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Long-time simulations for fixed input states on quantum
hardware
Joe Gibbs1✉, Kaitlin Gili1,2, Zoë Holmes 3✉, Benjamin Commeau3,4, Andrew Arrasmith1, Lukasz Cincio1, Patrick J. Coles 1 and
Andrew Sornborger3

Publicly accessible quantum computers open the exciting possibility of experimental dynamical quantum simulations. While rapidly
improving, current devices have short coherence times, restricting the viable circuit depth. Despite these limitations, we
demonstrate long-time, high fidelity simulations on current hardware. Specifically, we simulate an XY-model spin chain on Rigetti
and IBM quantum computers, maintaining a fidelity over 0.9 for 150 times longer than is possible using the iterated Trotter method.
Our simulations use an algorithm we call fixed state Variational Fast Forwarding (fsVFF). Recent work has shown an approximate
diagonalization of a short time evolution unitary allows a fixed-depth simulation. fsVFF substantially reduces the required resources
by only diagonalizing the energy subspace spanned by the initial state, rather than over the total Hilbert space. We further
demonstrate the viability of fsVFF through large numerical simulations, and provide an analysis of the noise resilience and scaling of
simulation errors.
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INTRODUCTION
The simulation of physical systems is valuable for basic science
and has technological applications across a diverse range of
industries, from materials design to pharmaceutical development.
Relative to classical computers, quantum computers have the
potential to provide an exponentially more efficient means of
simulating quantum mechanical systems. Quantum hardware has
progressed substantially in recent years1,2. However, despite
continual progress, we remain in the ‘noisy intermediate-scale
quantum’ (NISQ) era in which the available hardware is limited to
relatively small numbers of qubits and prone to errors. Simulation
algorithms designed for fault-tolerant quantum computers, such
as Trotterization methods3,4, qubitization methods5, and Taylor
series methods6, require deeper circuits than viable given the
short coherence times of current hardware. Thus alternative
approaches are needed to successfully implement useful simula-
tions on NISQ hardware.
Variational quantum algorithms7–22, where a classical computer

optimizes a cost function measured on a quantum computer,
show promise for NISQ quantum simulations. An early approach
introduced an iterative method, where the state is variationally
learned on a step-by-step basis using action principles18,19,23,24.
Subsequently, a generalization of the variational quantum
eigensolver10 was developed for simulations in low lying energy
subspaces20. Very recently, quantum-assisted methods have been
proposed that perform all necessary quantum measurements at
the start of the algorithm instead of employing a classical-
quantum feedback loop25–27.
In this work, we improve upon a recently proposed variational

quantum algorithm known as Variational Fast Forwarding (VFF)21.
VFF allows long time simulations to be performed using a fixed
depth circuit, thus enabling a quantum simulation to be ‘fast
forwarded’ beyond the coherence time of noisy hardware. The VFF
algorithm requires finding a full diagonalization of the short time

evolution operator U of the system of interest. Once found, the
diagonalization enables any initial state of that system to be fast
forwarded. However, for practical purposes, one is often interested
in studying the evolution of a particular fixed initial state of
interest. In that case a full diagonalization of U is overkill. Instead, it
suffices to find a diagonal compilation of U that captures its action
on the given initial state. Here, we show that focusing on this
commonly encountered but less exacting task can substantially
reduce the resources required for the simulation.
Specifically, we introduce the fixed state VFF algorithm (fsVFF)

for fast forwarding a fixed initial state beyond the coherence time
of a quantum computer. This approach is tailored to making
dynamical simulation more suitable for NISQ hardware in two key
ways. First, the cost function requires half as many qubits as VFF.
This not only allows larger scale simulations to be performed on
current resource-limited hardware, but also has the potential to
enable higher fidelity simulations since larger devices tend to be
noisier. Second, fsVFF can utilize simpler ansätze than VFF both in
terms of the depth of the ansatz and the number of parameters
that need to be learnt. Thus, fsVFF can reduce the width, depth,
and total number of circuits required to fast forward quantum
simulations, hence increasing the viability of performing simula-
tions on near-term hardware.
We demonstrate these advantages by implementing long-time

