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Single trusted qubit is necessary and sufficient for quantum
realization of extremal no-signaling correlations
Ravishankar Ramanathan1✉, Michał Banacki 2,3, Ricard Ravell Rodríguez 2 and Paweł Horodecki2,4

The problem of achieving security of device-independent (or semi-device-independent) cryptography (for quantum key
distribution and randomness generation) against the most general no-signaling adversaries has remained open. It has been
recognized that the realization of extremal no-signaling non-local boxes (or extremal no-signaling non-local assemblages) could
provide a route toward devising such highly secure protocols. We first prove a general no-go result that in the Bell non-locality
scenario, quantum theory does not allow us to realize any extremal no-signaling non-local box, even if scenarios of arbitrary
sequential measurements are considered. On the other hand, we secondly prove a positive result showing that a one-sided device-
independent scenario where a single party trusts their qubit system is already sufficient for quantum theory to realize a self-testing
extremal non-local point within the set of no-signaling assemblages.
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INTRODUCTION
Correlations in entangled states cannot be realized by local
hidden variables theories where results of measurements on
subsystems are locally predetermined1–3. This phenomenon
evidenced by the violation of Bell inequalities4,5 led to the
powerful idea of device-independent (DI) cryptography6–10 where
no assumption on the nature of the quantum systems subject to
measurement needs to be made. In the DI setting, security is
ultimately based on the observation of non-local correlations by
honest parties and the property of monogamy of quantum non-
local correlations11,12. A stronger property than monogamy is that
of extremality of the measurement statistics, i.e., the observation
of extremal behavior by honest parties within the set of all
measurement behaviors. Such extremal behavior guarantees that
their system is completely decoupled from that of any adversary.
For any such extremal behavior, one can also find a Bell inequality
that is maximally violated by the extremal statistics. Moreover, in
certain cases, such a violation even permits the self-testing13 of
the quantum pure state measured, i.e., its uniqueness up to
irrelevant local operations.
This analysis can be carried over into general probabilistic

theories beyond quantum theory14 that only obey the no-
signaling condition of relativity. In this case, there are families of
statistics called no-signaling boxes that obey the no-signaling
constraints but may otherwise be super-quantum, and as such
may violate Bell inequalities more strongly than quantum boxes,
the quintessential example here being the Popescu–Rohrlich (PR)
box15. The extremality of a family of statistics in any such no-
signaling theory then means that it is uncorrelated from other
measurement behaviors (boxes) and as such is very useful in
realizing secure DI protocols.
Later, the weaker scenario of semi-DI schemes has been

developed in the setting where some of the parties may be
considered to have full control of the quantum systems in their
laboratory (see16). Here, instead of just the measurement

statistics, one considers quantum assemblages, and instead of
Bell inequalities, one considers the so-called steering inequalities
(see17). Similarly, just as the no-signaling boxes, one considers
here the no-signaling assemblages only constrained by the no-
signaling conditions18.
The interesting question whether quantum DI cryptography can

stay secure against a general no-signaling adversary has been
posed10. Some partial positive results have been provided in
problems of secret key10 or randomness amplification19–21. These
proofs uniformly utilize quantum measurement behaviors that do
not represent extremal points in the set of no-signaling behaviors. It
was recognized that if one could realize such extremal postquantum
behaviors by measurements on quantum states, then the security
proofs could be much more streamlined. Hence, the natural
question was whether there is any scenario in which quantum
correlations give rise to extremal no-signaling behaviors.
An important, though partial, a negative result in this direction

was obtained in22 where it was shown that in the usual Bell
non-locality framework, there exists no scenario (number of
parties, measurement settings, or outcomes) in which quantum
correlations represent an extremal point in the set (convex
polytope) of no-signaling boxes. The question whether the same
is true in more general correlation scenarios such as that of
sequential Bell non-locality23 or in quantum steering scenarios18

was left unanswered.
Here we provide complete answers to both these questions.

First, we extend the no-go result of22 to the general scenario of
sequential Bell non-locality23: quantum sequential non-local
correlations cannot realize extremal no-signaling behaviors,
irrespective of the number of measurement settings or outcomes.
Second, we also provide a positive answer in the setting of
steering inequalities: if one of the parties has a fully trusted qubit
system then there exist situations where quantum assemblages
are extremal within general no-signaling assemblages. Crucially,
the latter result holds in the setting of three-party steering where
quantum assemblages have been shown to be a strict subset of
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the set of no-signaling assemblages. This result, in view of the
unrealisability of super-quantum boxes such as the PR box in
non-locality and the consequences thereof5,24, should have
further implications both in quantum foundations and in the
development of semi-DI cryptography secure against no-
signaling adversaries.

