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Multidimensional Bose quantum error correction based on
neural network decoder
Haowen Wang1, Yunjia Xue1, Yingjie Qu2, Xiaoyi Mu1 and Hongyang Ma 2✉

Boson quantum error correction is an important means to realize quantum error correction information processing. In this paper,
we consider the connection of a single-mode Gottesman-Kitaev-Preskill (GKP) code with a two-dimensional (2D) surface (surface-
GKP code) on a triangular quadrilateral lattice. On the one hand, we use a Steane-type scheme with maximum likelihood estimation
for surface-GKP code error correction. On the other hand, the minimum-weight perfect matching (MWPM) algorithm is used to
decode surface-GKP codes. In the case where only the data GKP qubits are noisy, the threshold reaches σ ≈ 0.5 (p � 12:3%). If the
measurement is also noisy, the threshold is reached σ ≈ 0.25 (p � 10:02%). More importantly, we introduce a neural network
decoder. When the measurements in GKP error correction are noise-free, the threshold reaches σ ≈ 0.78 (p � 15:12%). The
threshold reaches σ ≈ 0.34 (p � 11:37%) when all measurements are noisy. Through the above optimization method, multi-party
quantum error correction will achieve a better guarantee effect in fault-tolerant quantum computing.
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INTRODUCTION
Reliable execution of large-scale quantum computing requires
quantum error correction. The method of redundant information
is an important method to store qubit information in continuous
variable system or boson model1,2, combined with classical error
correction3. Numerous experimental platforms are now available
to implement error correction operations for physical qubits
encoding logical qubits. However, with the expansion of hardware
overhead and the advancement of quantum bits in quantum
systems4, it brings great challenges to quantum error correction.
Intriguingly, boson quantum error correction has emerged as an
efficient infinite-dimensional quantum error correction, where
logical qubits encoded by numerous physical qubits are encoded
in a system of continuous variables, or the boson model. It
provides an infinite dimension for the encoding of quantum
information under Hilbert space5. The most representative single
boson model mainly includes boson error correction codes such
as cat code6, binomial code7, and Gottesman-Kitaev-Preskill (GKP)
code8.
At present, GKP codes have achieved great value in suppressing

the logic error rate to be arbitrarily small under a single model,
which has attracted extensive attention of boson error correction9.
But there is a shortage, GKP code can not correct the offset error
to the phenomenon space larger than the critical value in the
continuous variable system. In reference to previous research10,
the influence of noise is gradually weakened by using multi-qubit
control gates to achieve higher-precision fault tolerance thresh-
olds. In addition, research also shows that11, quantum computa-
tion of holographic codes is realized by non-adiabatic multi-bit
quantum gates and more good fidelity performance. Recently,
some experts have also proposed that the combination of GKP
code and color code can solve the error problem of non-horizontal
gates12 in the information transmission process, which is good for
fault-tolerant calculations. Due to the topology and rotatability of
surface codes, considering the combination of surface codes with
GKP codes, the continuous error information that can be collected

during the error correction process of GKP codes can improve the
performance of next-level concatenated error correction. We
know that the topological surface code itself has a stabilizer, and
the threshold can reach about 0.34 in error correction and fault
tolerance, but the additional error information measured by the
stabilizer of the GKP code is introduced into the surface code, and
the threshold can be increased to about 0.78. The error correction
scheme of Surface-GKP code is similar to GKP, and can usually use
Steane type scheme13,14, Knill Glancy type scheme15,16, and
teleportation-based scheme17. The error correction scheme of
the Steane type scheme is relatively simple to implement in the
hardware circuit and is widely used. In order to make up for the
deviation of the traditional Steane-type scheme in error correc-
tion, it cannot provide the best correction scheme. In the article18,
the error offsets u1 and u2 of the data qubit and auxiliary qubit are
assumed to be equal, where u represents the error bias caused by
p̂ and q̂ in the polarizer. The Steane-type error correction scheme,
which guarantees the maximum likelihood estimation through the
above operations, provides higher performance. In order to ensure
the normal error correction of the Steane-type scheme under the
extremely low confidence interval, we have made a moderate
modification in the offset error correction and changed the
variance estimation to the standard deviation.
In the surface-GKP decoding process, we first select a simple

decoding algorithm based on the Minimum Weight Perfect
Matching (MWPM)19 algorithm to apply to the 3D spatiotemporal
graph, and thresholds range from σ ≈ 0.25 (p � 10:02%) to σ ≈ 0.5
(p � 12:5%) in the perfect test of GKP decoding. The MWPM
decoder threshold reaches p � 12:3% when the data qubit and
stabilizer measurements are noisy but the GKP error correction is
perfect, and σ ≈ 0.25 when the GKP error correction is also noisy.
These results show that the surface-GKP code is comparable to the
toric-GKP code under the same noise model. The neural network
decoder is fast enough to decode in topological quantum error
correction codes20. It achieves an exponential improvement, and
solves the hardware overhead21 problem by using the algorithmic
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improvement. In order to improve the decoding effect of the
surface-GKP code, we introduce the currently popular neural
network decoder, which uses the convolution operation of the
neural network to decode the surface-GKP code under the
continuous variable system, with a threshold of σ ≈ 0.78 (
p � 15:12%). Compared with the decoding of the surface code
alone, the combined error correction code increases the decoding
threshold to about 15%, which provides a higher limit guarantee
for quantum error correction calculation.