high fidelity quantum simulations of the 2-qubit XY spin chain on
Rigetti’s and IBM’s quantum computers. Specifically, while the
iterated Trotter approach has a fidelity of less than 0.9 after 4 time
steps and has completely thermalized by 25 time steps, with fsVFF
we achieve a simulation fidelity greater than 0.9 for over 600 time
steps. We further support the effectiveness of this approach for
NISQ simulations, with 4 qubit noisy and 8 qubit noiseless
numerical simulations of the XY model and Fermi–Hubbard model
respectively.
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The fsVFF algorithm marks a conceptual advance on other
variational simulation algorithms in that it draws on ideas from
quantum machine learning by using training data consisting of
the evolution of the system at short times to formulate our cost.
That is, in effect, we are using training data composed of the
short-time evolution of our initial state to predict its long-time
evolution. Moreover, to ground this approach and prove the
faithfulness of our cost function, we utilize the recently developed
Quantum No Free Lunch theorems28,29, which bound the amount
of training data required to learn an unknown unitary. In our
analytical results, we further provide a proof of the noise resilience
of the fsVFF cost function, specifically the optimal parameter
resilience30. Finally, we perform an analysis of simulation errors
under fast-forwarding.
The diagonalizations obtained using fsVFF may further be useful

for determining the eigenstates and eigenvalues of the Hamilto-
nian on the subspace spanned by the initial state and its evolved
states. This can be done using a time series analysis, by using
fsVFF to reduce the depth of the quantum phase estimation (QPE)
algorithm, or using a simple sampling method. We demonstrate
on IBM’s quantum computer that, while standard QPE fails on real
hardware, fsVFF can be used to obtain accurate estimates of the
spectrum.

RESULTS
Fixed state variational fast forwarding algorithm
Before presenting our fsVFF algorithm, let us first review the
original VFF algorithm from ref. 21. Consider a Hamiltonian H on a
d= 2n dimensional Hilbert space (i.e., on n qubits) evolved for a
short time Δt with the simulation unitary e−iHΔt, and let T (larger
than Δt) denote the desired simulation time. Then the VFF
algorithm consists of the following steps:

1. Approximate e−iHΔt with a single-timestep Trotterized
unitary denoted U= U(Δt).

2. Variationally search for an approximate diagonalization of U
by compiling it to a unitary with a structure of the form

Vðα;ΔtÞ :¼ WðθÞDðγ;ΔtÞWðθÞy; (1)

where α= (θ, γ) is a vector of parameters. Here, D(γ, Δt) is a
parameterized unitary that will (after training) encode the
eigenvalues of U(Δt), while W(θ) is a parameterized unitary
matrix that will consist of the corresponding eigenvectors21.
The compilation is performed using the local
Hilbert–Schmidt test13 to find the parameters θopt and γopt
that minimize the local Hilbert–Schmidt cost.

3. Use the compiled form to simulate for time T= NΔt using
the circuit

WðθoptÞDðγopt;NΔtÞWðθoptÞy: (2)

VFF has proven effective for providing a fixed quantum circuit
structure with which to fast-forward beyond the coherence time
of current noisy quantum devices. However, the algorithm
requires a full diagonalization of U over the entire Hilbert space.
The local Hilbert–Schmidt test used to find this diagonalization
requires 2n qubits. Additionally, the ansatz must be sufficiently
expressible to diagonalize the full unitary U to a high degree of
approximation31–33. This typically requires a large number of
parameters and a reasonably deep circuit. These overheads limit
VFF’s utility on current hardware.
In what follows, we introduce a more NISQ-friendly refinement

to VFF that reduces these overheads when one is interested in
fast-forwarding a fixed initial state ψ0j i, rather than any possible
initial state. The fixed state VFF algorithm (fsVFF) is summarized in
Fig. 1.