RESULTS
Extremality in sequential Bell non-locality
We begin with the scenario of sequential Bell non-locality23, where
each party performs measurements on their system in a sequential
manner, leading to a time-ordered no-signaling (TONS) structure
and the corresponding inequalities consider correlations between
outcomes obtained in sequential runs. This scenario is in many
ways richer than the usual Bell non-locality scenario, with the
appearance of novel phenomena such as “hidden non-locality”25,
wherein some quantum states only display local correlations in
traditional Bell experiments while exhibiting non-local correlations
when correlations are considered also between outcomes of
measurements performed in sequence by each party. Here, one

party Alice chooses to measure one of mðjAÞ
A inputs iðjAÞA ¼

1; ¼ ;mðjAÞ
A in the jAth run of the Bell experiment, and obtains

one of dðjAÞA;iA outputs oðjAÞA 2 f1; ¼ ; dðjAÞA;iAg. Similarly, the other party

Bob chooses to measure in the jBth run, one of mðjBÞ
B inputs

iðjBÞB ¼ 1; ¼ ;mðjBÞ
B , and obtains one of dðjBÞB;iB

outputs oðjBÞB 2
f1; ¼ ; dðjBÞB;iB

g outputs. Here, jA= 1,…, NA and jB= 1,…, NB where
NA, NB denote the number of measurement runs of Alice and Bob,
respectively. Such a sequential Bell scenario is denoted by

B 2; ðm!A; d
!

AÞ; ðm!B; d
!

BÞ
� �

, where m!A :¼ mð1Þ
A ; ¼ ;mðNAÞ

A

� �
,

d
!

A :¼ dð1ÞA;1; ¼ ; dð1Þ
A;mð1Þ

A

� �
; ¼ ; dðNAÞ

A;1 ; ¼ ; dðNAÞ
A;m

ðNAÞ
A

� �� �
. We will

simplify the notation by choosing mðjAÞ
A ¼ mðjBÞ

B ¼ m, dðjAÞA ¼ dðjBÞB ¼
d for all jA, jB, and NA= NB= N where this does not affect
the generality of the argument. The joint probability of

obtaining the outcomes oA :¼ oð1ÞA ; ¼ ; oðNÞA

� �
for Alice, and

oB :¼ oð1ÞB ; ¼ ; oðNÞB

� �
for Bob, for given measurement settings

iA :¼ ið1ÞA ; ¼ ; iðNÞA

� �
and iB :¼ ið1ÞB ; ¼ ; iðNÞB

� �
, respectively, will be

denoted by POA;OB jIA;IBðoA;oBjiA; iBÞ. As before, we may view these

nseq :¼ mdð Þ2N probabilities as forming the components of
a vector POA ;OBjIA;IB ¼ Pj i in Rnseq , and are described as forming
a box P.
We consider the set of general TONS boxes in the scenario

of sequential non-locality as obeying the TONS constraints
(where there is no-signaling between all rounds of Alice and all
rounds of Bob, while signaling is allowed between past
rounds of Alice (Bob) to future rounds of Alice (Bob)) in addition
to those of normalization and non-negativity, and denote this set

as TONS B 2; ðm!A; d
!

AÞ; ðm!B; d
!

BÞ
� �h i

. The important subset of

TONS boxes is the classical time-ordered local deterministic

polytope, denoted by TOLoc B 2; ðm!A; d
!

AÞ; ðm!B; d
!

BÞ
� �h i

, which

is the convex hull of all boxes where all entries are integral, i.e., in
{0, 1}. The boxes obtainable by performing general sequential
quantum measurements on a quantum state of arbitrary
dimension form the set of sequential quantum correlations

denoted by Qseq B 2; ðm!A; d
!

AÞ; ðm!B; d
!