RESULT
GKP code
GKP codes encode a qubit into a harmonic oscillator22, and we
define the position and momentum operators as: q̂ ¼ ðây þ
âÞ= ffiffiffi

2
p

and p̂ ¼ iðây � âÞ= ffiffiffi
2

p
where â and ây are annihilation and

creation operators satisfying ½â; ây� ¼ 1. We compose the code
space of GKP qubits by two commutable stabilizer operators as
follows:

Ŝp ¼ e�i2
ffiffi
π

p
p̂; Ŝq ¼ ei2

ffiffi
π

p
q̂: (1)

When jξqj; jξpj<
ffiffiffi
π

p
=2 without the influence of noise, the phase

space shift error of the ideal GKP qubit exp½iðξpq̂� ξqp̂Þ� can be
detected and corrected. Next, the logical Pauli operators X and Z
are defined as:

X ¼ e�i
ffiffi
π

p
p̂; Z ¼ ei

ffiffi
π

p
q̂: (2)

We clearly find that there are X
2 ¼ Ŝq and Z

2 ¼ Ŝp, which proves
that X (or Z) commutes with Ŝp and Ŝq . The logic state in the noise-
free case is rewritten as:

0
�� � / P

n2Z
δðq� 2n

ffiffiffi
π

p Þ qj i ¼ P
n2Z

q ¼ 2n
ffiffiffi
π

pj i;

1
�� � / P

n2Z
δðq� ð2nþ 1Þ ffiffiffi

π
p Þ qj i ¼ P

n2Z
q ¼ ð2nþ 1Þ ffiffiffi

π
pj i: (3)

Quantum error correction requires the help of quantum
circuits23, among which Clifford gates are the most representative.
On GKP qubits, the Clifford operator24 can be implemented using

Gaussian operations. The specific Clifford group set is as follows:

Ŝgkp ¼ exp i q̂
2

2

h i
;

Ĥgkp ¼ exp i π2 â
yâ

h i
;

CNOTj!k
gkp ¼ SUMj!k � exp �iq̂j p̂k

� �
:

(4)

Pauli X and Z in (3) are ideal, but they are not normalizable and
require infinite energy to squeeze. In noisy ambient states, we
need to introduce finitely squeezed Gaussian states weighted by a
Gaussian envelope. Instead of δ function, the GKP state in this
noisy environment becomes:

~0
�� � / P

n2Z

R1
�1 e�

Δ2
2 ð2nÞ2πe�

1
2Δ2

ðq�2n
ffiffi
π

p Þ2 qj idq;

~1
�� � / P

n2Z

R1
�1 e�

Δ2
2 ð2nþ1Þ2πe�

1
2Δ2

ðq�ð2nþ1Þ ffiffi
π

p Þ2 qj idq;
(5)

where Δ represents the width of each peak in the Wigner function of
the true GKP state. For a unified representation, the GKP state under
arbitrary noise ~ψ

�� � ¼ α ~0
�� �þ β ~1

�� �
can be defined as the GKP state in

the noiseless state ψj i Gaussian distribution affected by shift error:

~ψ
�� � / Z Z

e�
u2þv2

2Δ2 e�iup̂eivq̂ ψj idudv: (6)

Using the Pauli rotation approximation theorem from the
Gaussian displacement error channel N , these errors can be
applied to the noise-free GKP state in the variance σ2 as:

NðρÞ �
Z Z

PσðuÞPσðvÞe�iup̂eivq̂ρe�ivq̂eiup̂dudv; (7)

where PσðxÞ ¼ 1ffiffiffiffiffiffiffi
2πσ2

p e�
x2

2σ2 is Gaussian distribution function with
variance σ2.
Under this error channel25, the coherent displacement error is

replaced by the displacement error of the incoherent mixed state in
Fig. 1, due to the use of the Pauli rotation approximation theorem. In
the case of incoherent misplaced mixed states, we can simplify the
analysis to distinguish between pure and mixed states by measuring
q̂ or p̂, but the disadvantage is that it increases the noise intensity
compared with the coherent displacement error, and the number of
photons in GKP also increased. Here we introduce a novel Steane
error correction scheme to correct small Gaussian shift errors in the q̂
or p̂ quartic models caused by incoherent mixed states. Novel Steane
error-corrected quantum circuit consisting of CNOT gates, homodyne

Fig. 1 Schematic diagram of GKP states with five photon numbers. a The left image is the calculated ground state 0gkp
�� �

with an
approximate GKP quantum state with an average photon number n ¼ 5. b The right image is a GKP quantum state with an average photon
number computational ground state 1gkp

�� �
of the approximate GKP quantum state of n ¼ 5.
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measurements, and ideal GKP auxiliary qubits. To characterize the
completeness of the circuit, we consider the inverse CNOT gate,
which is shown in Section III to demonstrate the complete new
Steane error correction process.