We note that VFF, like the standard iterated Trotter approach to
quantum simulation, necessarily incurs a Trotter error by
approximating e−iHΔt with U= U(Δt). This Trotter error may be
removed using the Variational Hamiltonian Diagonalization
algorithm (VHD), which directly diagonalizes the Hamiltonian
H22. However, VHD is yet more resource intensive than VFF on
current hardware, so we focus here on refining VFF.

Cost function
In fsVFF, instead of searching for a full diagonalization of U over
the entire Hilbert space, we search for a diagonal compilation of U
that captures the action of U on the initial state ψ0j i and its future
evolution, e�iHt ψ0j i. Here, we introduce a cost function tailored to
this task.
To make precise what is required of the cost for fsVFF, let us

first note that as the state ψ0j i evolves, it remains within a fixed
energy subspace. This can be seen by expanding the initial
state in terms of the energy eigenbasis f Ekj ig2nk¼1 (the eigenbasis
of H) as

ψ0j i ¼
Xneig
k¼1

ak Ekj i; (3)

where ak ¼ Ek jψ0h i, and noting that

e�iHt ψ0j i ¼
Xneig
k¼1

ake
�iEk t Ekj i: (4)

Thus it follows that if ψ0j i has non-zero overlap with neig energy
eigenstates of H, so does e�iHt ψ0j i for all future times. It follows
that the subspace spanned by the initial state ψ0j i and its future
evolution, is equivalent to the neig dimensional subspace Sψ0

spanned by f Ekj igneigk¼1. Therefore to find a compilation of U that
captures its action on e�iHt ψ0j i (for all times t) it suffices to find a
compilation of U on Sψ0

. We stress that the eigenstates f Ekj ig2nk¼1
need not be ordered, and therefore Sψ0

is not necessarily low lying
in energy.
A No-Free-Lunch Theorem for quantum machine learning

introduced in ref. 28 proves that to perfectly learn the action of
a unitary on a d-dimensional space requires d training pairs. In the
context of fsVFF, we are interested in learning the action of a
unitary on an neig-dimensional subspace. Since the unitary is block
diagonal, one can directly apply this NFL theorem to the subspace
of interest. Therefore neig training pairs are required to learn the
unitary’s action on this subspace. (Note, we assume here that the
training states are not entangled with an additional register. It was
shown in ref. 29 that using entangled training data can reduce the
required number of training states. In fact, this more powerful
method is used by the VFF algorithm. However, producing such
entangled training data requires additional qubits and two-qubit
gates and therefore is less NISQ-friendly.)
The No-Free-Lunch theorem therefore implies that neig states

are required to learn U on ψ0j i (assuming leakage due to Trotter
error is negligible). In general these states may be freely chosen
from Sψ0

. Here a convenient choice in training states would be
ψ0j i and its Trotter evolutions, that is the set fUk ψ0j igneigk¼1.
Motivated by these observations, we define our cost function for
fsVFF as

CfsVFF :¼ 1� 1
neig

Xneig
k¼1

j ψ0h jðVyÞkUk ψ0j ij2; (5)

where similarly to VFF we use a diagonal ansatz V(α, Δt)≔W(θ)
D(γ, Δt)W(θ)†. This cost quantifies the overlap between the initial
state evolved under U for k time steps, Uk ψ0j i, and the initial state
evolved under the trained unitary for k time steps, WDkWy ψ0j i,
averaged over neig time steps. Assuming we have access to the
unitary that prepares the state ψ0j i, the state overlaps can be
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measured using n qubits, via a circuit that performs a Loschmidt
echo30. Therefore CfsVFF can be evaluated using only n qubits. This
is half as many as standard VFF, opening up the possibility of
performing larger simulations on current hardware.
It is important to note that while the exact time-evolved state

expð�iHtÞ ψ0j i is perfectly confined to the initial subspace, the
approximate evolution induced by U(Δt) allows for leakage from
the initial subspace34. Thus the subspace spanned by fUk ψ0j igneigk¼1
in general does not perfectly overlap with f Ekj igneigk¼1. However, by
reducing Δt and considering higher order Trotter approxima-
tions4,35, this leakage can be made arbitrarily small. In Supple-
mentary Note 1, we prove that in the limit that leakage from the
initial subspace is negligible, CfsVFF is faithful. That is, we show that
the cost vanishes, CfsVFF= 0, if and only if the fidelity of the fast-
forwarded simulation is perfect,

