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Fidelity bounds for device-independent advantage distillation
Thomas A. Hahn 1✉ and Ernest Y.-Z. Tan 1✉

It is known that advantage distillation (that is, information reconciliation using two-way communication) improves noise tolerances
for quantum key distribution (QKD) setups. Two-way communication is hence also of interest in the device-independent case,
where noise tolerance bounds for one-way error correction are currently too low to be experimentally feasible. Existing security
proofs for the device-independent repetition-code protocol (the most prominent form of advantage distillation) rely on fidelity-
related security conditions, but previous bounds on the fidelity were not tight. We improve on those results by developing an
algorithm that returns arbitrarily tight lower bounds on the fidelity. Our results give insight on how strong the fidelity-related
security conditions are, and could also be used to compute some lower bounds on one-way protocol keyrates. Finally, we
conjecture a necessary security condition for the protocol studied in this work, that naturally complements the existing sufficient
conditions.
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INTRODUCTION
The ultimate goal of key distribution protocols is to generate
secure keys between two parties, Alice and Bob. To this end,
device-independent quantum key distribution (DIQKD) schemes
aim to provide information-theoretically secure keys by taking
advantage of non-local correlations, which can be verified via Bell
inequalities1–4. Critically, Bell violations rely only on the measure-
ment statistics, Pr abjxyð Þ, where a(b) is Alice’s (Bob’s) measure-
ment outcome and x(y) is Alice’s (Bob’s) measurement setting5. By
basing security on Bell inequalities, DIQKD protocols do not
require any knowledge of the bipartite state that Alice and Bob
share, nor of the measurements both parties conduct, apart from
the assumption that they act on separate Hilbert spaces1,5. (To
guarantee security, it is still important to ensure that information
about the device outputs themselves is not simply leaked to the
adversary. Also, if the devices are reused, they must not access any
registers retaining memory of ‘private data’, in order to avoid the
memory attack of6.) We consider all Hilbert spaces to be finite-
dimensional.
Although DIQKD allows for the creation of secret keys under

very weak assumptions, there is a trade-off when it comes to noise
tolerances1,7. Standard DIQKD protocols which apply one-way
error-correction steps have fairly low noise robustness, and are
therefore not currently experimentally feasible1,3. To improve
noise tolerances, one may implement techniques such as noisy
pre-preprocessing8, basing the protocol on asymmetric CHSH
inequalities9,10, or applying advantage distillation11. In this work
we focus solely on advantage distillation, which refers to using
two-way communication for information reconciliation, in place of
one-way error-correction.
In device-dependent QKD7,12–17, as well as classical key

distillation scenarios18,19, advantage distillation can perform better
than standard one-way protocols in terms of noise tolerance. As
for DIQKD, it has been shown that advantage distillation leads to
an improvement of noise tolerance as well11, but the results
obtained in that work may not be optimal. Specifically, a sufficient
condition was derived there for the security of advantage
distillation against collective attacks, based on the fidelity
between an appropriate pair of conditional states (see Theorem

1 below). However, the approach used in11 to bound this fidelity is
suboptimal, and hence the results were not tight.
Our main contribution in this work is to derive an algorithm

based on semidefinite programs (SDPs) that yields arbitrarily tight
lower bounds on the relevant fidelity quantity considered in11. We
apply this algorithm to several DIQKD scenarios studied in that
work, and compare the resulting bounds. Surprisingly, while we
find improved noise tolerance for some scenarios, we do not have
such improvements for the scenario that gave the best noise
tolerances in11, which relied on a more specialized security
argument. An important consequence of this finding is that it
serves as strong evidence that the general sufficient condition
described in11 is in fact not necessary in the DIQKD setting, in stark
contrast to the device-dependent QKD protocols in14,15, where it is
both necessary and sufficient (when focusing on the repetition-
code advantage distillation protocol; see below). In light of this
fact, we describe an analogous condition that we conjecture to be
necessary, and discuss possible directions for further progress.
We consider the following set-up for two parties, Alice and

Bob2,11.

● Measurement Settings: Alice (Bob) has MA (MB) possible
measurement inputs and chooses x 2 X ¼ f0; ¼ ;MA � 1g
y 2 Y ¼ f0; ¼ ;MB � 1gð Þ. The measurements are denoted

as Ax (By) for Alice (Bob).
● Measurement Outcomes: Alice (Bob) has 2 possible measurement

outcomes and measures a 2 A ¼ f0; 1g b 2 B ¼ f0; 1gð Þ.
The only key-generating measurements are A0 and B0. We consider

Eve to be restricted to collective attacks20, where it is assumed that
the measurements Alice and Bob may conduct, as well as the single-
round tripartite state, ρABE, that Alice, Bob, and an adversary, Eve,
share are independent and identical for each round. Since we are
working in the device-independent setting, we consider Alice and
Bob’s measurements to be otherwise uncharacterized. For ease of
applying the results from11, we assume that they perform a
symmetrization step, in which Alice and Bob publicly communicate
a uniformly random bit and XOR it with their raw outputs (see11 for
details on when this step can be omitted). We use ϵ to denote the
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quantum bit error rate (QBER), i.e. the probability of obtaining
different outcomes from measurements A0, B0.
We consider the repetition-code protocol for advantage

distillation13–15,18,19, which proceeds as follows. After gathering
the raw output strings from their devices, Alice and Bob split the
key-generating rounds into blocks of size n each, and from each
block they will attempt to generate a single highly-correlated bit.
For each block, Alice generates a secret, uniformly random bit, C,
and adds it to her n bits, A0. She then sends this ‘encoded’
bitstring, M ¼ A0 � ðC; ¼ ; CÞ, as a message to Bob via an
authenticated channel. He then tries to decode the message by
adding his own bitstring, B0, to it. He accepts the block of n bits if
and only if M� B0 ¼ ðC0; ¼ ; C0Þ. If accepted, he indicates this to
Alice by sending her a bit D= 1 via an authenticated channel.
Otherwise, he sends D= 0. Considering only the accepted blocks,
this process has therefore reduced each block of n bitpairs to a
single highly correlated bitpair, ðC; C0Þ. Alice and Bob then apply a
one-way error correction procedure (from Alice to Bob) on the
resulting bitpairs over asymptotically many rounds, followed by
privacy amplification to produce a final secret key. This procedure
can achieve a positive asymptotic keyrate if the bitpairs in the
accepted blocks satisfy some conditions we shall now describe.
The protocol can be used to distill a secret key if21

r :¼ HðCjEM;D ¼ 1Þ � HðCjC0;D ¼ 1Þ > 0; (1)

where E is Eve’s side-information across one block of n rounds and
H is the von Neumann entropy3,21. The second entropy term,
HðCjC0;D ¼ 1Þ, can easily be determined via the QBER1,11. In11,
Eve’s conditional entropy H(C∣EM; D= 1) was lower-bounded
using inequalities that are not necessarily tight, leading to the
following result based on the (root-)fidelity Fðρ; σÞ :¼ k ffiffiffi

ρ
p ffiffiffi

σ
p k1:

Theorem 1. A secret key can be generated if

FðρEj00; ρEj11Þ2 >
ϵ

ð1� ϵÞ ; (2)

where ρEja0b0 denotes Eve’s conditional state (in a single round)
after Alice and Bob use inputs A0 and B0 and obtain outcomes a0
and b0.