BÞ
� �h i

. These sets are

defined explicitly in Supplementary Note 1. We ask the question
whether quantum correlations can realize the extremal boxes of
the general TONS polytope, where an extremal box or a vertex is

one that cannot be expressed as a non-trivial convex combination
of boxes in the polytope. This fundamental question in quantum
foundations gains additional interest in DI quantum cryptography
due to the simple but powerful fact that extremal quantum
correlations are automatically decoupled from any systems held
by any no-signaling adversary14. By considering an extension to
the scenario of sequential non-locality26,27 of the well-known NPA
hierarchy28 of semi-definite programming relaxations to the set of
quantum correlations, and developing the techniques from22 to
this scenario, we prove (see detailed description in Supplementary
Note 1) the following.
Theorem 1 For any ðm!A; d

!
AÞ; ðm!B; d

!
BÞ let P be an extremal

box of the TONS polytope TONS B 2; ðm!A; d
!

AÞ; ðm!B; d
!

BÞ
� �h i

such that P∉TOLoc B 2; ðm!A; d
!

AÞ; ðm!B; d
!

BÞ
� �h i

. Then, P∉ cl

Qseq B 2; ðm!A; d
!

AÞ; ðm!B; d
!

BÞ
� �h i� �

. The latter stays true even

when the no-signaling constraints are relaxed to allow signaling
from the jth run of Alice (Bob) to the j+ kth run of Bob (Alice) for
all j= 1,…, n, k ≥ 1.
Together with the results from22 the above theorem rules out

the quantum realization of extremal postquantum statistics, at
least in the ubiquitous two-party non-locality setting. Never-
theless, subsequently, we show below that the situation can be
remedied in the steering scenario with the addition of a third
party holding a trusted qubit system.

Extremality of quantum assemblages
Consider a bipartite steering scenario17,29 in which two distant
subsystems A (Alice) and B (Bob) share a quantum state ρ(AB). We
assume that A is uncharacterized (i.e., dimension of its Hilbert
space, reduced quantum state, and local measurements which are
performed on it are unknown), while the quantum system of B is
fully characterized. Let MðAÞ

ajx represent an element of a positive
operator valued-measure (POVM) on A, corresponding to the
outcome a 2 A of the measurement setting x 2 X with fixed and
finite alphabet sizes jAj and jXj. According to measurements
performed on A, the subsystem B is then described by the set of
subnormalized states

σ
ðBÞ
ajx ¼ TrA MðAÞ

ajx � 1ρðABÞ
� �

: (1)

The probability of obtaining outcome a while performing

measurement x on subsystem A is given by TrBðσðBÞ
ajxÞ, and

subsystem B after this measurement is described by the state
σ
ðBÞ
ajx

TrBðσðBÞajx Þ
. The collection of subnormalized states ΣðBÞ ¼ σ

ðBÞ
ajx

n o
a;x

acting on a Hilbert space (of subsystem B) of dimension dB is
known as a quantum assemblage.
One can also consider a general abstract notion of a no-signaling

assemblage (also acting on a dB dimensional Hilbert space) defined
by the following no-signaling conditions 8a;x σðBÞ

ajx � 0,

8x;x0
P

aσ
ðBÞ
ajx ¼ σðBÞ ¼Paσ

ðBÞ
ajx0 and TrðσðBÞÞ ¼ 1. One can think of

such a no-signaling assemblage as the effect of the steering of a
quantum state describing subsystem B (with dimension dB) by local
measurements performed on an uncharacterized separated sub-
system A, when the joint state of both subsystems is no longer
described by quantum mechanics, but rather as the state in some
no-signaling generalized probabilistic theory. However, it has been
proven in30,31, that any two-party no-signaling assemblage also
admits a quantum realization, i.e., there exist a subsystem A, POVM

elements MðAÞ
ajx and a joint quantum state ρ(AB), such that all the

elements σðBÞ
ajx can be reconstructed as in formula (1). Therefore there

is no postquantum steering in this bipartite setting.
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The situation dramatically changes if we consider assemblages
with three separated subsystems A, B, C, in which a characterized
subsystem C (Charlie) associated with a Hilbert space of dimension
dC, shares with uncharacterized parties A, B a joint state in some
no-signaling generalized probabilistic theory32. Analogously to the
bipartite case, one may perform uncharacterized (local, indepen-
dent) measurements on A and B (with settings and outcomes
labeled by pairs x, a and y, b, respectively). Subsystem C is then

described by a set of subnormalized states σðCÞ
abjxy satisfying the no-

signaling conditions. In this case, the abstract no-signaling

assemblage (acting on the dC dimensional space) ΣðCÞ ¼
σ
ðCÞ
abjxy

n o
a;b;x;y

is therefore defined by the conditions

8b;x;x0;y
X
a

σ
ðCÞ
abjxy ¼

X
a

σ
ðCÞ
abjx0y ; (2)