Fτ ¼ j ψ0h jWyDτWUτ ψ0j ij2 ¼ 1; (6)

for all times τ. Note, that the reverse direction is trivial. If Fτ= 1 for
all τ, then CfsVFF= 0.
Similar to the VFF cost, the fsVFF cost is noise resilient in the

sense that incoherent noise should not affect the global optimum
of the function. This is proven for a broad class of incoherent noise
models using the results of ref. 30 in Supplementary Note 2.
Nonetheless, it is only possible to measure CfsVFF if the unitary

Uneig can be implemented comfortably within the coherence time
of the QC. Additionally, the number of circuits required to evaluate
CfsVFF in general scales with neig. Given these two restrictions,
fsVFF is limited to simulating quantum states that have non-zero
overlap with a non-exponential number of eigenstates. Conse-
quently, we advocate using fsVFF to simulate states with
neig= poly(n). Crucially these states need not be low lying and
therefore our approach is more widely applicable than the

Subspace Variational Quantum Simulator (SVQS) algorithm20,
which simulates fixed low energy input states.
While CfsVFF was motivated as a natural choice of cost function

to learn the evolution induced by a target unitary on a fixed initial
state, it is a global cost36 and hence it encounters what is known
as a barren plateau for large simulation sizes33,36–46. In Supple-
mentary Note 3 we suggest an alternative local version of the cost
to mitigate such trainability issues.

Calculating neig
In this section, we present an algorithm to calculate neig and
therefore determine the number of training states required to
evaluate CfsVFF. Before doing so, we remark that in the presence of
degeneracies in the spectrum of H, the eigenvectors correspond-
ing to degenerate eigenvalues are not unique. Therefore, in this
case, the number of eigenstates with non-zero overlap with ψ0j i
depends on how the eigenvectors corresponding to degenerate
eigenvalues are chosen. However, as detailed in Supplementary
Note 1, to learn the action of U on ψ0j i, what matters is the
number of eigenstates overlapped by ψ0j i corresponding to
unique eigenvalues. This is equivalent to the number of linearly
independent states in the set V1 where Vk :¼ f ψlj igl¼k

l¼0 with
ψlj i :¼ UðΔtÞl ψ0j i. The subspace KkðU;ψ0Þ spanned by Vk is
known as the Krylov subspace associated with the operator U and
vector ψ0j i47. In the limit in which Trotter error is negligible
K1ðU;ψ0Þ ¼ Sψ0

and therefore, neig is equivalently the dimension
of the Krylov subspace K1ðU;ψ0Þ.
To determine the dimension of K1ðU;ψ0Þ we can utilize the

fact that the determinant of the Gramian matrix of a set of vectors
(i.e., the matrix of their overlaps) is zero if and only if the vectors
are linearly dependent. The Gramian corresponding to Vk is given

Fig. 1 The fsVFF Algorithm. a An input Hamiltonian and an initial input state are necessary (b) to create a single time-step Trotterized unitary,
U(Δt) and (c) to calculate the number of eigenstates that have non-zero overlap with the initial state. The value of neig can be calculated by
constructing a matrix of state overlaps Uk ψ0j i and increasing the matrix dimension until the determinant is zero. d The unitary is then
variationally diagonalized into the form, V(α,Δt)=W(θ)D(γ,Δt)W†(θ). The cost function CfsVFF is minimized with a classical optimizer (e.g.,
gradient descent), where the parameters θ and γ are updated. e The optimal parameters θopt and γopt are then used to implement a fast-
forwarded simulation with the diagonalized unitary form.
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by

GðkÞ ¼

ψ0jψ0h i ψ0jψ1h i � � � ψ0jψkh i
ψ1jψ0h i ψ1jψ1h i � � � ψ1jψkh i

..

. ..
. . .

. ..
.