Our goal will be to find a general method to certify the condition
in Theorem 1. For later use, we also note that in the case where both
parties have binary inputs and outputs, an alternative condition was
derived11 based on the trace distance d(ρ, σ):= (1/2)∥ρ− σ∥1:

Theorem 2. If X ¼ Y ¼ f0; 1g and all measurements have binary
outcomes, a secret key can be generated if

1� dðρEj00; ρEj11Þ>
ϵ

ð1� ϵÞ : (3)

RESULTS
To find optimal bounds for Theorem 1, we need to minimize the
fidelity for a given observed distribution. We show that this can be
written as an SDP in Section “SDP Formulation of Minimum
Fidelity Condition”, and use this to calculate noise tolerances for a
range of repetition-code advantage distillation setups in Section
“Results From SDP”. We conclude the Results section with a
conjecture for a necessary condition that naturally complements
the sufficient condition in11.

SDP formulation of minimum fidelity condition
To see if Eve can minimize the fidelity such that (2) does not hold,
we must first solve the following constrained optimization over all

possible ρABE and possible measurements by Alice and Bob:

inf FðρEj00; ρEj11Þ
s:t: Pr ðabjxyÞρ ¼ p;

(4)

where Pr(ab∣xy)ρ denotes the combined outcome probability
distribution that would be obtained from ρABE (and some
measurements), and p represents the measurement distribution
Alice and Bob actually observe. We observe that after Alice and
Bob perform the key-generating measurements, the resulting
tripartite state is of the formX
a;b2f0;1g

PrðabÞ abj i abh j � ρEjab; (5)

where for brevity we use Pr(ab) to denote the probability of
getting outcomes (a, b) when the key-generating measurements
are performed, i.e. Pr(ab∣00)ρ.
To turn this optimization into an SDP, we first note that for any

pair (ρE∣00, ρE∣11), there exists a measurement Eve can perform that
leaves the fidelity invariant22. Also, since this measurement is on
Eve’s system only, performing it does not change the value
Pr(ab∣xy)ρ in the constraint either. Therefore, given any feasible
ρABE and measurements in the optimization, we can produce
another feasible state and measurements with the same objective
value but with Eve having performed the22 measurement that
leaves the fidelity between the original (ρE∣00, ρE∣11) states
invariant.
After performing this measurement, the state (5) becomesX

a;b2f0;1g

X
i

PrðabjiÞ PrðiÞ abij i abih j; (6)

where the index i represents the possible outcomes for Eve’s
measurement (we do not limit the number of such outcomes for
now). For these states, the fidelity can be written (assuming the
distribution is symmetrized) as

FðρEj00; ρEj11Þ ¼
X
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Prð00jiÞ Prð11jiÞp

Prð00Þ PrðiÞ: (7)

As for the constraints, we note that this measurement by Eve
commutes with Alice and Bob’s measurements, hence we can
write Pr(ab∣xy)ρ= ∑iPr(i)pi, where pi denotes the Alice-Bob
distribution conditioned on Eve getting outcome i. Note that pi

is always a distribution realizable by quantum states and
measurements, since conditioning on Eve getting outcome i
produces a valid quantum state on Alice and Bob’s systems.
The solution to (4) is therefore equal to the output of the

optimization problem

inf
PrðiÞ;pi

P
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Prð00jiÞ Prð11jiÞ

p
Prð00Þ PrðiÞ

s:t:
P
i
PrðiÞpi ¼ p

pi 2 QX ;Y
PrðiÞ 2 PðIÞ;

(8)

whereQX ;Y represents the set of quantum realizable distributions,
and PðIÞ is the set of probability distributions Pr(i) on Eve’s (now
classical) side-information. We note that the constraints can be
relaxed to a convergent hierarchy of SDP conditions, following the
approach in23–25, but the objective function is not affine. To
address this, we show in Section “Approximating The Fidelity With
Polytope Hyperplanes” that since the objective function is a
convex sum of bounded concave functions, it can be approxi-
mated arbitrarily well using upper envelopes of convex polytopes.
This will allow us to lower-bound this optimization using an SDP
hierarchy, and do so without any knowledge about the dimension
of Eve’s system other than the assumption that all Hilbert spaces
are finite-dimensional. Critically, SDPs have the important property
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that they yield certified lower bounds on the minimum value (via
the dual value), so we can be certain that we truly have a lower
bound on the optimization (4). Our approach is based on the SDP
reduction in26; however, we give a more detailed description and
convergence analysis for the situation where the optimization
involves concave functions of more than one variable (which is
required in our work but not necessarily in26).
We remark that in this work, we focus on the situation where

the constraints in (8) involve the full list of output probabilities.
However, our analysis generalizes straightforwardly to situations
where the constraints only consist of one or more linear
combinations of these probabilities (though it is still necessary
to have an estimate of the Pr(00) term in the denominator of the
objective function), which can slightly simplify the corresponding
DIQKD protocols.

Results from SDP
With the exception of the 2-input scenario for both parties (where
Theorem 2 can be applied instead of Theorem 1), previous bounds
for the fidelity were calculated via the Fuchs–van de Graaf
inequalities11,27. To compare this against our method, we consider
the depolarizing noise model28, i.e. where the observed statistics
have the form

1� 2qð ÞPrtargetðabjxyÞ þ q=2; (9)

where Prtarget refers to some target distribution in the absence of
noise. We consider three possible choices for the target
distribution, and show our results for these scenarios in Fig. 1:

(a) Both Alice and Bob have four possible measurement
settings. The target distribution is generated by:

ϕþj i ¼ 00j i þ 11j ið Þ= ffiffiffi
2

p
A0 ¼ Z;A1 ¼ X þ Zð Þ= ffiffiffi

2
p

;A2 ¼ X , A3 ¼ X � Zð Þ= ffiffiffi
2

p
B0 ¼ Z; B1 ¼ X þ Zð Þ= ffiffiffi

2
p

; B2 ¼ X , B3 ¼ X � Zð Þ= ffiffiffi
2

p

(b) Alice has two measurement settings, whereas Bob has three.
The target distribution is generated by:

ϕþj i ¼ 00j i þ 11j ið Þ= ffiffiffi
2

p
A0= Z, A1= X
B0 ¼ Z; B1 ¼ X þ Zð Þ= ffiffiffi

2
p

, B2 ¼ X � Zð Þ= ffiffiffi
2

p

(c) Both Alice and Bob have two possible measurement
settings. The target distribution is generated by:

ϕþj i ¼ 00j i þ 11j ið Þ= ffiffiffi
2

p
A0= Z, A1= X
B0 ¼ X þ Zð Þ= ffiffiffi

2
p

; B1 ¼ X � Zð Þ= ffiffiffi
2

p

Case (a) is meant to include the Mayers-Yao self-test29 and
measurements that maximize the CHSH value. Alternatively, it can
be viewed as having both parties perform all four of the
measurements from (c). The results of11 were able to prove
security of this advantage distillation protocol up to q ≈ 6.8% in
this case. We manage to improve the noise tolerance to q ≈ 8.3%,
which represents an increase of 1.5%.
As for case (b), the measurements A0, A1, B1, B2 maximize the