8a;x;y;y0
X
b

σ
ðCÞ
abjxy ¼

X
b

σ
ðCÞ
abjxy0 ; (3)

8x;y Tr
X
a;b

σ
ðCÞ
abjxy

 !
¼ 1; 8a;b;x;y σðCÞ

abjxy � 0: (4)

Crucially, as opposed to the bipartite setting, not all no-
signaling assemblages Σ(C) in the tripartite setting, admit a

quantum realization18 as σ
ðCÞ
abjxy ¼ TrAB MðAÞ

ajx � NðBÞ
bjy � 1ρðABCÞ

� �
,

with POVM elements MðAÞ
ajx ;N

ðBÞ
bjy and tripartite state ρ(ABC) of the

quantum system ABC.
Indeed, one may consider a no-signaling assemblage defined as

σ
ðCÞ
abjxy ¼ pðABÞðabjxyÞρðCÞ with p(AB)(ab∣xy) denoting the so-called PR

box distributions18. This assemblage is postquantum and this is a
direct consequence of the postquantum non-locality of the PR box
(see detailed discussion in Supplementary Note 2). Interestingly, it
has been found that there are also no-signaling assemblages

ΣðCÞ ¼ σ
ðCÞ
abjxy

n o
a;b;x;y

, for which any POVM elements RðCÞcjz provide

no-signaling boxes pðABCÞðabcjxyzÞ ¼ Tr RðCÞcjz σ
ðCÞ
abjxy

� �
with quantum

realization, and yet the whole assemblage does not admit
quantum realization18. These show that postquantum non-
locality and postquantum steering are genuinely different
phenomena in the tripartite setting and beyond. It is noteworthy
that the (i) set of no-signaling assemblages and (ii) the subset of
assemblages that admit quantum realization are both convex—
see discussion in Supplementary Note 2.
Inside the discussed set of quantum assemblages one can

single out the convex subset of local hidden state (LHS)
assemblages that represent steering with a classically correlated
system33. A no-signaling assemblage admits LHS model if

it can be represented by σ
ðCÞ
abjxy ¼

P
iqip

ðAÞ
i ðajxÞpðBÞi ðbjyÞσðCÞ

i where

qi ≥ 0, ∑iqi= 1, and σ
ðCÞ
i are some states of characterized subsystem

C and pðAÞi ðajxÞ; pðBÞi ðbjyÞ denote conditional probability distribu-
tions for uncharacterized subsystems A and B respectively.

Equivalently, for LHS σ
ðCÞ
abjxy ¼

P
iqip

ðABÞ
i ðabjxyÞσðCÞ

i where Li ¼
pðABÞi ðabjxyÞ
n o

a;b;x;y
is a deterministic box of conditional prob-

abilities (compare with Supplementary Note 2).
As in a tripartite case, one can discuss different types of

separability (entanglement), we introduce another convex set of
biseparable assemblages (BIS) as a collection of all assemblages

with quantum realization σ
ðCÞ
abjxy ¼ TrAB MðAÞ

ajx � NðBÞ
bjy � 1ρðABCÞ

� �
where ρ(ABC) is biseparable32 (see further discussion in
Supplementary Note 2). It is easy to see that biseparable

assemblages form an intermediate set between LHS and quantum
assemblages.
One can show that a no-signaling assemblage can be excluded

from the set of LHS assemblages by the violation of a steering
inequality, i.e., for any no-signaling assemblage Σ(C) that
does not admit an LHS model, there exists a linear real-valued
functional F on no-signaling assemblages such that FðΣðCÞÞ> CLHS
and FðΣðCÞLHSÞ � CLHS for all LHS assemblages ΣðCÞLHS. Similarly certain
subclass of such inequalities may be used for certification that a
given assemblage is not biseparable. In particular, in case of
quantum assemblages, steering inequalities may indicate that
the initial state is not fully separable or biseparable.
One can easily generalize the notion of no-signaling assem-

blages to the scenario with n > 2 uncharacterized parties33. For
simplicity, we will restrict our attention to the case when n= 2 and
a; b; x; y 2 0; 1f g. Note that a no-signaling assemblage can be
then seen as a box of positive operators (i.e., subnormalized
states) where (a∣x) label rows and (b∣y) label columns, i.e.,

