion within t⪅ 100, largely due to
contributions from nearest and next-nearest neighbors, ε spreads
over a finite range of the chain in cMBL. Here, however, the
saturated value [R∞] after an oscillatory relaxation remains
subthermal.

Integrals of motion and dynamical order parameters
The key distinction between cMBL and dMBL can be further
resolved by studying the long-time limit of the spatial distribution
of the energy-inhomogeneity propagation. We utilize three
quantities to access this information complementarily.
(i) For each quasirandom realization, we parse the definition of

R(t) as per the site index, εiðtÞ :¼ Tr eρðtÞHi

� �
Tr eρðtÞHqp

� �, which measures in

percentage the extra energy on position i with respect to the total
conserved perturbation ε. Observing that εi approaches a constant
εi,∞ at infinite t, one might implement the trick77,

lim
T!1

1
T

R T
0 OðtÞdt � P

nhnjOjni nj i nh j, to extract its value with the

Fig. 5 cMBL-dMBL transition in dynamics with OBCs and fixed gx= 1. The maximum chain length in ED is L= 20. The top row (a, b)
summarizes functional changes of the growth of [SvN] and [fQ] as a function of Wz. Fits in the middle row (c, d) suggest that for cMBL at Wz= 0,
the entanglement (QFI) growth follows a double (triple) logarithmic form. The bottom row (e, f) targets the dynamics of dMBL at large Wz:
consistent with the logarithmic rise of [fQ], [SvN] grows as a power law of t in dMBL. The four insets of c–f present the corresponding TEBD
results of L= 28.

Table 1. Hierarchies of dynamic characteristics encompassing
constrained, unconstrained, and diagonal MBL phases.

[SvN] [Quantum Fisher Info.]

cMBL log log tð Þ log log log tð Þ
uMBL log tð Þ log log tð Þ
dMBL tα log tð Þ

C. Chen et al.
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aid of randomness,

εi;1 :¼ εiðt ! 1Þ �
P

nhnjeXLþ1
2
jnihnjHijniP

nEnhnjeXLþ1
2
jni ; (13)

where f nj ig comprises an eigenbasis satisfying Hqp nj i ¼ En nj i.
Evidently, the profile of {εi,∞} bears information pertaining to the
local structure of integrals of motion (IOMs).
(ii) The summation of εi,∞ weighted by the separation returns

the equilibrated value of the effective traveling distance,
R1 ¼ PL

i¼1ðji � icj � εi;1Þ.
(iii) Viewing that the contribution from ic, i.e., the return

probability, is missing from R∞, one can define εic ;1 as the residual
energy density on the release place, εres :¼ εLþ1

2 ;1.

All three quantities defined above are used to distinguish ETH
and MBL. Here we show that they are also the dynamical “order
parameters” to differentiate between the cMBL and dMBL regimes
and identify the transition point therein.

LIOMs and positive definiteness of dMBL
Despite the central status of LIOMs in disorder-induced MBL17–20,
LIOMs in unconstrained aperiodic MBL systems have received
attention only recently47,51. Ref. 47 constructed LIOMs of MBL as
time-averaged local operators for interacting fermions subject to
aperiodic potentials. They found that in this circumstance, ℓ-bits
remain localized even at the vicinity of the quasiperiodic MBL
transition. Likewise, upon continuous unitary transforms, ref. 51

computed the real-space support of LIOM in quasirandomness-
induced MBL and revealed that the effective interactions between
LIOMs exhibit features inherited from the underlying aperiodic
potential. Interestingly, both works pointed to the weaker finite-
size effects in aperiodic modulations than in truly disordered
arrangements. Exploiting the instability of LIOMs, they also found
that the associated MBL transition may occur at a higher critical
quasirandom strength than previously estimated40.
Before proceeding to numerics, let us gain some understanding

of dMBL within the LIOM framework. The first step forward is to
introduce �Zi :¼ P iþ1eZiP i�1 where P i :¼ 1

2 ð1þ σz
i Þ as the building

blocks of constrained ℓ-bits. The convenience of �Zi stems from

Fig. 6 Refined data analyses. a, c A replot of [SvN] in cMBL (stabilized by gx
Wx