CHSH value, and the key-generating measurement B0 is chosen
such that the QBER is zero in Prtarget. Again, our approach allows us
to improve the noise tolerance threshold from q ≈ 6.0% to
q ≈ 7.0%.
The final case is a simple CHSH-maximizing setup, where both

parties only have two measurements (this is similar to (b), but
without the QBER-minimizing measurement for Bob). If we apply
Theorem 1 for this case, our approach improves the threshold
from q ≈ 3.6% to q ≈ 6.7%. Also, if we instead optimize the
measurements for robustness against depolarizing noise, this
threshold can be increased to q ≈ 7.6% (these optimized
measurements correspond to measurements in the x-z plane at

angles θA0 ¼ 0, θA1 � 4:50, θB0 � 3:61, and θB1 � 5:39 from the z-
axis).
However, it is important to note that in case (c), Theorem 2

could be applied instead to yield a noise tolerance bound of
q ≈ 7.7%, or q ≈ 9.1% with optimized measurements11. These
values are higher than those obtained above by applying our
approach to case (c) with Theorem 1. This gives strong evidence
that the sufficient condition in Theorem 1 is not a necessary one,
because our approach should yield threshold values close to the
optimal ones that could be obtained based only on that sufficient
condition. (In principle, there may still be a gap between the true
fidelity values and the bounds we computed; however, we
consider this somewhat unlikely—see Section “Creating An SDP
Algorithm That Minimizes The Fidelity”.) Furthermore, we remark
that it also suggests that the states ρE∣00, ρE∣11 that minimize the
fidelity in this scenario cannot be pure. This is because in11, the
critical inequalites used in the proof of Theorem 1 are all saturated
(in the large-n limit, at least) if those states are pure, indicating
that the resulting sufficient condition should be basically ‘tight’
(i.e. a necessary condition) in this case. Since our results indicate
that the sufficient condition is not a necessary one, this implies
that the relevant states ρE∣00, ρE∣11 cannot be pure.
Given the above observations, we now conjecture what might

be a necessary condition for security of the repetition-code
protocol, to serve as a counterpart to Theorem 1.

Conjectured necessary condition for secret key distillation
While our result in this section can be stated in terms of the
fidelity, we note that the reasoning holds for any distinguishability
measure g(ρ, σ) that has the following properties:

gðρ; σÞ ¼ gðσ; ρÞ; (10)

gðρ� ρ0; σ � σ0Þ ¼ gðρ; σÞgðρ0; σ0Þ; (11)

gðρ; σÞ þ dðρ; σÞ � 1; (12)

g ρ; σð Þ2 þ d ρ; σð Þ2 � 1: (13)

The first line states that it is symmetric, the second that it is
multiplicative across tensor products, and the last two lines
correspond to the Fuchs–van de Graaf inequality in the case of the
fidelity. An example of another distinguishability measure that
satisfies these properties is the pretty-good fidelity30–32, defined as
Fpgðρ; σÞ :¼ Tr

ffiffiffi
ρ

p ffiffiffi
σ

p� �
. To keep our result more general, we shall

first present it in terms of any such measure g, and discuss at the
end of this section which choices yield better bounds. (In fact, we
will only need (10)–(12) for this section. We list (13) as well
because it can be used when studying sufficient conditions; see
Section “Proof of Proposition 3”.).
For any such g, we shall show that under a particular

assumption, the condition

gðρEj00; ρEj11Þ >
ϵ

ð1� ϵÞ (14)

is necessary for (1) to hold. Specifically, the assumption is that
given some state and measurements compatible with the
observed statistics, Eve can produce some other state and
measurements (with the same measurement-outcome probability
distribution) that have the same value of g(ρE∣00, ρE∣11), but with
ρE∣01= ρE∣10. This assumption seems reasonable because
ρE∣01= ρE∣10 describes a situation where Eve is unable to
distinguish the cases where Alice and Bob’s outcomes are 01
versus 10, i.e. in some sense this appears to be a ‘suboptimal’
attack by Eve. (It might seem that this could be trivially satisfied by
having Eve erase her side-information conditioned on Alice and
Bob obtaining different outcomes. However, for Eve to do so, she
would need to know when Alice and Bob obtain different
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Fig. 1 Fidelity Bounds for depolarizing noise. Fidelity bounds as a function of depolarizing noise in several scenarios (described in main
text), regarding the repetition-code protocol defined in our Introduction. The blue and black solid lines respectively represent the fidelity
bounds derived via the previous approach (based on the Fuchs–van de Graaf inequality) and our new algorithm. It can be seen that the latter
yields substantially better bounds. The dashed lines show the value of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ=ð1� ϵÞp

, so the points where they intersect the solid lines give the
threshold values for which advantage distillation is possible according to the condition FðρEj00; ρEj11Þ2 > ϵ

ð1�ϵÞ. For our approach, these
thresholds are q � 8:3%; q � 7:0%, and q � 6:7% (from top to bottom in the scenarios shown here).
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outcomes, and it is not clear that this is always possible for the
states in Eve’s optimal attacks in DIQKD scenarios. This property
does hold for the QKD protocols studied in14,15, and they use it as
part of the proof that their condition is also necessary).
To prove that (14) is in fact necessary (given the stated

assumption), we show that if it is not satisfied, then regardless of
the choice of block size in the repetition-code protocol, in each
block Eve can always produce a classical bit C'' such that

HðCjC00
;D ¼ 1Þ � HðCjC0;D ¼ 1Þ � 0; (15)

which in turn implies (as noted in 14, using the results for binary
symmetric channels in 18) that the repetition-code protocol as
described above (i.e. with only one-way error correction from Alice
to Bob after the initial blockwise ‘distillation’ procedure) cannot
achieve positive asymptotic keyrate. To prove that Eve can indeed
do this, we first derive an ‘intermediate’ implication (we give the
proof in Section. “Proof of Proposition 3”, based on the arguments
in11,14,15):

Proposition 1. Let g be a function satisfying (10)–(12). If Eve’s
side-information satisfies ρE∣01= ρE∣10 and

gðρEj00; ρEj11Þ �
ϵ

ð1� ϵÞ ; (16)

then for all n, Eve can use the information available to her (i.e. E,
M, and D= 1) to construct a classical binary-valued guess C″ for
the bit C that satisfies

PrðC ≠ C
00 jD ¼ 1Þ � PrðC ≠ C0jD ¼ 1Þ: (17)

We now observe that the following relations hold (the first by
Fano’s inequality, the second by a straightforward calculation
using the fact that the bits C,C' have uniform marginal
distributions in the accepted blocks):

H CjC00;D ¼ 1ð Þ � h2 Pr C 6¼ C00jD ¼ 1ð Þð Þ;
H CjC0;D ¼ 1ð Þ ¼ h2 Pr C 6¼ C0jD ¼ 1ð Þð Þ; (18)

where h2 is the binary entropy function. With this we find that Eve
can indeed produce a bit C'' such that (15) holds, thereby
concluding the proof.
If it could be shown that ρE∣01= ρE∣10 is in fact always possible to

achieve for Eve without compromising g(ρE∣00, ρE∣11) or the post-
measurement probability distribution, then (14) would genuinely
be a necessary condition for security. It could then be used to find
upper bounds for noise tolerance of the repetition-code protocol.
Regarding specific choices of the measure g, note that the

pretty-good fidelity and the fidelity are related by F(ρ, σ) ≥ Fpg(ρ, σ)
≥ F(ρ, σ)2 31, with the first inequality being saturated for
commuting states and the second inequality for pure states. In
particular, the F(ρ, σ) ≥ Fpg(ρ, σ) side of the inequality implies that
when aiming to find upper bounds on noise tolerance of this
protocol using the condition (14), it is always better to consider
pretty-good fidelity rather than fidelity (since all states satisfying
the condition (14) with g= Fpg also must satisfy it with g= F, but
not vice versa). We leave for future work the question of whether
there are other more useful choices for the measure g.