Surface code
The surface code is a plane mapping of the toric code26,27, and it is
also a good stabilizer code due to its topology. The surface code is
defined on a 2D square lattice, auxiliary qubits28,29 can be attached to
the qubits we want to protect, and the measurement of syndromes
can be performed, and the intersection of syndromes can help
identify the most likely error operators. For the chosen lattice, the
qubits are clearly indicated in Fig. 2(a). As shown in Fig. 2(b), the four
internally adjacent vertices form two types of lattice operators X and
Z, and the boundary is formed by two vertices. As shown in Fig. 2(c),
the lattice stabilizer associated with qubits 1, 2, 6, and 7 denoted by
X, will be X1X2X6X7. On the other hand, the lattice stabilizer associated
with qubits 8, 9, 13, and 14 represented by Z would be Z8Z9Z13Z14. To
simplify the representation, we can use yellow for all stabilizer
generators containing X, and blue for all stabilizer generators
containing Z. If we denote the set of all yellow (blue) patches by
{Bp}({Wp}), we can define a stabilizer on lattice p as follows:

Bp ¼
Y
i2v

σx
i ;Wp ¼

Y
i2p

σz
i : (8)

For surface codes, logical operators operate on both sides of the
lattice, as shown in Fig. 2(d), and can be expressed as Z=

Z1Z2Z3Z4Z5; X= X5X10X15X20X25. Obviously, logical operators span
two boundaries of the same type. The codeword length30 is
determined as the product of the side lengths, expressed in the
number of qubits, and for the surface code in Figure, we have
N= LX ⋅ LZ= 5 ⋅ 5= 25.

The surface-GKP code
In order to solve the situation that the GKP code is difficult to
correct the phase offset exceeding

ffiffiffi
π

p
=2 in the single-mode

space, the logical error rate in the GKP code space cannot be
suppressed to an arbitrarily low level. Therefore, we connect GKP
codes with topological surface codes31, namely surface-GKP
codes, for quantum gates and quantum computation under noise
reduction.
In the combination of the two, each data qubit in the surface

code is replaced by a single-mode GKP code32. The advantage of
this is that it provides the protection of the stabilizer, that is, the

GKP single-mode measurement K times stabilizer Ŝ
ðkÞ
q and Ŝ

ðkÞ
p .

Secondly, additional auxiliary qubits can be GKP encoded, and the
underlying noise model can be checked by measuring auxiliary
qubits, which can be used to accurately estimate and correct noise
on each GKP data pattern. In mathematical statistics, the qubits of
the surface-GKP code are consistent with the number of qubits of
the surface code, that is, d2 data qubits and d2− 1 syndrome
qubits to get a distance-d code.

Ŝ
ðkÞ
q � exp½i2 ffiffiffi

π
p

q̂k�; Ŝ
ðkÞ
p � exp½�i2

ffiffiffi
π

p
p̂k �: (9)

Fig. 2 Schematic diagram of a surface code with a code distance of 5. a The data qubit corresponds to the vertex of the lattice. b Qubits
form two types of lattice operators: X and Z. c The four data quantum bits surrounding the X(Z) ancilla qubits form an X(Z) stabilizer. d The
surface code has periodic boundaries, and the logical operators can also be on both sides of the lattice.
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Among them, k is the code distance: k∈ {1, ... , d2}. Since the
surface code has 1/2 degree of freedom33, that is, the probability
of error occurring in X is equal to the probability of error occurring
in Z, corresponding to the parity check operator. There are two
types: all X stabilizers can check for Z errors, and all Z stabilizers
can check for X errors. In order to reduce the displacement error
caused by the rotation code, we can modify the check operator of
the surface code as shown in Fig. 3.
Each X-type parity check involves two X and two X

y
, while

each Z-type parity check34 only involves Z. (Note in contrast to

regular discrete qubits we do not have X ¼ X
y
and Z ¼ Z

y

outside the GKP codespace). In the process of parity checking,
the circuit shown in Fig. 4 is used. Each GKP auxiliary qubit (
XorZ) interacts with the adjacent four data qubits, and the Z
operators which check is CZ ¼ eiQ̂�Q̂, and the X operator is a

mixed check CX ¼ e�iQ̂�P̂ and C
y
X ¼ eiQ̂�P̂ . To simplify the

numerical analysis, the noise of the approximate GKP state
and the error introduced in the error correction operation are
modeled as independent Gaussian shifts of standard deviation
σ, represented by the channel:

Eðρ̂Þσ ¼ 1
2πσ2

Z
d2ζe�jζj2=2σ2 D̂ðζÞρ̂D̂yðζÞ: (10)

The noise channel35 is strictly diagonal on the displacement
operator basis. Using displacement rotation (but not necessarily
following a Gaussian distribution), arbitrary noise channels can be
brought closer to the diagonal form equation (10) describes, for
example, a noisy process with the same loss and heating rate,

given by the main equation _̂ρ ¼ κ D½â�ρ̂þD½ây�ρ̂
� �

. However, in a

real system, the Gaussian displacement channel36 generally does

not represent the physical noise often encountered in oscillator
systems, such as loss, dephasing, or heating at arbitrary rates,
which requires further consideration.
To further improve the information compression performance,

we denote the squeezing parameter S as S ¼ �10log10ð2σ2Þ
(with the identification Δ2= 2σ2) to quantify the noise in equation,
with large S meaning low noise. When the Gaussian displacement
channel introduces the noise of each element of the GKP
codeword and error correction circuit, when GKP uses Steane-
based error correction, it is found that the threshold standard
deviation of the displacement error is S ¼ 18:6 dB. To compress
the noise threshold, we limit the squeezing parameter search to a
maximum of 10 dB of squeezing.
With very advanced optical compression in ref. 37, we found