ψk jψ0h i ψk jψ1h i � � � ψk jψkh i

0
BBBB@

1
CCCCA: (7)

If DetðGðkÞÞ≠ 0, then the vectors in Vk are linearly independent
and therefore span at least a k+ 1 dimensional subspace.
Conversely, if DetðGðkÞÞ ¼ 0, the set Vk contains linear depen-
dencies and the subspace they span is less than k+ 1 dimen-
sional. Therefore, if we can find kmin, the smallest k such that
DetðGðkÞÞ ¼ 0, then (noting that G(k) is a k+ 1 dimensional
matrix) we know that kmin is the largest number of linearly
independent vectors spanned by V1. That is, kmin is the
dimension of K1ðU;ψ0Þ and so we have that neig ¼ kmin.
The overlaps ψljψl0h i for any l and l0 can be measured using the

Hadamard Test, shown in Fig. 1, and thus the Hadamard test can
be used to determine G(k) on quantum hardware. Since the
Gramian here contains two symmetries, hermiticity and the
invariance ψljψl0h i ¼ ψ0h jU�lUl0 ψ0j i ¼ ψ0h jUl0�l ψ0j i ¼ hψ0jψl0�li,
we only have to calculate the first row of the matrix G(k) on the
quantum computer.
In summary, our proposed algorithm to determine neig consists

of the following loop. Starting with k= 1,

1. Construct G(k) using the Hadamard test.
2. Calculate (classically) DetðGðkÞÞ.

If DetðGðkÞÞ ¼ 0, terminate the loop and conclude that
neig= k.
If DetðGðkÞÞ≠0, increase k→ k+ 1 and return to step 1.

This is shown schematically in Fig. 1.
While it is beneficial to learn neig to determine how many

training states are required to perfectly learn the diagonalization
on the subspace spanned by the initial state and its future
evolution, we stress that it is not strictly necessary for the
successful implementation of fsVFF. One could always train on an
increasing number of states and study the convergence of an
observable of interest. More concretely, one could train on k states
and then use the resultant diagonalization to compute the
evolution of a particular observable as a function of time. For
k < neig the trajectory of the observable will alter as k is increased.
However, for k⩾ neig increasing k further will no longer change the
trajectory of the observable because it will have already
converged on the true trajectory. Using this approach, neig need
not be already known to implement fsVFF. We demonstrate this
method in Section “Numerical Simulations”.

Summary of algorithm
The fixed state Variational Fast Forwarding algorithm (fsVFF) is
summarized in Fig. 1. We start with an initial state ψ0j i that we
wish to evolve under the Hamiltonian H.

1. The first step is to approximate the short time evolution
using a single step Trotter approximation U.

2. This Trotter approximation can be used to find an
approximation for neig, using the method outlined in
Section “Calculating neig”.

3. Equipped with a value for neig, we then variationally search
for a diagonalization of U over Sψ0

using CfsVFF, Eq. (5). At
each iteration step the gradient of the cost with respect to a
parameter θi is measured on the quantum computer for a
fixed set of parameters using the analytic expressions for
∂θi CfsVFF provided in Supplementary Note 4. These gradients
are used to update the parameters using a classical
optimizer, such as those in refs. 48–50. The output of the

optimization loop is the set of parameters that minimize
CfsVFF,

fθopt; γoptg ¼ argmin
θ;γ

CfsVFFðθ; γÞ: (8)

4. Finally, the state ψ0j i can be simulated for time T= NΔt
using the circuit

WðθoptÞDðγopt;NΔtÞWðθoptÞy: (9)

That is, by simply multiplying the parameters γopt in the
diagonalized unitary by a constant number of iterations N.
In Supplementary Note 5, we show that the total simulation

fidelity, in the limit that leakage is small, is expected to scale sub-
quadratically with the number of fast-forwarding time steps N.
Thus, if the minimal cost from the optimization loop is sufficiently
small, we expect the fsVFF algorithm to allow for long, high fidelity
simulations.