DISCUSSION
We discuss several consequences of our findings in this section.
With regards to noise tolerances, our results show that by
calculating bounds directly via the fidelity, a significant improve-
ment can be achieved over the results based on Theorem 1 in11.
This is especially important for the 3-input-scenario for Bob, as the
previous advantage distillation bound falls well short of the bound
for standard one-way error correction (even when only accounting

for the QBER and CHSH value)1,9,10. As advantage distillation
improves the key rate for device-dependent QKD7,12–17, it is
expected to behave analogously for the device-independent
setting. Our bound of q ≈ 7.0% lies within 0.15% of the noise
threshold for one-way protocols using the CHSH inequality1 and
within 0.40% of those using asymmetric CHSH inequalities9,10,
thereby substantially reducing this gap; however, it still does not
yield an overall improvement. Again, this suggests that the
sufficient condition (2) is in fact not necessary.
This brings us to the question of finding a condition that is both

necessary and sufficient for security (of the repetition-code
protocol) in the DIQKD setting. Note that while one could view
the results of14,15 as stating that condition (2) is both necessary
and sufficient in the device-dependent QKD scenarios studied
there, there are some subtleties to consider. Namely, that
condition could be rewritten in several ways that are equivalent
in those QKD scenarios, but not necessarily in DIQKD. For instance,
in those QKD scenarios the states ρE∣ab are all pure, which means
that FðρEj00; ρEj11Þ2 could be rewritten as 1� dðρEj00; ρEj11Þ2;
however, this equivalence may not hold in the DIQKD setting,
where those states might not be pure in general. Hence if we think
in terms of trying to extend the necessary and sufficient condition
in14,15 to DIQKD, we would first need to address the question of
finding the ‘right’ way to formulate that condition.
Indeed, our findings raise the question of whether attempting

to determine security via F(ρE∣00, ρE∣11) is the right approach at all,
because of the following informal argument. First, assuming that
the fidelity bounds we obtained were essentially tight, our results
indicate that there are scenarios where condition (2) is violated
but the repetition-code protocol is still secure (via Theorem 2
instead), implying that it is not a necessary condition. However, if
it is not necessary, it is not immediately clear how one might
improve upon it. In particular, it seems unlikely that our
conjectured necessary condition (14) could also be sufficient—
after all, for the device-dependent QKD protocols studied in14,15, it
is condition (2) rather than (14) that is both sufficient and
necessary. Since a Fuchs–van de Graaf inequality was used to
incorporate the fidelity into the security condition and this
inequality is most likely the reason that (2) is not necessary,
finding a new, completely device-independent approach might
necessitate using different inequalities.
A speculative, but interesting, alternative approach could be to

instead consider the (non-logarithmic) quantum Chernoff
bound33,34,

Qðρ; σÞ :¼ inf
0�s�1

Tr ρsσ1�s
� �

: (19)

This is because this measure yields asymptotically tight bounds
on the distinguishability of the states ρ⊗n and σ⊗n34, which we
might be able to use. However, there is still some work that needs
to be done before noise tolerances can be calculated via this
method. For example, in contrast to the fidelity, it still not known
whether there exists a measurement that preserves this distin-
guishability measure (this is the main reason we could construct
an SDP for bounding the fidelity). Moreover, a security condition
for the repetition-code protocol will in all likelihood require a
measure of distinguishability between states that are not of the
form ρ⊗n and σ⊗n, albeit with some similarities (see Section “Proof
of Proposition 3”). Hence one would need to investigate which
aspects of the proof in34 could be generalized to such states as
well. We discuss this further in Section “Proof of Proposition 3”.
Similar to1, one could conduct a qubit analysis in the hopes that

this approach produces fidelity bounds that are ‘strong enough’. We
show in35, however, that this is not the case. Moreover, we prove for
maximal CHSH violation, i.e. S ¼ 2

ffiffiffi
2

p
, that F(ρE∣00, ρE∣11)= 1 must

hold for qubit strategies. As can be seen in35, this will no longer
generally be the case in higher dimensions.
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In principle, by combining the bounds we computed here with the
security proof in11, one could compute lower bounds on the keyrates
under the I.I.D. assumption (both in the asymptotic limit and for finite
sample sizes, by using the finite version of the quantum asymptotic
equipartition property). However, some numerical estimates we
performed indicate that the resulting values are very low, even in
the asymptotic case. Informally, this is likely because the proof in11

bounds the von Neumann entropy in terms of fidelity with an
inequality that is suboptimal in this context, as previously discussed.
However, in the case of device-dependent QKD, the keyrates of this
protocol are more reasonable, so it is possible that with better proof
techniques, the same may hold for DIQKD.
We conclude by mentioning that it should be possible to use

our algorithm to obtain keyrate lower bounds for one-way
communication protocols as well. This is because the keyrate in
such protocols is given by21

HðA0jEÞ � HðA0jB0Þ; (20)

and the main challenge in computing this value is finding lower
bounds on H(A0∣E) (again, the H(A0∣B0) term is straightforward to
handle, e.g. by estimating the QBER). Taking A0 to be symmetrized
as previously mentioned, we can apply the following inequality36:

HðA0jEÞ � 1� h2
1� FðρEj0; ρEj1Þ

2

� �
; (21)

where the states ρEja0 refer to conditioning on the outcome A0
only. Hence H(A0∣E) can be bounded in terms of F(ρE∣0, ρE∣1). It
should be straightforward to adapt our algorithm to bound such a
fidelity expression as well, in which case our approach would also
be useful to compute keyrates for non-advantage distillation
setups. We aim to investigate this in future work.

METHODS
Fidelity for post-measurement tripartite states

Proposition 2. The fidelity, F(ρE∣00, ρE∣11), of a state of the form (6)
is given by

FðρEj00; ρEj11Þ ¼
X
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Prð00jiÞ Prð11jiÞp

Prð00Þ PrðiÞ: (22)

Proof. It is easily verified that:

ρEj00 ¼
X
i

Prð00jiÞ PrðiÞ
Prð00Þ ij i ih j (23)

ρEj11 ¼
X
i

Prð11jiÞ PrðiÞ
Prð11Þ ij i ih j: (24)

We note that Pr(00)= Pr(11) due to the symmetrization step.
Since these states are diagonal in the same basis, we can directly
compute the fidelity:

FðρEj00; ρEj11Þ (25)

¼ Tr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ

1
2
Ej11ρEj00ρ

1
2
Ej11

r !
(26)

¼ Tr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

Pr 11jið Þ Pr 00jið Þ Pr ið Þ2
Pr 00ð Þ2 ij i ih j

s !
(27)

¼
X
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Prð00jiÞ Prð11jiÞp

Prð00Þ PrðiÞ; (28)

as claimed.