that the best fidelity is achieved by saturating the compression to
10 dB in at least one mode, increasing the response to larger
search for compressed values. In Fig. 5, we plot the Wigner
function of 0Δj i with Δ= 10 dB, and the Wigner function of the
optimal state (highest fidelity) output by the three-mode circuit,
0Δj i designed to generate nmax ¼ 4, 6 and 12 photons. We see
that as nmax decreases and core state resources reduce, the
number and sharpness of peaks keep away 0Δj i, and remove the
origin of the phase spacein difference minimum. In other words,
as long as the standard deviation of the displacement error is less
than 0.09, logic qubits with arbitrarily small error probability can
be realized, but at the same time, it brings huge overhead and it is
difficult to provide hardware support. To this end, we design a
novel Steane error correction scheme and neural network decoder
to reduce hardware overhead by improving error correction
performance and decoding efficiency.

Error model
The qubit model in this paper is proposed based on the Gaussian
random distribution function38, and we give priority to the Gaussian
error displacement channels N 1;N 2, and Nm in ref. 8. The other
components in the circuit are assumed to be noise-free, that is, the
CNOT gate and the initial auxiliary qubit are perfect. Auxiliary qubits
have the following two functions: one is used for surface-GKP code
error correction, and the other is used for stabilizer checking (symon
measurement). When affected by the channel of Gaussian error
displacement error, the measurements made in this paper can be
regarded as perfect homodyne measurements in q̂ or p̂ quadrature.
Since the surface code is CSS and has 1/2 free rotation, the errors in
X and Z are corrected independently, and the two are interoperable.
Therefore, this paper only analyzes the Gaussian displacement error
of q̂ and the X stabilizer check in detail, and the Z stabilizer check is
the same. Two error models are considered in the surface-GKP code
error correction protocol39. The first model has perfect measure-
ments but noisy data GKP qubits. In the second model, both the
data GKP qubits and the measurements are noisy. In the first noise
model, the GKP error correction and auxiliary measurements in the
stabilizer check are both perfect, N 2 ¼ I and Nm ¼ I, where I is the
identity operator. This error model corresponds to the code capacity
error model40, where only data qubit errors are considered. The
decoding process is implemented after a single round of X or Z
stabilizer checks. In Fig. 4, each data GKP qubit has a Gaussian error
shift error u1 from the Gaussian error shift channel N 1. Error
correction is then performed on each data GKP qubit. The
displacement u1 will be propagated through the CNOT gate to
the GKP auxiliary qubit.
In the second noise model, the Gaussian error displacement

channel N 1 in the data qubit and the auxiliary qubit in the
measurement N 2 and Nm also exist. The Gaussian error
displacement channels N 2 and Nm are located behind the
CNOT gate, so there is no error propagation from the auxiliary
qubits to the data qubits, which corresponds to the phenom-
enological error model41. After applying ME-Steane error

Fig. 3 Schematic diagram of surface-GKP code with a code
distance of 5. The small white circles in the surface-GKP code with
code distance d= 5 represent the data GKP qubits, and the small
gray circles correspond to each data GKP qubit one-to-one, which is
used to measure the auxiliary GKP quantum of the stabilizer of the
data GKP qubit bits. The small dark green circles and the small dark
blue circles represent the syndrome qubits of the surface-GKP code,
which are used to measure the Z type and X type surface code
stabilizers of the data GKP qubit, respectively. The data GKP qubits
and auxiliary bits corresponding to the light yellow and light blue
squares and the corresponding SUM gates and inverse gates
constitute the stabilizer generator.
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correction, each data GKP qubit is not fully corrected but carries
a displacement error u1− η(u1+ u2), where u2 is the error of the
GKP auxiliary qubit from N 2. This noise model corresponds to
the phenomenological error model. Since the Gaussian error
displacement channels N 2 and Nm are located after the CNOT
gate, no auxiliary qubit to data qubit will generate error
propagation. After we apply the novel Steann error correction,
each data GKP qubit is not fully corrected but has a
displacement error u1− η(u1+ u2), where u2 is the error of
the GKP ancilla qubit from N 2.
Since the stabilizer inspection is faulty, the stabilizer

inspection process should usually be repeated d times, where
d is the color-coded distance. In each round of stabilizer checks,
we consider the effects of Gaussian error displacement
channels N 1, N 2, and Nm. At the same time, it is assumed

that the last round of measurements are perfect in both GKP
error correction and stabilizer checks. This assumption is to
ensure that the final GKP state is back in code space so that one
can successfully decode the code or produce an accurate color-
coded logical error XL. After applying the new Steann error
correction, the stabilizer measurement cannot be completely
corrected, and multiple decoding checks are required at this
time, usually repeated d times, where d is the surface code
distance. The periodic surface code is re-evaluated for the effect
of the Gaussian error displacement channels N 1;N 2, and Nm in
each round of stabilizer checks. After multiple decoding
measurements, we assume that the GKP data qubits and
stabilizer measurements42 are noise-free in the last inspection
result, realizing that the GKP quantum states with errors are
brought back into the code space. From this, we can

Mq0
GKP

a

b

c

d

Mp1
GKP

a

b

c

d

X

1 3

2 4

Z

1 3

2 4

Fig. 4 Stabilizer calibration circuit. The light yellow in the surface-GKP code indicates that the calculated ground state corresponding to the
X-type stabilizer is the 0gkp

�� �
stabilizer measurement line, and light blue indicates the calculation corresponding to the Z-type stabilizer. The

ground state is 1gkp
�� �

stabilizer measurement line.