¼ 1; Wz
Wx

¼ 0) on an open chain of L= 18 but now fitted by two
different types of functions: log logðtÞ and logðtÞ. The lower panel is the same as the upper one but in a semi-log format. Apparently, log logðtÞ
gives the better fit. b, d The [SvN] data of a long open chain L= 22 with the same model parameters. In each panel, the time interval that
matches the double-log fit is marked by two dashed lines. Noticeably, this time window broadens from t ∈ (100, 107.5) for L= 18 to t∈ (360,
109) for L= 22. e, f Temporal growth of [fQ] at two representative points inside the cMBL dome using longer chains. Both can be captured by
the triple-log functions of time. e corresponds to Wz= 0.5, while f repeats Fig. 5d for comparison.
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Tr�Zi ¼ 0, which contrasts to TreZi > 0, thereby �Zi behaves like a spin
free of restrictions. Following23, it can be proved that as long as
Wz≫ gx+Wx, the set of tensor-product operators I L :¼ fZ i1 �� � � � Z ikg fulfilling 1⩽ i1 ⩽ i2 ⩽ � � � ik ⩽ L; iaþ1 ≠ ia; 1⩽ k ⩽ Lþ1

2 may
be constructed as a complete, mutually commuting, and linearly-
independent basis to express any nontrivial operators that
commute with Hqp; in terms of quasilocal unitaries,
Z ia � U�ZiaU

y. This is because the set of states f Z i1Z i2 � � � Z ikj ig
derived from I L reproduces faithfully the effective eigenbasis of
projected Hilbert space for dMBL. Accordingly, the IOM in Eq. (13)
is recast into

dMBL :
X
n

hnjeXijni nj i nh j �
XL�1

2

m¼0

X
r

V ½i�
r;m

bO½i�
r;m; (14)

where bO½i�
r;m denotes the element of I L possessing the support on

site i (i.e., contains Z i) and whose furthest boundary from i is of
distance m. The nonidentical members comprising this specified
subset are labeled by r. Besides the finite support of Z i , the key
property that promotes

P
nhnjeXijni nj i nh j to the LIOM of dMBL is

the locality condition of its real coefficients, i.e., V ½i�
r;m � e�m=ζ . In

terms of LIOM representation, the universal Hamiltonian govern-
ing the dynamics of dMBL may assume the following form,
HdMBL
qp ¼ P

i
ehiZ i þ

P
k

P
i1 ¼ ik

Ji1 ¼ ikZ i1Z i2 � � � Z ik , where from

Fig. 5e, f, it is feasible to infer Ji1 ¼ ik � jik � i1j�1=α � ϕ�jik�i1j, which
decays as an exponentially-suppressed power law of LIOMs’
separation. Here, α is the same exponent in Table 1 and ϕ is the
golden ratio.
Being the trace of a product of two IOMs, one consequence of

Eq. (14) is the positive definiteness of the averaged [εi,∞] featured
by an exponential decay in space. Figure 7e illustrates that this is
the case even when Wz ≈ gx+Wx.

Peak, dip, hump in cMBL
Now we are in the position to highlight the peak-dip-hump
structure and the occurrence of negativity in [εi,∞] [see Fig. 7c, d]
as the peculiarities of cMBL that distinguish it from both dMBL and
unconstrained MBL (uMBL) by the presence of pronounced
nonlocal correlations. The unambiguous negativity of ½εic ± 2� in
Fig. 7c and the nonmonotonicity of ½εic ± 2;3� in Fig. 7d point to the
insufficiency of Eq. (14) when addressing the cMBL phase from the