Approximating the fidelity with polytope hyperplanes
Our goal in this section will be to find a lower bound onffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Prð00jiÞ Prð11jiÞp

that can be written as a pointwise minimum of
affine functions (of pi). Note that this function depends only on
Pr(00∣i) and Pr(11∣i). (We need to consider both Pr(00∣i) and Pr(11∣i)
without assuming they are equal, as we cannot assume the
distributions conditioned on i are still symmetrized. This is
because Eve’s measurement takes place after the symmetrization
step, and does not have to respect the symmetry.) Hence for the
purposes of this section, we shall focus on 2-dimensional vectors
x, with the implicit understanding that

x ¼ x1
x2

� �
¼ Prð00jiÞ

Prð11jiÞ

� �
: (29)

An affine function of such a vector x straightforwardly defines a
corresponding affine function of pi, by considering the latter to
depend only on the terms Pr(00∣i) and Pr(11∣i).
We begin the construction by defining an appropriate lattice of

points:

Definition 1. For each n 2 N, let Ln denote a uniformly spaced
grid of 2n+ 1 ⋅ 2n+ 1 points in [0, 1]2, i.e.

Ln :¼ 0;
1
2n

;
2
2n

; ¼ ; 1

� �2

: (30)

For a concave function f : ½0; 1�2 ! R, we define the nthorder
lattice of f to be the set of 2n+ 1 ⋅ 2n+ 1 ordered triples (x1, x2, f(x))
such that ðx1; x2Þ 2 Ln.

(The above definition naturally generalizes to higher-
dimensional arrays.)

Proposition 3. Let Pn denote the convex hull of the union of the
nth order lattice of f ðxÞ :¼ ffiffiffiffiffiffiffiffiffi

x1x2
p

and the nth order lattice of
g(x)≔ 0. Then Pn is a convex polytope that lies on or beneath the
graph of the function f ðxÞ ¼ ffiffiffiffiffiffiffiffiffi

x1x2
p

.

Proof. Step 1 : Show that the 2 	 ð2n þ 1Þ2 lattice points lie on or
beneath the graph of f(x).
The lattice points of f(x) automatically lie on the function graph

as desired. Also, since f(x) is always non-negative, the lattice points
of g(x) also lie on or beneath the function graph.
Step 2 : Show that the convex hull of the union of both lattices

lies on or beneath the graph of f(x).
All points in the convex hull are a convex sum of the lattice

points. As f(x) is a concave function, such convex sums must lie on
or beneath the graph of f(x) as well.

We can use Pn to construct the desired lower bound on f(x), as
follows. As we shall formally prove in Proposition 7, this process is
basically constructing the upper envelope of Pn (i.e. the function
whose graph is the ‘upper surface’ of Pn; this is formally defined
by (37) below).
We first transform Pn to its facet representation37, i.e. the

description of the polytope by its facet-defining half-spaces. This
gives us a set of inequalities described by parameters
fðaj; bj; cj; djÞgj , such that ðx1; x2; x3Þ 2 Pn if and only if

ajx1 þ bjx2 þ cjx3 � dj 8j: (31)

To only retrieve the facets that will be used to approximate f(x),
i.e. the facets that describe the upper envelope of the polytope we
constructed, keep only the facets for which cj > 0. Geometrically,
this corresponds to facets such that the normal vector (directed
outwards from the polytope) has a vertical component that points
upwards.
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In our case, this means we remove the facets

�x3 � 0 (32)

x1 � 1 (33)

x2 � 1; (34)

which correspond to a lower horizontal facet and two vertical
facets, respectively. (For more general concave f, there would be
more vertical facets to remove, but the subsequent analysis still
holds as it is based only on the fact that we keep exactly the facets
with cj > 0.) Let S denote the set of indices of the remaining facets.
For each j 2 S, we define a corresponding affine function,

hjðxÞ :¼ 1
cj
ðdj � ajx1 � bjx2Þ; (35)

and use these to define a function (denoted fn) that is meant to
bound f(x):

f nðxÞ :¼ min
j2S

hjðxÞ: (36)

We verify that the above procedure indeed produces the upper
envelope of Pn:

Proposition 4. For all n 2 N and x 2 0; 1½ �2, fn as defined above
satisfies

f nðxÞ ¼ maxfx3jðx; x3Þ 2 Png: (37)

Proof. We first remark that it is indeed valid to write the expression
(37) as a maximum rather than a supremum, because by
construction of Pn, the feasible set in (37) is non-empty (for
x 2 0; 1½ �2) and compact.
To prove the desired equality, we start by considering a fixed

x 2 0; 1½ �2, and arguing that the expression (37) is in fact equal to

maxfx3jajx1 þ bjx2 þ cjx3 � dj 8j 2 Sg; (38)

where the values aj, bj, cj, dj are from the facet inequalities (31).
This is because Pn is exactly the set of points which satisfy the
facet inequalities (31) for all j, so the only difference between (37)
and (38) is that the latter maximization has omitted the facet
inequalities such that cj≤0. Removing these inequalities does not
change the maximum value, by the following argument. The
inequalities with cj= 0 are independent of x3, so either they are
satisfied for all x3 or for no x3; however, as previously noted the
feasible set of (37) is non-empty (for x 2 0; 1½ �2), so the former
must be the case. This implies that removing them does not
change the maximum value. As for the inequalities with cj < 0,
notice that they are lower bounds on x3, which means that
removing them also does not change the maximum value (as long
as the original maximization (37) is feasible, which it indeed is as
noted previously). Thus the expressions (37) and (38) are equal for
any x 2 0; 1½ �2.
It remains to show that the original definition (36) of fn is equal

to (38) (when treating the latter as a function of x on the same
domain). To do so, we show that they have the same subgraph.
The subgraph of (36) is

fðx; x3Þjx3 � hjðxÞ 8j 2 Sg (39)

¼ ðx; x3Þ x3 � 1
cj
ðdj � ajx1 � bjx2Þ 8j 2 S

				
� �

(40)

¼ fðx; x3Þjajx1 þ bjx2 þ cjx3 � dj 8j 2 Sg; (41)

using the fact that cj > 0 for all j 2 S. (To be precise, in those
expressions x should be restricted to the function domain, but the
argument at this step holds regardless of whether we take the

domain to be 0; 1½ �2 orR2.) The last line is the subgraph of (38), so
indeed the functions are equal.

With the formula (37), we can prove some intuitive properties of
fn, which will be useful in subsequent arguments:

Proposition 5. ...

f nðxÞ � f ðxÞ 8n 2 N 8x 2 0; 1½ �2; (42)

with fn(x) = f(x) whenever x 2 Ln.

Proof. We showed in Proposition 6 that Pn lies on or below the
graph of f. Hence (42) follows immediately from the formula (37).
As for the equality condition, we note that for all x 2 Ln we

have that (x, f(x)) lies in Pn (by construction). Hence (37) implies
fn(x) ≥ f(x), which implies they must be equal since the reverse
inequality (42) holds in general.