ð5Þ

In particular, LHS assemblages are convex combinations of
extremal boxes (of operators) that have only four nonzero
positions occupied by the same pure state forming a rectangle
with exactly one element for each pair (x, y) (see an example of
such extreme point in Supplementary Note 2).
In analogy to the fundamental question in non-locality, it is

interesting to ask whether a quantum assemblage can realize an
extremal non-classical point in the set of no-signaling assem-
blages. In the case of bipartite steering, all no-signaling
assemblages admit quantum realization, therefore such a ques-
tion is uninteresting. The first relevant scenario is a tripartite setup
with at least two measurement settings on uncharacterized
parties (see discussion in Supplementary Note 10). We show
below that in contrast to non-locality the question admits the
affirmative answer in this setting.
Any extremal quantum assemblage can be obtained by

measurements performed on a pure state, therefore we may
restrict only to such states (see discussion in Supplementary Note
5). Recall that a pure state ψðABCÞ�� � 2 CdA �CdB �CdC is genuine
three-party entangled if it is entangled with respect to any
bipartite splitting of the tripartite system.
Proposition 2 For any pure genuine three-party entangled state

ψðABCÞ�� � 2 C2 �C2 �Cd there exists a pair of PVMs with two
outcomes on subsystems A and B respectively such that a no-
signaling assemblage Σ(C) obtained by these measurements is
extremal. In particular, Σ(C) is not LHS and not biseparable. Moreover,
Σ(C) is the unique no-signaling assemblage that maximally violates
some steering inequality FΣðCÞ .
The reasoning behind the above proposition is based on a

notion of inflexibility that we shall introduce in Definition 6 of
Methods. This notion enables us to provide an explicit
construction of FΣðCÞ given by (7) and in particular shows that
the maximal value of FΣðCÞ over no-signaling assemblages is
equal to 4. The following provides an example of an assemblage
from Proposition 2.
Example 3 Consider a GHZ three qubit state

ψðABCÞ�� � ¼ 1ffiffi
2

p 000j i þ 111j ið Þ. Let Σ
ðCÞ
GHZ be given by σ

ðCÞ
abjxy ¼

TrABðPðAÞajx � QðBÞ
bjy � 1 ψðABCÞ�� �

ψðABCÞ	 ��Þ with PðAÞ0j0 ¼ QðBÞ
0j0 ¼ þj i þh j

R. Ramanathan et al.
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and PðAÞ0j1 ¼ QðBÞ
0j1 ¼ 0j i 0h j, i.e.,

Assemblage Σ
ðCÞ
GHZ is extremal and maximal values obtained by

related functional F
Σ
ðCÞ
GHZ

on LHS assemblages and biseparable

assemblages are given respectively by CLHS ¼ sup ϕj i Tr ð3 0j i 0h jþ½
þj i þh jÞ ϕj i ϕh j� ¼ 4þ ffiffiffiffi

10
p
2 and CBIS ¼ 5þ ffiffi

5
p
2 (see detailed calculation

in Supplementary Note 7).
To investigate the result further, let us fix ψðABCÞ�� �

together with its

related Σ(C) obtained using PVMs PðAÞajx ;Q
ðBÞ
bjy as in Proposition 2.

Consider an arbitrary pure state ~ψ
ðABCÞ��� E

2 C2 �C2 �Cd and

corresponding assemblage ~Σ
ðCÞ

given by two pairs of PVMs ~P
ðAÞ
; ~Q

ðBÞ

with two outcomes as ~σ
ðCÞ
abjxy ¼ TrABð~PðAÞajx � ~Q

ðBÞ
bjy � 1 ~ψ

ðABCÞ��� E
~ψ
ðABCÞD ���Þ. One can see that FΣð~ΣÞ ¼ 4 iff ~ψ

ðABCÞ��� E
¼ UA � UB � 1

ψðABCÞ�� �
, ~P

ðAÞ
ajx ¼ UAP

ðAÞ
ajxU

y
A and ~Q

ðBÞ
bjy ¼ UBQ

ðBÞ
bjyU

y
B for some local

unitaries UA,UB. Indeed, it is the case, as we will show in the
discussion in Methods that the first two rows and one column
of Σ(C) from Proposition 2 consist of different rank one operators.
This observation together with a well-known Jordan’s lemma leads to
the following self-testing result (see Supplementary Note 8 for an
explicit statement of Jordan’s lemma and complete reasoning
behind self-testing).
Proposition 4 For any pure state ~ψ