Fig. 7 cMBL-dMBL transition in transport with PBCs and fixed gx= 1, L= 21. a, b Time evolution of the Z2 antiferromagnetic imbalance
[I(t)] and the energy spread [R(t)] as a function of Wz. c exemplifies the peak-dip-hump lineshape of [εi,∞] in cMBL for two irrational
wavenumbers ξ. One set of time-profiles of ½εic ±2;3ðtÞ� that characterizes the nonmonotonicity of the dip-hump structure is given by d. e shows
the lineshape of [εi,∞] in dMBL; the exponential decay can be seen from the semi-log inset wherein the cMBL data (pink dots) are overlaid for
comparison. f The changes in dynamic `\lq order parameters’ [R∞] and ½εres� under the tuning of Wz signal the transition between cMBL and
dMBL. Light to solid colors in d, f correspond to L= 17, 19, 21.
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dMBL side. Especially, they highlight the dynamical consequence
that in cMBL the correlation between the center site (where the
initial energy inhomogeneity locates) and its third nearest
neighbors might be stronger than that for its second nearest
neighbors, because phenomenologically the net energy current
flowing into the second nearest-neighboring sites could appear
noticeably less than that flows out. To remedy the inconsistency,
we propose as a scenario that the missing pieces may come from
the terms in I L that are nonlocal with respect to i, viz., their
support on i vanishes, hence, for cMBL,P

nhnjeXijni nj i nh j � PL�1
2
m¼0

P
r;rðV ½i�

r;m
bO½i�
r;m þ V ½i�

r;m
bO½i�
r;mÞ. The super-

script ½i� signifies the absence of Z i in the associated expansion.
Under the successive decrease of Wz, it is anticipated that the

weights V ½i�
r;m of small m grow significantly such that a finite-size

core centered at i forms wherein nonlocal correlated contribu-
tions, albeit confined, become predominant. On the contrary, for

those m beyond the core, the importance of V ½i�
r;m diminishes

sharply so that the rapid decay tail and the overall signatures of
localization are well maintained.
Alternatively, the core formation may be monitored by [R∞] and

½εres�. Figure 7f illustrates that the duo constitutes the desired
‘order parameters’ from quantum dynamics that take values zero
and unity in dMBL and saturate to nontrivial plateaus in cMBL. The
critical Wz of the transition is hence estimated to be ~0.55 at
gx= 1. Furthermore, from Fig. 7c, the core where substantial
nonlocal effects take place spans roughly five to seven lattice sites
which, as per the saturated value of [R∞] in Fig. 7f, is comparable
to a thermal segment of approximately three lattice-spacing long.
This embedded thermal-like core in IOMs plays a crucial role in

yielding the novel Lieb-Robinson bound for cMBL. More relevant
mathematical justifications are in ref. 58.

cMBL-dMBL transition and return probability
In view of the importance of core formation in driving the change
between cMBL and dMBL, we perform a finite-size scaling analysis
on ‘dynamic order parameters’ ½εres� and [R∞] to locate more
precisely the critical value of Wz that triggers this eigenstate
transition. Following ref. 68, the target quantity Q ¼ ½εres� (or [R∞])
at fixed gx might assume a standard scaling form as follows,
QðL;WzÞ
LσQ � f Q ðWz �Wc

z;QÞLαQ
� �

, where fQ is some unknown function

associated to Q and similarly σQ, αQ are the corresponding scaling
exponents. The critical strength Wc

z;Q of the transition can then be
extracted from the proper data collapse of Q.
Figure 8 depicts scaling profiles of ½εres� and [R∞] at fixed gx= 1

for different system sizes ranging from L= 11 to 25 using PBCs. As
shown by panel a, the scaling collapse of the data for ½εres� yields
the following set of parameters, Wc

z;ε � 0:55; σε � �0:01; αε
� 0:2.
Although ½εres� and [R∞] carry compatible information, as ½εic ðtÞ�

stands for return probability, an autocorrelation function easier to
measure in experiments, we extend its evaluation to longer chains
L= 23, 25 by resorting to the Krylov-typicality technique (see
methods section). Figure 9a presents the obtained ½εLþ1

2
ðtÞ� for a

range of Wz close to the transition of gx= 1. It is noticeable that
due to localization, all evolution curves relax to their constant
lineshapes whose saturation values enhance with Wz and form
two individual plateaus around ~0.45 for cMBL and ~1 for dMBL,
respectively. This convergent trend allows for an estimate of ½εres�
by averaging the return probability over a later period t ∈ [1000,
2000], which produces the data points of L= 23, 25 in Fig. 8a. The
reliability of such a procedure is justified by Fig. 9b where we
check the correctness of Krylov-typicality approximation and the
appropriateness of the chosen time window via a benchmark test
against the exact results of L= 21.