Proposition 6.

f nðxÞ � f nþ1ðxÞ 8n 2 N 8x 2 0; 1½ �2: (43)

Proof. By increasing n by one, we don’t remove any lattice points,
but rather just add additional points by halving the intervals in
both directions. Thus we have Pn 
 Pnþ1, which yields the
desired inequality via (37).

We now show the sequence fn indeed converges uniformly to f,
so it yields arbitrarily tight bounds. The main intuition is that fn
forms a monotone sequence of uniformly continuous functions
that have the same value as f on an increasingly fine grid.

Proposition 7. As n→∞, fn converges uniformly to f.

Proof. We note that three conditions must hold:

8δ> 0 9n 2 N : 8x 2 0; 1½ �2 9y 2 Ln s:t: jx� yj< δ

(44)

8ϵ1 > 0 9δ1>0 : 8x; y;2 0; 1½ �2 if jx� yj< δ1 then jf ðxÞ � f ðyÞj< ϵ1

(45)

8ϵ2 > 0 9δ2>0 : 8x; y;2 0; 1½ �2 if jx� yj< δ2 then jf nðxÞ � f nðyÞj< ϵ2

(46)

The first statement just says that one can create an arbitrarily fine
grid Ln. The other two statements follow from the fact that
continuous functions on compact sets are automatically uniformly
continuous.
To show uniform convergence, we would need to prove that

8ϵ> 0 9n 2 N : 8n0 � n 8x 2 0; 1½ �2; jf n0 ðxÞ � f ðxÞj< ϵ:

(47)

To prove this, consider any ϵ > 0, and choose n by the following
procedure: set ϵ1 < ϵ/2 and ϵ2 < ϵ/2, and take some corresponding
δ1, δ2 according to (45)–(46). Then set δ< minðδ1; δ2Þ, and take a
corresponding n 2 N according to (44). This choice of n has the
desired property: for all n0 � n and for all x 2 0; 1½ �2, (44) ensures
that there exists some y 2 Ln satisfying ∣x− y∣ < δ, hence

jf n0 ðxÞ � f ðxÞj � jf nðxÞ � f ðxÞj (48)

� jf nðxÞ � f ðyÞj þ jf ðyÞ � f ðxÞj (49)

¼ jf nðxÞ � f nðyÞj þ jf ðyÞ � f ðxÞj (50)

<ϵ2 þ ϵ1 < ϵ; (51)
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where the first line follows from Propositions 8 and 9, while the
third line follows from Proposition 8.

Creating an SDP algorithm that minimizes the fidelity
Without loss of generality, we ignore the factor 1/Pr(00) in the
fidelity expression, as it is a positive constant (for a given
distribution Pr(ab∣xy)). We consider the functions f and fn defined
in the previous section, but as previously discussed, we now view
them as functions of pi (though with dependence only on the
Pr(00∣i), Pr(11∣i) terms), i.e. so we have f ðpiÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Prð00jiÞ Prð11jiÞp
and analogously for fn. Since fn is a lower bound on f, our
optimization problem (after dropping the 1/Pr(00) factor) is clearly
lower bounded by the following:

inf
PrðiÞ;pi

P
i
f nðpiÞ PrðiÞ

s:t:
P
i
PrðiÞpi ¼ p

pi 2 QX ;Y
PrðiÞ 2 PðIÞ

(52)

we can show that this lower bound converges uniformly to the
original problem (8) as n→∞, using our previous results about
convergence of fn:

Proposition 8. As n→∞, the optimal value of (52) converges
uniformly to that of (8) (rescaled by the constant factor of 1/Pr(00)).

Proof. We denote the solutions to the original and approximate
optimization problems by f⋆(p) and f ?nðpÞ, respectively. For all
p 2 QX ;Y , for all n 2 N, and for all ϵ1 > 0, there exists a
probability distribution Pr(i) and a set of quantum realizable
probability distributions pi that satisfy the optimization
constraints, such that

X
i

f nðpiÞ PrðiÞ � f ?nðpÞ
					

					< ϵ1: (53)

As fn(pi) converges uniformly to f(pi), for all ϵ2 > 0, there exists
an n such that for all n0 � n and all pi 2 QX ;Y ,X

i

f ðpiÞ PrðiÞ �
X
i

f n0 ðpiÞ PrðiÞ
					

					< ϵ2 (54)

if one chooses ϵ1+ ϵ2 < ϵ, then

8ϵ> 0 9n 2 N : 8n0 � n 8p 2 QX ;Y ;
f ?ðpÞ � f ?n0 ðpÞ
		 		 (55)

�
X
i

f ðpiÞ PrðiÞ � f ?n0 ðpÞ
					

					 (56)

� P
i
f ðpiÞ PrðiÞ �P

i
f n0 ðpiÞ PrðiÞ

				
				

þ P
i
f n0 ðpiÞ PrðiÞ � f ?n0 ðpÞ

				
				

(57)

<ϵ2 þ ϵ1 < ϵ; (58)

as desired.

We now describe how to bound (52) using SDPs.

Proposition 9. (52) can be solved via an SDP hierarchy.

Proof. To reduce the sum to a bounded number of terms, we
adopt the approach from24,25. Specifically, consider any feasible

point of the optimization (52), i.e. some feasible values for pi and
Pr(i). Following the previous section, let S denote the indices of
the affine functions used to define fn.
Partition the summation domain of i into subsets fRjgj2S ,

such that i 2 Rj implies the minimum in the definition (36) of
fn(pi) is attained by the index j. In other words, i 2 Rj
implies fn(pi)= hj(pi). (Geometrically speaking, we are partition-
ing the terms based on which facet of Pn they lie on.) Let us
define

~Pj ¼
X
i2Rj

PrðiÞ; ~pj ¼
X
i2Rj

pi PrðiÞ
~Pj

: (59)

Note that the choice of partition may not be unique, e.g. if the
feasible point being considered has a pi term where the minimum
in the definition (36) is attained by more than one j 2 S. However,
this nonuniqueness is not a problem; any partition with the
specified property suffices. Also, some Rj may be empty, but this
is not a problem either; one should simply select an arbitrary
distribution ~pj 2 QX ;Y instead of using (59) (since the denomi-
nator is zero if Rj is empty).
Then we can rewriteX

i2Rj

f nðpiÞ PrðiÞ ¼
X
i2Rj

hjðpiÞ PrðiÞ (60)

¼
X
i2Rj

hjðpiÞ PrðiÞ
~Pj

0
@

1
A~Pj (61)

¼ hjð~pjÞ~Pj ; (62)

where in the third line we used the fact that hj is affine and
fPrðiÞ=~Pjgi forms a normalized probability distribution over i 2 Rj .
Observe that ~pj 2 QX ;Y (by convexity of QX ;Y ), and that ~Pj is a

valid probability distribution (over j 2 S) since the setsRj partition
the sum over i. Together with the expression (62), this implies that
if we replace the original objective function withX
i2S

hiðpiÞ PrðiÞ; (63)

the value of the optimization will not increase, since every
feasible point of the original optimization yields another
feasible point with the same objective value but in the form
(63). In other words, by rewriting the objective function in the
form (63), we have essentially taken pi and Pr(i) to be the ~pj and
~Pj we constructed above. Furthermore, since we constructed fn
via (36),

hiðpiÞ � f nðpiÞ (64)

holds for all pi 2 QX ;Y . Thus (63) is a natural upper bound on
our previous objective function in (52), so replacing the latter
with the former will not decrease the optimal value either. In
summary, we can replace the objective function with (63)
without changing the optimal value, which is useful because it
is the sum of a (known) finite number of terms; also, we
no longer need to address the minimization in the definition of
fn.
However, since hi(pi)Pr(i) is a product of affine functions of the

optimization variables, (63) is still not an affine function. To deal
with this, we consider subnormalized probability distributions, i.e.
the terms in the distribution sum up to a value in [0, 1] instead of
having to sum to 1 (here we mean summing over (a, b) for each
choice of (x, y); also, we impose that all (x, y) have the same
normalization factor). In our case, we scale the probability
distributions pi by the scaling factor Pr(i), i.e. we define new
variables �pi ¼ PrðiÞpi . To verify that the objective function is affine
in these new variables, we show that each term in the summation
is affine. Writing hi(pi) in the form ai+ ai ⋅ pi for some scalar ai and
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vector ai, we have

hiðpiÞ PrðiÞ (65)