ðA0B0CÞ��� E
2 CdA0 �CdB0 �CdC

and assemblage ~Σ
ðCÞ

with elements ~σ
ðCÞ
abjxy ¼ TrA0B0 ~P

ðA0Þ
ajx � ~Q

ðB0Þ
bjy � 1

�
~ψ
ðA0B0CÞ��� E

~ψ
ðA0B0CÞD ���Þ, FΣðCÞ ð~Σ

ðCÞÞ ¼ 4 iff VA0 � VB0 � 1 ~ψ
ðA0B0CÞ��� E

¼
ϕjunk
A00B00

��� E
ψðABCÞ�� �

, and ðVA0 � VB0 � 1Þð~PðA
0Þ

ajx � ~Q
ðB0Þ
bjy � 1Þ ~ψ

ðA0B0CÞ��� E
¼

ϕjunk
A00B00

��� E
ðPðAÞajx � QðAÞ

bjy � 1Þ ψðABCÞ�� �
where VA0 ; VB0 are some local

isometries and ψðABCÞ�� �
together with PðAÞajx ;Q

ðAÞ
bjy are as in Proposition

2, while ϕjunk
A00B00

��� E
is some irrelevant junk state.

Note that besides the general results stated above, one can also
construct particular examples of (non-local) extreme assemblages
with quantum realization also in a tripartite setting with two
measurements and d outcomes per uncharacterized party (see
construction provided in Supplementary Note 9).

DISCUSSION
We have proved that in the most general scenario of sequential
measurements it is impossible to quantumly realize non-local
extremal points of the TONS polytope. This answers the open
question posed in22. On the contrary, if one of the parties has
access to at least one fully trusted qubit system, we have shown
that one can obtain quantum assemblages which are extremal
within the set of no-signaling assemblages. While this opens the
path toward security proofs for semi-DI cryptographic protocols
against general adversaries, numerous interesting open ques-
tions arise for future research. In particular, in the setting of
sequential Bell non-locality, the immediate question is to extend
the result to the multi-partite setting, as well as to the scenario of
single-party contextuality. Quantitative bounds on the distance
of quantum boxes from extremal TONS ones should be obtained
utilizing the methods involved in the proof of Theorem 1, i.e., by

lower bounding the minimum eigenvalue of the matrix ~A
>
P
~AP

associated with the extremal box P (see Supplementary Note 1

for explicit definition of the aforementioned matrix). Is it possible
to generalize the main result of Proposition 2 by showing that for
any genuinely entangled third-party dA⊗ dB⊗ dC state, there are
some kA PVMs (or POVMs) with sA outcomes on system A and kB
PVMs (or POVMs) with sB outcomes on system B such that the
corresponding assemblage is again extremal in the set of
all no-signaling assemblages? If yes, what are the minimal
number of settings and outcomes? Clear extensions to many-
party scenarios should naturally be explored. Finally, as obviously
not all extremal no-signaling assemblages admit quantum

realization (e.g., σðCÞ
abjxy :¼ pðABÞðabjxyÞ ϕðCÞ�� �

ϕðCÞ	 �� with p(AB)(ab∣xy)
coming from a PR box), it would be natural to ask for a
characterization of such extremal points and information-
theoretic consequences thereof.

METHODS
Similarity and inflexibility
Below we shall introduce the concepts of similarity and inflexibility
of no-signaling assemblages with at most rank one elements
σ
ðCÞ
abjxy , which are crucial for reasoning staying behind already

described results.
Definition 5 Consider a general no-signaling assemblage Σ(C) as