Because energy diffusion is ceased in localized regions (in other
words, the initial energy imbalance is restricted to the chain
center), adding more sites on the chain ends generates small
finite-size flows of ½εres� seen in Fig. 8a, even after raising the
length limit to L= 25. Likewise, as plotted in Fig. 8b, the estimates
of scaling parameters obtained from the data collapse of [R∞] read
Wc

z;R � 0:55; σR � 0:06; αR � 0:1.

DISCUSSION
To conclude, we find a cMBL regime and a probably discontinuous
cMBL-cETH transition in the quasirandom Rydberg-blockade

Fig. 8 Finite-size scaling analysis for cMBL-dMBL transition at
fixed gx= 1. The respective data collapse of random-averaged
dynamic order parameters ½εres� [panel a] and [R∞] [panel b] yields
consistently a critical Wc

z � 0:55Wx . Here, PBCs are used; for
L= 23, 25, the results are extracted from the Krylov-typicality
approach; other sizes are solved by ED.

Fig. 9 Longer-chain results. a Time evolution of return probability
as a function of Wz at fixed gx= 1 obtained by applying the Krylov-
typicality method to periodic chains. The light to solid colors give
the results of L= 21, 23, 25. b A sample calculation on a small chain
illustrates that Krylov-typicality approximation reproduces the
results of ED.
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chain. The orthogonality between the field and the projection
directions renders cMBL and its discontinuous eigenstate transi-
tion fundamentally different from dMBL, uMBL, and the contin-
uous uMBL-uETH transition. Particularly, the entanglement
entropy in cMBL grows as a double-log function of time, as
opposed to the power-law growth in dMBL and the single-log
growth in uMBL.
The presumed discontinuity of the cMBL-cETH transition has

been evidenced numerically. It is also possible to envision that a
future analytical elucidation of its underpinnings may potentially
improve the existing theoretical framework for MBL transition in a
substantial way.
Even though LIOMs capture the phenomenology of dMBL, the

cMBL-dMBL transition triggered by the rotation of the field
orientation accentuates the importance of the nonlocal compo-
nents in the IOMs of cMBL, which, together with the double-log
entanglement growth, raises doubts about how to define the
meaningful LIOMs and the universal Hamiltonian suitable
for cMBL.
The continued investigations on these open questions might

thus hold the prospect of furthering our understanding of the
unconventional MBL beyond the current scope.

METHODS
Quantum dynamics computations
In this work, to cope with the many-body nonequilibrium problem
subject to intertwining complexities from constraint and random-
ness, three numerical approaches, ED, Krylov-typicality, and TEBD,
are employed.
For small chains, we resort to the ED method to access the long-

time limit, where quadruple precision is implemented for
achieving the time scale up to t ≈ 1029. Within full diagonalization,
the infinite-time limit is resolvable by invoking the diagonal
approximation. Further, rather than removing the ↓↓-motifs from
unconstrained Hilbert space, we construct the projected spin-12
basis as a selected set of binary numbers by fulfilling the
constraint rule using combinatorial reasoning, which is more
efficient for larger system sizes.
One alternative to evaluate the time evolution of longer

quantum spin chains, albeit with the limitation of much shorter
time scales, is the TEBD algorithm70, which is built upon
parametrization of a quantum wavefunction in terms of matrix-
product states (MPS)78,

ψj i ¼
X

σ1;¼ ;σL

A½1�A½2� � � �A½L� σ1; ¼ ; σLj i; (15)

where A[i] stands for a three-leg tensor at site i carrying one
physical bond σi= 1, 2 for a local spin-12 system and two virtual
legs of dimension χ iL and χ iR . TEBD relies on the low amount of
entanglement generation and the Suzuki-Trotter decomposition
of the time evolution operator. Concretely, at fourth order, this
unitary can be approximated in a symmetric format78,

e�iHτ ¼ Uðτ1ÞUðτ2ÞUðτ3ÞUðτ2ÞUðτ1Þ þ Oðτ5Þ; (16)

where

UðτiÞ ¼ e�iHoddτi=2e�iHevenτi e�iHoddτi=2; (17)

τ1 ¼ τ2 ¼ τ

4� ffiffiffi
43

p ; τ3 ¼ τ � 2ðτ1 þ τ2Þ; (18)

and we assume that the total inspected Hamiltonian H comprises
a sum of two-site operators that can be divided into the respective
Heven and Hodd parts living across the even and odd bonds.
Evidently, starting from an arbitrary product state in the projective
spin basis, to a good approximation, the repeated application of
the unitary time evolution will not generate components that
violate the constraint.