¼ ai PrðiÞ þ ðai 	 piÞ PrðiÞ (66)

¼ ai
X
ab

Prðabj00iÞ PrðiÞ
 !

þ ai 	 �pi (67)

¼ aiz 	 �pi þ ai 	 �pi; (68)

where z is a vector, which contains only zeroes and ones, that
specifies the terms summed over in (67) (this is possible since each
Pr(ab∣00i)Pr(i) term is equal to an element of �pi ; also, note that the
choice to use the input pair xy= 00 at that step is arbitrary and
any other pair would suffice). This is indeed affine (in fact linear) in
�pi . As for the constraints, observe that the first constraint is linear
in �pi . Also, as long as p is normalized, we can replace the second
and third constraints by a single constraint �pi 2 �QX ;Y , where �QX ;Y
denotes subnormalized distributions compatible with quantum
theory (and with a common normalization factor for all input pairs
(x, y)). This is because when p is normalized, the first constraint
implicitly imposes a normalization condition on the variables �pi

that subsumes the original third constraint.
In summary, the optimal value of (52) is the same as

inf
�pi

P
i2S

aiz 	 �pi þ ai 	 �pi

s:t:
P
i
�pi ¼ p

�pi 2 �QX ;Y

(69)

where ai, ai, z are the values described above regarding (68).
Finally, we use the fact that there exists a SDP hierarchy for the
verification of subnormalized quantum probability distributions
�QX ;Y23–25. Hence, the entire constrained optimization can be
lower-bounded by using this hierarchy of SDP relaxations to
impose the �QX ;Y constraint, yielding a sequence of increasingly
tight lower bounds on the optimization. Note that each level of
the hierarchy yields a certified lower bound, i.e. our results are
never an over-estimate of the true minimum of the optimization.

We close this section with some implementation remarks. For
Fig. 1a, we used a 4 × 4 lattice to construct the bound fn, and NPA
level 2. For Fig. 1b, c, we used an 8 × 8 lattice and NPA level 3 (for
the latter case, we found that NPA levels 2 and 4 also gave
basically the same results). The SDP runtime was not too long in all
cases, ranging from a few seconds to under 15 minutes (for each
data point on the graphs), depending on the size of the scenarios.
In principle, there are two ways in which our bounds might not

be tight: first, we have replaced f with fn; second, the SDP
hierarchy of23 may not have converged to a sufficiently tight
bound. We consider the latter to be less of an issue, because this
hierarchy typically performs well in situations with few inputs and
outputs (for instance in Fig. 1c, which was the main example
supporting our reasoning that Theorem 1 may not be a necessary
condition). As for the former, we performed some checks by
noting that every feasible point of the optimization we solve
(namely, (69) with the constraint �pi 2 �QX ;Y relaxed to the SDP
hierarchy) gives us a feasible point of the original optimization (8)
(albeit with the constraint pi 2 QX ;Y relaxed to the SDP hierarchy).
We found that for points near the thresholds shown in Fig. 1b, c,
the corresponding feasible values in that original optimization
were within 0.0003 of the lower bounds we obtained, indicating
that the bounds are almost tight. (For Fig. 1a we found a bigger
gap of about 0.03 using a 6 × 6 lattice to find feasible points, but
this is also not too large).
Note that by applying Carathéodory’s theorem for convex hulls,

we can argue the minimum value in the optimization (52) can

always be attained by a distribution Pr(i) with at most d+ 2
nonzero terms, where d is the dimension of p. This eventually
implies that the minimum value in our final optimization (69) can
be attained with at most d+ 2 of the subnormalized distributions
�pi being nonzero. In practice, d+ 2 is often smaller than the
number of affine bounds hi (i.e. jSj). Hence if the optimization (69)
is too large to solve directly, an alternative approach in principle is
to run it for every subset of S with size d+ 2, then take the
smallest of the resulting values. This reduces the size of each
individual optimization, but comes at the cost of having to run
many more of them.
As another point regarding efficiency, note that our

construction of fn involves a transformation to the facet
representation of Pn. While this can be quickly implemented
when x is 2-dimensional, the transformation may be compu-
tationally demanding in high dimensions37. It would be
interesting to know whether there are more efficiently
computable alternatives.
A natural attempt would be to partition the domain of f into

triangles (more generally, simplices) and construct an affine lower
bound in each triangle, yielding a piecewise affine lower bound on
f. One benefit of this approach is that it may be usable (though not
necessarily straightforward) in some cases when f is not concave,
whereas our current construction of fn relies heavily on concavity
of f. However, it runs into the subtle issue that having fn be a
pointwise minimum of affine functions is a stronger condition
than simply requiring it to be piecewise affine; in particular, our
analysis used the structure in the former. (Note that it is not useful
to simply take the pointwise minimum of the affine bounds
constructed this way — there can be very large gaps between f
and the resulting bound).
Still, it may be possible to adapt our analysis to this case. To

sketch a rough outline, we would again aim to partition the
sum in (52) into finitely many subsets, but this time by which of
the triangles each pi lies in. Transforming to a new feasible
point as in (59) (here we would need to use the convexity of
the triangles to argue that each ~pj still lies within its defining
triangle), we should be able to perform a similar analysis to
reduce the objective to the form (63), but with the summation
index ranging over the triangles in the domain instead.
However, to proceed further we would need to constrain each
~pj to remain within the corresponding triangle, appearing as
additional constraints in (52). Since these constraints can be
imposed as affine constraints, the final result should still be
solvable using the SDP hierarchy.
Finally, we note that in26, the authors do not convert their

optimization to the form (69), but rather to a dual form via a
somewhat different argument. A similar argument is possible in
principle here (see35), but we choose to present our result in the
form (69) since it seems most straightforward for implementation.
We thank the authors of26 for clarifications on these different
approaches.