Fig. 5 Wigner function at different photon numbers. a The figure shows a standard diagram of the Wigner function for 0Δj i at nmax ¼ 10
with compression noise below 10 dB. From b to d, it can be seen that as nmax decreases, the number of peaks becomes less and less (the
darker color indicates that the number of peaks here is more, and the noise reduction effect is better). In addition, from left to right, it can be
seen that the phase space state after projection (bottom illustration, the darker the color is closer to the origin, the closer to the 0Δj i state)
becomes more and more dispersed, and the difference is getting bigger and bigger. It follows that the number and sharpness of peaks are
closer to 0Δj i at nmax ¼ 10.
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successfully decode the surface-GKP code or correct the logical
error XL.

Simulation analysis
Therefore, for the above decoding process, we obtained the
threshold display of the surface-GKP code. As shown in Fig. 6,
the threshold value under the first noise model is 0.35, in contrast,
the threshold value of the second noise model is lower, that is, the
decoded data is usually in the qubit overhead. and decoding
speed is difficult to meet our needs.
According to the above two models of low-performance

decoder and pure error decoder, it corresponds to the threshold
display under the low-performance decoder on the left side of
Fig. 7 and the threshold display under the pure error decoder on
the right. The threshold of the low-performance decoder is raised
from 0.50 to 0.78 compared with the threshold under MWPM,
which is greatly improved due to the improvement of the
accuracy of the decoder model and the convolution operation of
the neural network, and the effect of the threshold improvement
is more obvious when the code distance increases.
Compared with the threshold of the pure error decoder, we can

see that the threshold is only 0.34, but it is much higher than that
of the MWPM universal decoder. Under the pure error, the error
correction of the decoder is concentrated at the highest level of
the training model, which can maintain a good error correction
state. The neural network decoder uses the feedforward neural
network43 full connection method, its input is that all the
correctors and the output is one of the three possible logic
errors. Compared with the MWPM decoding algorithm, they can
get a higher threshold and do not need to do repetitive training.
After getting the given training model, we only need to input all
the correctors independently to get the final output. And it can
adapt to many error models in the training process, and may even
be tailored to specific qubit technology or even a single quantum
computing sample.

DISCUSSION
This paper effectively solves the problem that the GKP boson error
correction code cannot achieve fault tolerance when the shift
error is greater than

ffiffiffi
π

p
=2 by combining the surface code with

GKP, and the standard deviation parameter is introduced into the

error correction scheme. A modification of the traditional Stean-
type scheme takes into account the actual error situation, and
compressing the threshold channel to 10 dB shows a good form of
denoising. In order to solve the inconsistency between the two
kinds of noise cases, this paper proposes a general-purpose
MWPM decoder and Dijkstra’s algorithm for fusion, which
improves the threshold level of surface-GKP codes. What is more
effective is that this paper proposes an error correction code
decoding scheme based on neural network decoder, which
improves the decoding rate by 50% and improves the decoder
threshold level from 0.50 to 0.78 under low performance. A large
leap has been achieved.
The threshold under the pure error decoder achieves a good

fault tolerance effect for the two error models, and the threshold
level has achieved a breakthrough of more than 0.3, which is
based on the paper17. The limit decoder failed to achieve
decoding effect. We still need to conduct in-depth research on
bose quantum error correction, and further deepen the hardware
overhead and training layers of machine learning to obtain better
decoding results, so as to ensure that quantum computers have
better fault tolerance in the running process.

METHODS
ME-Steane type GKP error correction scheme
The traditional Steane error correction scheme is affected by the
Pauli rotation approximation in the noisy GKP quantum state, and
its mixed quantum state is as follows:Z

du
Z

dvPσðuÞPσðvÞe�iup̂eivq̂ ψj i ψh je�ivq̂eiup̂: (11)

Ideally, all components of the circuit are noise-free except for the
CNOT gates through which the auxiliary qubits that need to be
measured go through. We give the initial state. From this we set
the initial quantum state as:

e�iu1p1e�iu2p2 ψj i þj i; (12)

The probability of u1 and u2 obeys a Gaussian random

distribution function Pσ1ðu1Þ ¼ 1ffiffiffiffiffiffiffi
2πσ21

p expð� u21
2σ21

Þ and Pσ2ðu2Þ ¼
1ffiffiffiffiffiffiffi
2πσ22

p expð� u22
2σ22

Þ. The output quantum state after passing through

Fig. 6 Schematic diagram of threshold value under MWPM decoder. a The left picture is the rendering of MWPM decoder for the first error
type, in which the green square, purple circle, blue diamond, and yellow triangle represent surface-GKP codes with code distances of 5, 7, 9,
and 11, respectively. The σ represents the standard deviation of the stea error correction scheme, which is also expressed as the physical error
rate by the Gaussian noise random channel. b The threshold in this figure can be seen from the right panel to be 0.50, and the right image is
for the stabilizer measurement. Thresholding effect of the second error type MWPM decoder combined with Dijkstra’s algorithm, it can be
clearly seen that the threshold is much lower at 0.25.
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the CNOT gate is:

e�iu1p1e�iðu1þu2Þp2 ψj i þj i
¼ 1ffiffiffi

N
p

P
n2Z

e�iu1p1 ψj i q ¼ n
ffiffiffi
π

p þ u1 þ u2j i: (13)

where N is the normalization constant, and the syndrome
measurement44 result is qout ¼ n

ffiffiffi
π

p þ u1 þ u2. The correction
qcor ¼ qout mod

ffiffiffi
π

p
is given by introducing the traditional Steane

error correction scheme. Under the premise that σ2 is much smaller
than σ1, the shift error u2 is negligible and the error u1 can be
corrected:

qcor ¼ u1 þ 2k
ffiffiffi
π

p
; (14)

where k is an integer. Thus, the conditional error probability given
qout is:

pðXjqoutÞ ¼ 1�
P

kPσ1ðqout � 2k
ffiffiffi
π

p ÞP
kPσ1ðqout � k

ffiffiffi
π

p Þ : (15)

For considering the influence of actual noise and solve the
situation caused by the shift error u2, we update the error
probability distribution of u1 to ensure that the best choice for
correcting qcor can be found, the actual qout output probability is:

f ðu1; qoutÞ ¼
Pσ1ðu1Þ

P
kPσ2ðqout � k

ffiffiffi
π

p � u1ÞP
kPσ12ðqout � k

ffiffiffi
π

p Þ ; (16)

where σ12 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
1 þ σ2

2

p
is the variance of the variable w= u1+ u2.

We are satisfied that the correction is that f(u1, qout) can be
decomposed into Gaussian distribution functions with different
weights:

f ðu1; qoutÞ ¼
P

kwk exp � ðu1�ηðqout�k
ffiffi
π

p ÞÞ2
2σ2

h i
2πσ1σ2

P
kPσ12ðqout � k

ffiffiffi
π

p Þ ; (17)

where η ¼ σ21
σ21þσ22

, σ2 ¼ σ21σ
2
2

σ21þσ22
and wk ¼ exp � ðη�η2Þðqout�k

ffiffi
π

p Þ2
2σ2

h i
. From

this, we can clearly find that the peak value of the Gaussian function
u1 ¼ ηðqout � k

ffiffiffi
π

p Þ and the largest function point f(u1) is
u1 ¼ ηðqout mod

ffiffiffi
π

p Þ. After updating the weights, the maximum

likelihood estimate of the shift error u1 is qðMEÞcor ¼ ηðqout mod
ffiffiffi
π

p Þ.
After we obtain the maximum likelihood estimate of the novel
Steane error correction scheme, the conditional probability of Pauli-X
error is:

p0ðXjqoutÞ ¼ 1�
X
k

Z 2k
ffiffi
π

p þ
ffiffi
π

p
2

2k
ffiffi
π

p �
ffiffi
π

p
2

f ðu1 þ qðMEÞcor ; qoutÞdu1: (18)

Correction qðMEÞ
cor is half of where σ2 = σ1ðη ¼ 1

2Þ in a specific case
qcor. When σ2 ≪ σ1, the parameter η ≈ 1 in the maximum
likelihood estimation of our shift error u1, that is, the new
Steane error correction scheme, is consistent with the
traditional error correction scheme45 (the formula can be
obtained out, σ2 → 0). When the second case occurs, that is,
when the surface-GKP code has no other noise except for
measuring auxiliary qubits, it continues to use the traditional
Steane error correction scheme.
To characterize the performance of the novel error correction

code, we cite a function as a demonstration of the error correction
performance of GKP. Surface-GKP error correction46 with perfect
(noise-free) auxiliary qubits corresponds to the mapping of the
shift error u1 in the data qubits:

πðu1Þ ¼ 0; if ju1 mod2
ffiffiffi
π

p j<
ffiffi
π

p
2 ;ffiffiffi

π
p

; otherwise:

(
(19)

This means that the data qubit error u1 becomes π(u1) after the
noise-free surface-GKP error correction. We can get that any small
error u1 can be corrected, while a large shift error u1 may causeffiffiffi
π

p
(X error), which will affect measurements to the next level of

stabilizer code. Similarly, when the auxiliary qubit is noisy, the
mapping π0ðu1Þ of the Steane-type error correction scheme is

π0 u1ð Þ ¼ u1 � qcor (20)

Then we define the function Δðπ0; πÞ to measure the difference
between the noiseless surface-GKP error correction and the noisy
GKP error correction scheme, where the angle brackets denote all
Gaussian variables u1 and Gaussian weighted average of u2. In
order to find the optimal qðMEÞ

cor value and show it as the optimal
correction scheme, we give different qcor to simulate Δðπ0; πÞ, it
can be found from Fig. 8 that qðMEÞ

cor is the optimal selection
condition to minimize Δðπ0; πÞ.
After completing the new Steane error correction scheme, the

problem of whether the maximum likelihood estimation of shift error
still exists under coherent noise47 is also solved. As can be seen from
the formula, the pure quantum state is the same as the correction of
qðMEÞcor above, resulting in consistent results. Therefore, we have
obtained the optimal error correction conditions. Next, we need to
perform decoding operations from surface-GKP error correction
codes of different dimensions, and have obtained the maximum
possible information protection and recovery operations.
Threshold is an important representative of the performance of

physical qubits in line gate transmission. When the physical error rate
is lower than a certain threshold, a quantum computer can suppress

Fig. 7 Schematic diagram of threshold value under neural network decoder. a The image on the left shows the low-performance decoder
under the neural network decoder for the first error type. b The effect on the right shows that the threshold effect for the second noise model
under the pure error decoder is 0.34.
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the logical error rate to an arbitrarily low level by applying a quantum
error correction scheme. The threshold level is affected by the error
noise model and decoding performance. We introduce two error
noise models for the surface-GKP code and propose a comparison of
two different decoding methods for the noise models, one is a
MWPM decoder48 where vertex matching can be done in one
polynomial time, and the other is a neural network decoder that can
decode in all directions using 2D matrices and convolution
operations.