The calculation of QFI entails the evaluation of I2, which is easily
computed within TEBD via recasting I as a matrix-product operator
(MPO)78: analogous to the MPS representation in Eq. (15), a
generic operator O is rewritten as

O ¼
X

σ1; ¼ ; σL

σ0
1; ¼ ; σ0

L

W ½1�W ½2� � � �W ½L� σ1; ¼ ; σLj i σ0
1; ¼ ; σ0

L

	 

;
(19)

where W[i] is a four-leg tensor on site i equipped with two physical
bonds σi; σ

0
i and two virtual bonds of dimension D × D. For spin-

imbalance operator I, W’s are simply given by

W ½i� ¼ 1 f iσz
i

0 1

� �
; (20)

where fi= (−1)i/L, and 1; σz
i are 2 × 2 Pauli matrices, therefore

D= 2 in this case. Then, I2 consists of a stacking of two identical
layers of W’s tensors, whose expectation value at t is obtained by
executing optimal contractions.
For brevity, let us recap the main steps of the Krylov-space

technique. By definition, starting from an arbitrary normalized
wave-vector ϕ0j i, the associated linearly-independent Krylov
subspace K is generated by consecutively applying the Hamilto-
nian H onto ϕ0j i (m− 1) times,

K :¼ ϕ0j i;H ϕ0j i;H2 ϕ0j i; � � � ;Hm�1 ϕ0j i� �
: (21)

Through clever recombination, an equivalent but more conve-
nient reformulation of K exists, which is mutually orthonormal
and called the Lanczos basis derived from ϕ0j i ¼ v0j i,
K � L :¼ v0j i; v1j i; v2j i; � � � ; vm�1j if g; (22)

where, to remedy the loss of orthogonality, the procedure of
reorthogonality is always assumed. The advantage of L lies in the
fact that for most practical calculations, it suffices to choose the
Lanczos dimension m ≈ 50 to 100, which is orders of magnitude
smaller than the full Hilbert-space dimension D.
The above rationale can be recapitulated in terms of the

following basis transformation,

FyHF ¼ Hlanc; (23)

where the full Hamiltonian H is written in the original physical
basis, while the heavily reduced Hamiltonian Hlanc is recast in the
Lanczos basis specific for the neighborhood of v0j i ¼ ϕ0j i. It is
easy to prove that for Hermitian operator H, Hlanc is a tridiagonal
matrix. Moreover, stacking the Lanczos states yields the funda-
mental transformation matrices F, F†,

F ¼ v0j i v1j i v2j i � � � vm�1j i½ �D ´m; (24)

Fy ¼

v0h j
v1h j
..
.

vm�1h j

2
66664

3
77775
m ´D

: (25)

The essence of Lanczos approximation can then be encapsulated
in terms of the following single relation,

FFy � 1m ´m; (26)

which is exact iff m equals the Hilbert-space dimension D.
Armed with these preparations, we are ready to derive the

formula for the real-time propagation of a normalized vector
ψðtÞj i ¼ ϕ0j i ¼ v0j i under the unitary evolution of the Hamilto-
nian H up to a small time decimation δ, i.e.,

ψðt þ δÞj i � FV lance
�iδ_DlancVy

lancF
y ψðtÞj i; (27)

where the tridiagonal Lanczos matrix Hlanc is diagonalized by the
unitary matrix Vlanc, Hlanc ¼ V lancDlancV

y
lanc. Symbolically, one writes
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the combined vector Fy ψðtÞj i in the explicit form,

Fy ψðtÞj i ¼

hψðtÞjψðtÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hψðtÞjψðtÞi

p
0

..

.