Proof of Proposition 3

Proof. After Alice and Bob conduct n key-generating measure-
ments, the resulting classical-classical-quantum tripartite state is of
the formX
a;b2f0;1gn

Pr abð Þ abj i abh j � ρEjab: (70)

Considering that Alice and Bob only take accepted blocks into
account, i.e. D= 1, and Alice sends the message M=m, it is
simple to construct the bipartite state ρCE∣M=m∧D=1, which
denotes the state that describes both the value of the bit C and
Eve’s corresponding side-information. As D= 1 implies that Alice’s
and Bob’s measurement devices either output m or m ¼ m� 1,
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the resulting state is given by

ρCEjM¼m^D¼1 ¼
X

c2f0;1g

1
2
cj i ch j � ωc; (71)

where

ω0 ¼
Pr mmð ÞρEjmm þ Pr mmð ÞρEjmm

Pr mmð Þ þ Pr mmð Þ (72)

ω1 ¼
Pr mmð ÞρEjmm þ Pr mmð ÞρEjmm

Pr mmð Þ þ Pr mmð Þ (73)

denotes Eve’s conditioned side-information11. Moreover, after
symmetrization, we get Pr mmð Þ ¼ Pr mmð Þ ¼ 1�ϵð Þn

2n and
Pr mmð Þ ¼ Pr mmð Þ ¼ ϵn

2n, which further simplifies (72) and (73).
Eve’s ability to correctly guess C therefore depends on the

distinguishability of ω0 and ω1. As C, and consequently ωi, is
distributed uniformly, we may use the operational interpretation
of the trace distance to derive Eve’s optimal guessing probability.
The optimal probability of guessing it incorrectly is thus given by

PrðC ≠ C
00 jD ¼ 1Þ ¼ 1

2
ð1� dðω0;ω1ÞÞ: (74)

We first consider Bob’s guess. As C ≠ C0 only if Alice measures m
and Bob measures m or vice versa,

PrðC ≠ C0jD ¼ 1Þ ¼ PrðmmÞ þ PrðmmÞ
PrðmmÞ þ PrðmmÞ þ PrðmmÞ þ PrðmmÞ ¼

ϵn

ϵn þ ð1� ϵÞn ¼: δn:

(75)

We now consider Eve’s guess. By using the reverse triangle
inequality of the 1-norm, we can get a lower bound on d(ω0, ω1) in
terms of δn:

dðω0;ω1Þ � ð1� δnÞ 	 dðρEjmm; ρEjmmÞ � δn 	 dðρEjmm; ρEjmmÞ;
(76)

and substituting this into (74) yields

PrðC ≠ C
00 jD ¼ 1Þ � 1

2 ð1� ð1� δnÞ 	 dðρEjmm; ρEjmmÞ þ δn 	 dðρEjmm; ρEjmmÞÞ
¼ 1

2 ð1� ð1� δnÞ 	 dðρEjmm; ρEjmmÞÞ;
(77)

where to get the second line we used the hypothesis ρE∣01= ρE∣10
(which implies ρEjmm ¼ ρEjmm). The ‘Fuchs–van de Graaf-type’
inequality (12) then implies that

PrðC ≠ C
00 jD ¼ 1Þ � 1

2
ð1� ð1� δnÞ 	 ð1� gðρEjmm; ρEjmmÞÞÞ: (78)

Moreover, note that we have gðρEjmm; ρEjmmÞ ¼ gðρEj00; ρEj11Þn
(by applying the I.I.D. assumption together with the multiplicative
property (11), followed by the symmetry property (10)). Therefore
a sufficient condition for (17) to hold is

1
2
ð1� ð1� δnÞ 	 ð1� gðρEj00; ρEj11ÞnÞÞ � δn: (79)

We conclude the proof by showing that for all n 2 N, (16) is
equivalent to (79). Note that the inequality (12) (together with the
fact that d(ρ, σ) ≤ 1) implies that g(ρ, σ) is always non-negative.
Hence for all n 2 N the inequality (16) is equivalent to

gðρEj00; ρEj11Þn �
ϵn

1� ϵð Þn ¼
1� ϵð Þn � 1� ϵð Þn þ ϵn

1� ϵð Þn ¼ 1� 1� ϵð Þn � ϵn

1� ϵð Þn (80)

This inequality can be rewritten as

1� gðρEj00; ρEj11Þn � 1� ϵð Þn � ϵn

1� ϵð Þn ¼ 1� 2δn
1� δn

: (81)

The previous inequality is equivalent to

1� ð1� δnÞ 	 ð1� g ρEj00; ρEj11

 �n

Þ � 2δn (82)

and dividing both sides by 2 gives (79).

We note that the current gap between the sufficient and
necessary conditions can be viewed as arising from the
‘Fuchs–van de Graaf-type’ inequalities (12) and (13). This is
because the sufficient condition (Theorem 1) proof requires lower
bounds on H(C∣EM; D= 1), whereas the conjectured necessary
condition needs upper bounds. As noted in the supplemental
material for11, the analysis we performed above also serves an
alternative approach for proving Theorem 1 (the main proof in11

instead used the inequality from36 to lower-bound H(C∣EM; D=
1)). The main idea is that H(C∣EM; D= 1) can be lower bounded by
the min-entropy, which simply equals � logðð1� d ω0;ω1ð ÞÞ=2Þ.
By performing an analysis similar to the above but using the
inequality (13) instead of (12), we end up (after some asymptotic
analysis) with a sufficient condition for (1) to hold, which turns out
to be exactly the same as Theorem 1 (except that since the only
properties of g required for this argument are (10)–(13), it would
hold with any g satisfying those properties in place of the fidelity
F). Note that no assumption is needed on d(ρE∣01, ρE∣10) for this
direction of the proof. From this perspective, it appears that the
main contribution to the gap is the difference between the
bounds (12) and (13), since other steps of the proof have
comparatively small effects asymptotically.
However, regarding possible choices of distinguishability measure

g in this generalized version of Theorem 1, note that replacing the
fidelity in the theorem statement with the pretty-good fidelity yields
a worse result, due to the inequality F(ρ, σ) ≥ Fpg(ρ, σ). (The opposite
was true for the necessary condition, Proposition 3). The question
remains of whether there are choices for the measure g that yield
better bounds for the sufficient condition.
Finally, we remark that the above analysis essentially centers

around distinguishing ρE∣mm and ρEjmm. Returning to our
discussion of the quantum Chernoff bound, we observe that
unless M= 0 or M= 1, these states are not of the form ρ⊗n and
σ⊗n studied in the quantum Chernoff bound, though there are
some structural similarities. (If M were restrained to M= 0 or
M= 1, one may consider only M= 0, as M= 1 can be thought of
as a relabeling of measurement outcomes). Since M is not
restricted to these cases in general, we would need to study
whether these other structurally similar states could still be
analyzed using the proof techniques for the quantum
Chernoff bound.
As another perspective, note that the quantum Chernoff bound

in fact satisfies almost all the properties (10)–(13)31. However,
instead of the equality (11), it only satisfies the inequality
gðρ� ρ0; σ � σ0Þ � gðρ; σÞgðρ0; σ0Þ. Looking through the proofs
described above for the necessary versus sufficient conditions, this
means that only the proof of the latter generalizes directly if we
choose g=Q. Unfortunately, Theorem 1 with the fidelity simply
replaced by the quantum Chernoff bound is a worse result,
because the quantities are related by F(ρ, σ) ≥Q(ρ, σ)33 (similar to
the previous situation for pretty-good fidelity). Hence an
argument that simply follows the proof structure sketched above
with g=Q would not yield a better result than the the original
Theorem 1 statement based on fidelity — to get better results
using the quantum Chernoff bound, one would need a different
proof structure.
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