in Eq. (5) with all positions occupied by at most rank one operators

and denote it by ΣðCÞ ¼ pi ψ
ðCÞ
i

��� E
ψ
ðCÞ
i

D ���n o
i
, where i= (ab∣xy) and

pi ¼ TrðσðCÞi Þ. In this case, we say that Σ(C) is an assemblage of pure

states. Consider any other assemblage of pure states ~Σ
ðCÞ ¼

qi ψ
ðCÞ
i

��� E
ψ
ðCÞ
i

D ���n o
i
with the same states ψ

ðCÞ
i

��� E
ψ
ðCÞ
i

D ��� at the same

positions as in Σ(C). If additionally pi= 0 implies qi= 0 for any i, we

say that ~Σ
ðCÞ

is similar to Σ(C).
Note that the above relation is not symmetric, i.e., it may

happen that ~Σ
ðCÞ

is similar to Σ(C), but Σ(C) is not similar to ~Σ
ðCÞ

.
Definition 6 An assemblage of pure states Σ(C) is called

inflexible if for any ~Σ
ðCÞ

similar to Σ(C) we get ΣðCÞ ¼ ~Σ
ðCÞ

.
Note that as we considered assemblages of pure states, in

particular, inflexibility implies extremality in the set of all no-
signaling assemblages (see complete derivation of this fact in
Supplementary Note 3). If so, then checking for inflexibility
becomes a method of certifying extremality.
Indeed, to prove the statement of Proposition 2 observe that as

ψðABCÞ�� �
is genuine three-party entangled there exists a PVM with

elements PðAÞaj0 ¼ ϕaj0
��� E

ϕaj0
D ��� on the subsystem A such that

ϕaj0jψðABCÞ
D E

are entangled and linearly independent (see

discussion in Supplementary Note 6 for justification of this claim).
Therefore, one can choose a pair of PVMs with respective

elements QðBÞ
bj0;Q

ðBÞ
bj1 on the subsystem B, such that each of the

first two rows of Σ(C) consists of elements proportional to
normalized pure states which are all different. Moreover, there is

an index (b∣y) for which σ
ðCÞ
0bj0y and σ

ðCÞ
1bj0y are not proportional to

the same pure state (see discussion in Supplementary Note 6 for
justification of this claim). Choosing the second PVM on subsystem

A such that its elements PðAÞaj1 do not commute with the first, we

obtain a column (b∣y) with the same property as the first and the
second row, i.e., having all the normalized elements pure and
different. A detailed analysis of assemblages with such properties
proves that Σ(C) is inflexible and hence extremal (compare
description of sufficient conditions for inflexibility given in
Supplementary Note 4).
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Define now

ρabjxy ¼
0 for σðCÞ

abjxy ¼ 0;

σ
ðCÞ
abjxy

TrðσðCÞ
abjxyÞ

for σðCÞabjxy ≠ 0:

8><
>: (6)

For any no-signaling assemblage ~Σ
ðCÞ

consider

FΣðCÞ ð~Σ
ðCÞÞ ¼

X
a;b;x;y¼0;1

Trðρabjxy~σðCÞabjxyÞ: (7)

Observe that FΣðCÞ ð~Σ
ðCÞÞ � 4 and equality holds if and only if

the no-signaling assemblage ~Σ
ðCÞ

is similar to Σ(C), so by
inflexibility the maximal value of FΣðCÞ is uniquely obtained for
Σ(C). Since any LHS assemblage is a convex combination of
assemblages consisting of the same pure state occupying
four positions forming a rectangle, and the first and second
row of Σ(C) consist of different rank one operators, Σ(C) is not an
LHS assemblage and CLHS ¼ supLHS FΣðCÞ ðΣðCÞLHSÞ< 4. Analyzing the
structure of the set of biseparable assemblages presented in
Supplementary Note 2 one can additionally show that CBIS ¼
supBIS FΣðCÞ ðΣðCÞBISÞ< 4 as form of Σ(C) does not agree with the
possible form of extremal no-signaling assemblage that is
biseparable.
Note that to find CLHS, the value

P
a;b;x;y2IðLÞTrðρabjxy ϕj i ϕh jÞ is

maximized over pure states ϕj i and deterministic boxes L, where
I(L) denotes the set of (ab∣xy) (forming a rectangle) for which
p(ab∣xy)= 1 in L—by convexity, optimization need be performed
only over the extremal points. Optimization over biseparable
assemblages boils down to optimization over three classes of
assemblages covering all possible extreme points in the set of
biseparable assemblages. To see this compare a detailed
discussion on biseparable assemblages in Supplementary Note
2. These observations were crucial for explicit calculation for
Example 3 covered in Supplementary Note 7.

DATA AVAILABILITY
Data are available within the article and supplementary information. Any additional
calculations can be obtained upon reasonable request.
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