0

2
666664

3
777775
m ´ 1

; (28)

where the zeros are resultant from the orthogonality between
different Lanczos basis states.
Notice that both ψðtÞj i and ψðt þ δÞj i are D ´ 1 vectors in the

computational basis, therefore the evaluation of the half-chain
von Neumann entanglement entropy at t+ δ is proceeded in the
usual way once ψðt þ δÞj i is available.
For an initial energy inhomogeneity at the central site of a

Rydberg chain, its return probability under the unitary time
evolution of the quasiperiodic Hamiltonian Hqp is

εLþ1
2
ðtÞ :¼ 1

Tr eρðtÞHqp
� � Tr eρðtÞHLþ1

2

h i
: (29)

Here we assume the infinite temperature. The initial density matrixeρðt ¼ 0Þ specifies the spatial distribution of the energy distur-
bance at t= 0, whose subsequent dynamics can be couched in
the Heisenberg representation as (ℏ= 1),

eρðtÞ :¼ eiHqpt � eρðt ¼ 0Þ � e�iHqpt; (30)

eρðt ¼ 0Þ :¼ ε

D
eXLþ1

2
: (31)

Note that Hqp is discretized in Eq. (29), i.e.,

Hqp ¼
XL

i¼1

Hi ; where Hi ¼ gieXi þ hieZi : (32)

There exists one extra complication in the computation of
εLþ1

2
ðtÞ. By full diagonalization, the trace over the entire Hilbert

space is accomplishable through summing up the contributions of
all eigenvectors with the equal weight,

Tr½¼ � ¼
XD
n¼1

hEnj¼ jEni: (33)

This approach is impractical once L⩾ 23. For instance, when
L= 23 under PBCs, D ¼ 64079 and the required ram to compute a
single random realization is over 190 GB.
To make progress, we invoke the trick of dynamical typical-

ity79–81 to approximately evaluate the trace of an operator over
the gigantic Hilbert space. The key idea is to replace Eq. (33) by a
single scalar product using a pure state Ψgaus



 

,

1
D Tr½¼ � ¼ 1

D
XD
n¼1

hEnj¼ jEni � hΨgausj¼ jΨgausi; (34)

where Ψgaus



 

is written in the computational basis with

dimension D whose entries are Gaussian random numbers with
zero means. The Gaussian distribution of the complex compo-
nents of Ψgaus



 

guarantees that Ψgaus



 

is drawn uniformly on the

hypersphere of the full Hilbert space (i.e., according to the Haar
measure) such that the corresponding probability distribution is
invariant under all unitary transformations within the Hilbert
space. As per formal theory of typicality79,80, Ψgaus



 

could be an

effective representative of the underlying statistical ensemble.
Practically, Ψgaus



 

is constructed in a simple manner,

Ψgaus



 
 ¼ 1
N

XD
a¼1

ra þ isað Þ aj i; (35)

where aj i enumerates the physical computational basis, and ra, sa
are real, independent Gaussian random numbers with mean zero

and variance one, N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPD

a¼1 r2a þ s2a
� �q

. As D is at the order of
107 (for example, D ¼ 1346269 for L= 29 under OBCs), for
averages over 2000 independent quasirandom realizations, a
good random number generator with long period (~1018) might
be needed.
In real computation, the accuracy of dynamical typicality can be

improved by using multiple pure Gaussian states in a single
evaluation of Eq. (34). To maximize the overall landscape for the
random realizations of Hqp and Ψgaus



 

, it is economic to invoke

one independent Ψgaus



 

for each different quasiperiodic Hqp, and

then perform the average over 2000 such joint samples.
Accordingly, under the assumption of the validity of dynamical
typicality, the random-averaged return probability might be
approximated as follows,

½εLþ1
2
ðtÞ� � 1

R
XR
q¼1

Ψq
gaus

D 


 eXq
Lþ1
2
ðtÞeXLþ1

2

h i
Ψq
gaus




 E
; (36)

where q denotes the involvement of the qth random sample and
the total number for the joint random samples is over 2000,
R⩾ 2000. Being a scalar product of the pure state, each summand
in Eq. (36) is evaluable by the Lanczos method.
For all results presented in this paper, we perform the random

sample calculations over at least 1000 independent quasiperiodic
configurations of the model parameters ϕx, ϕz and when
evaluating entanglement growth, the initial product states are
additionally selected from the constrained spin basis in another
randomized manner73. The corresponding statistical uncertainties
are estimated from the normal variance of varied averaged
quantities as per the procedure of ref. 62.
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