MWPM decoder
In order to improve the decoding performance and reduce the
qubit overhead49, we propose a general decoder for the above
two error models based on17. The MWPM decoder can restate the
noise model as a mathematical model: for a given syndrome
geometry (all vertices in Fig. 6), the decoder can find a set of
identical syndromes (set of lattices). In order to ensure that the
quantum state information is not destroyed, we need to make the
corrected qubit the same as the error qubit of the stabilizer, so as
to avoid logical errors XL and ZL. For the two error noise models, it
is difficult for us to find an effective maximum likelihood decoder
(MLD). The combined GKP code measurement results are not
binary, but continuous variable information, which can provide
more logical error information. By computing qout, we can get the
average error probability of all GKP qubits:

p ¼ 1�
X
n2Z

Z 2n
ffiffi
π

p þ
ffiffi
π

p
2

2n
ffiffi
π

p �
ffiffi
π

p
2

PσðxÞdx: (21)

It is obvious that it is not p that we want to find the maximum
likelihood correction through the conditional error probability. To
construct a general decoder model, the focus is on addressing the
second error model where noise is present in both syndrome and
stabilizer measurements. Since the results of the stabilizer check
are unreliable, the measurements need to be repeated for d
cycles. To this end, we apply MWPM decoder and Dijkstra’s
algorithm to do 3D graph surface-GKP code matching in this
paper to ensure maximum probability of detecting stabilizer
measurement failures. The specific optimization description and
performance display are described in detail in Supplementary
Note 2: Optimize MWPM decoder. First, assuming that all
components in the quantum circuit and the initial surface-GKP
quantum state are noise-free, this paper performs the first round
of stabilizer-free noise (the first error model) measurement cycle.

Next, we add an additional ambient noise environment (the
second error model) to measure the period under stabilizer noise,
where the measurement period without noise is to ensure that the
noise state can be restored to the code space, so as to determine
whether the error correction is successful. Finally, we want to
construct Z-type and the X-type 3D space-time graphs to
represent the periodic results of a new round of stabilizer
measurements. The detailed construction process is shown in
Supplementary Note 1: Construction of 3D space-time graphs for
decoding Z-type and the X-type of the syndrome output.
When we have constructed the 3D space-time map of the

surface-GKP code from Supplementary Note 1: Construction of 3D
space-time graphs, we use MWPM decoding algorithm to correct it:

● 1: Perform d rounds of noise stabilizer measurements on the
initial GKP state, followed by a noise-free stabilizer measure-
ment to construct the Z-type and the X-type 3D space-time
diagram as shown in the figure;

● 2: Highlight the vertices in the assigned stabilizer value that are
compared with the previous round. To ensure that the number of
vertices is an even number, mark the boundary vertices when the
number of vertices in the space-time graph is odd;

● 3: Using Dijkstra’s algorithm, we can find the minimum weight
matching for both the Z-type and the X-type vertices highlighted
by the markers. Connect matching vertices with solid lines to
highlight the optimal weight path;

● 4: For the convenience of calculation, we need to project
the 3D space-time map of the vertical side onto the 2D
plane. Count the number of display times for each Z-type
and the X-type horizontal boundary. If the horizontal
boundary is highlighted, it will not be processed; otherwise,
we will count the data of Z-type and the X-type Error
correction for GKP qubits X̂gkp (Ẑgkp);

● 5: After the correction is completed, only the noise effect of
the data qubit under the second noise model remains,

corresponding to ξDq ¼ ðξðD1Þq ; � � � ; ξðDd2Þq Þ and

ξDp ¼ ðξðD1Þp ; � � � ; ξðDd2Þp Þ. Define totalðξDq Þ �
Pd2

k¼1 ξ
ðDkÞ
q and

totalðξDp Þ �
Pd2

k¼1 ξ
ðDkÞ
p . Then, we determine that there is

Pauli X totalðξDq Þ ¼ odd& totalðξDp Þ ¼ even

Pauli Z totalðξDq Þ ¼ even& totalðξDp Þ ¼ odd

Pauli Y totalðξDq Þ ¼ odd& totalðξDp Þ ¼ odd

8>><
>>: (22)

error. Otherwise if both totalðξDq Þ and totalðξDp Þ are even, there is
no logical error.

Neural network decoder
In order to get a high-performance decoder and run fast
enough to avoid problems such as data squeezing. The advent
of neural networks brought a new dawn to error correction
decoding. In this paper, an efficient decoding scheme of
surface-GKP codes based on neural network decoder is
proposed (the specific construction process of neural networks
can be found in the literature). To accommodate the error-free
model, we propose two independent neural network decoder
schemes. One is a neural network decoder suitable for low-error
levels. For example, the first error model in the above error
model only has data qubit errors, and only the generated
syndrome can be used as an output to obtain data qubits. The
other is an advanced neural network decoder that combines a
neural network decoder with a pure error decoder, where the
pure error decoder (see Supplementary Note 3: Pure Error
Decoder) contains both data qubits and stabilizer measurement
errors, and the logic error is output by the neural network
decoder, as follows:
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Fig. 8 Steane type error correction scheme. the red histogram in
the figure indicates that Δðπ0; πÞ is a schematic diagram of Steane
type error correction adjustment; The light blue histogram
represents a schematic diagram of Steane type error correction
adjustment when σ21 is twice as much as σ22; the dark blue histogram
represents σ21 is a schematic diagram of Steane type error correction
adjustment in the case of four times σ22. From the figure we can see

that QCOR ¼ QðMEÞ
COR is the best correction to minimize Δðπ0; πÞ.
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Generate a true error model for training the neural network’s
decoder model50. Noise model sampling is required for data
qubit errors (the impact of both models is the same, and the
depolarized noise model is used here for convenience). First,
avoiding the additional meaningless overhead of the decoder
choosing a noise model that measures no errors, it is necessary
to apply a random number in each cycle from the X, Y, or Z
errors by depolarizing the noise model selection physical error
to achieve. It is not pre-generated test data and training set, it
is done dynamically before the neural network convolution in
ref. 51. Second, so as to avoid data overfitting, the syndrome
and logic errors generated by the decoder are used for
training, and the performance is better when the code distance
is less than 7, but when the distance is too large, the syndrome
set is huge, and the training data set will cause too much
volatility, which is difficult to correct. In this paper, the data is
generated by simulation, and the data is kept dynamically
refreshed, and the amount of data is not limited. Therefore, it
avoids the interference of data correlation on error correction,
and successfully reduces the problem of data over-fitting52.
These data sets are then fed into the simulator of the surface-
GKP code to obtain the corresponding error syndromes. Finally,
the generated set of syndromes is passed to a low-level neural
network decoder and an error-only decoder. The pure error is
compared with the actual data qubit, and the logical difference
between the two is used as the output target value of the
neural network.
In the training process, we used batch size 5122 blocks

(combined with the data support provided by the literature53),
and did not recycle the data set. In order to speed up the
training speed, we trained 3 × 105 batches of neural network
elements. The neural network unit determines that the total
data set for each training is 1.8 × 109. Figure 9 shows the
training effect on the neural network unit 2 × 103 batches, it can
be seen from the figure that the number of iterations reaches
performance saturation after 180 iterations. To ensure the
accuracy of the model, we do the training test again after the
training is completed, and continue to use the 2 × 103 batch of
neurons for statistics. It can be seen from Fig. 9(b) that the error
fluctuates between 0.12–0.15, the fitting degree of the data
reaches more than 98%. To demonstrate the different perfor-
mance on overhead in detail, this paper shows the decoding
performance of different transfer functions. This work is
detailed in Hyperbolic Tangent (TanH)47,48, Corrected Linear

Unit (ReLU)54,55, and Extended Nonlinearity (SQNL) as follows :

TanHðxÞ ¼ ex � e�x

ex þ e�x
(23)

ReLUðxÞ ¼ 0; for x < 0

x; for x � 0

	
(24)

SQNLðxÞ ¼

�1; for x<� 1

2x þ x2; for � 1 	 x < 0

2x � x2; for 0 	 x 	 1

1; for x > 1

8>>><
>>>:

(25)

To avoid introducing new false noise, the transfer function chosen
by each node is the same.
Table. 1 compares the performance of different transfer

functions, similar to the comparison of rotational symmetry.
Take the computationally expensive hyperbolic tangent as a
reference, the average performance difference between ReLU
and TanH is not significant. Since ReLU is much cheaper in
hardware overhead implementation (doesn’t need any expo-
nential), this paper mainly adopts ReLU. From Fig. 9 and Table 1,
we can see that the transfer function shows an amazing
increase in the performance of fit at larger code distances,
which indicates that a larger number of neural network layers is
required to provide code training with larger distances. Based

Fig. 9 Schematic diagram of neural network decoder training. a As the number of iterations on the abscissa increases, the training
performance of different transfer functions can be seen. b The performance of the SQNL purple graph is the best, but it reaches saturation
when the number of iterations reaches 150.

Table 1. Training with different transfer functions on a surface code
lattice with one-half degree of freedom of rotation, showing
performance on different layers.

Performance Distance

Comparison 5 7 9 11

Rotated
Unrotated

a pth 1.0241 1.0611 1.0663 1.0923

Slope 1.0012 1.0327 1.0423 1.0486
SQNL
TanH

b

pth 1.0151 1.1245 1.3230 1.3631

Slope 1.0121 1.0765 1.1648 1.2643
ReLU
TanH

b

pth 0.9843 0.9987 1.0721 1.0651

Slope 0.9437 1.0324 1.0424 1.0936

aAveraged over all transfer functions.
bAveraged over both rotated and unrotated configurations.
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on the above data analysis, we adopted a movable neural
network with SQNL function, which made up for the lack of
iterative depth of the neural network, thus we obtained a neural
network decoder with high fitting accuracy, low hardware
overhead, and fast correction speed. The construction of the
training model and the quantization error optimization process,
as well as the superiority of the transfer function SQNL, see
Supplementary Note 4: Training optimization.
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