Randomized training
While the fsVFF cost as stated in Eq. (5) has neig terms, this does
not necessarily mean that the number of circuits required to
evaluate it also scales with neig. Analogous to mini-batch gradient
descent methods popular for the training of classical neural
networks, we can use only a small random selection of the total
training dataset per gradient evaluation, yet over the whole
optimization the total training set will be fully explored many
times over. Therefore, instead of restricting ourselves to a discrete
set of training states, which requires setting the size of the training
set to be equal to or greater than neig, we can instead randomly
select our training states from a continuum. This has the added
advantage that it is then unnecessary to explicitly compute neig.
This approach results in a modified cost function of the form

eCfsVFF :¼ 1� 1
jRj

X
r2R

j ψ0h jVð�rtmaxÞUðrtmaxÞ ψ0j ij2 (10)

where V(t)=WD(t)W† is the fsVFF ansatz, U(t) is a Trotter approxima-
tion for the short time unitary evolution, and the elements of the set R
are randomly generated numbers from the interval [−1, 1]. The
gradients of the cost function are smaller when the unitary acts close
to the identity operation, so to maintain stronger gradients it is
advantageous for the elements of R to be slightly biased towards the
edges of the interval. Specifically, in our numerics to test this
approach, the absolute magnitude of r was raised to the power of
0.75. Although this approach does not require an a priori calculation
of neig, there is a caveat that tmax needs to be large enough to get
sufficient separation of the training states so they are not functionally
identical. This alternative training setup is potentially a yet more NISQ
friendly variant, as the unitary does not need to be decomposed into
the form UðΔtÞneig , as required in Eq. (5), and therefore allows for
shorter depth circuits.

Hardware implementation
In this section we demonstrate that fsVFF can be used to
implement long time simulations on quantum hardware. Speci-
fically, we simulate the XY spin chain, which has the Hamiltonian

HXY :¼
Xn�1

j¼1

XjXjþ1 þ YjYjþ1; (11)

where Xj and Yj are Pauli operators on the jth qubit. In what
follows, we first present results showing that we can determine
neig for an initial state ψ0j i using the method described in Section
“Calculating neig”. We then demonstrate that the fsVFF cost can be
trained to find an approximate diagonalization of HXY on the
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subspace spanned by ψ0j i and its future evolution under HXY. We
finally use this diagonalization to perform a long time fast
forwarded simulation. In all cases we focus on a two qubit chain,
i.e., n= 2, and we approximate its evolution operator using a first-
order Trotter approximation.
The 2-qubit XY Hamiltonian has the eigenvectors

f 00j i; 1ffiffi
2

p ð 10j i þ 01j iÞ; 1ffiffi
2

p ð 10j i � 01j iÞ; 11j ig, corresponding to
the eigenvalues {0, 1, −1, 0}. As proof of principle, we tested the
algorithm for determining neig on the states 00j i (corresponding
to neig= 1), 10j i (neig= 2) and 1ffiffi

2
p ð 00j i þ 10j iÞ (neig= 3). As

described in Section “Calculating neig”, the neig of these states
can be found by calculating DetðGðkÞÞ for increasing values of k
since, as k is increased, the determinant first equals 0 when
k= neig.
To verify this for the states considered here, we first determine

G using a classical simulator. As seen in Fig. 2, in this case
DetðGðkÞÞ exactly equals 0 when k= neig. We then measured G on
Honeywell’s quantum computer. Although on the real quantum
device gate noise and sampling errors are introduced, the results
reproduce the classical results reasonably well. Namely, at the
correct value of k, DetðGðkÞÞ drastically reduces and approximately
equals 0. Thus, we have shown that it is possible to determine neig
for an initial state by measuring G on quantum hardware.
We tested the training step of the algorithm on IBM and

Rigetti’s quantum computers, specifically ibmq_toronto and
Aspen-8. For the purpose of implementing a complete simulation,
we chose to focus on simulating the evolution of the state
ψ0j i ¼ 10j i. As discussed in the previous section, this state
overlaps with neig= 2 eigenstates.
To diagonalize HXY on the 2-dimensional subspace spanned by

10j i and its future evolution, we used a hybrid quantum-classical
optimization loop to minimize CfsVFF. For a state with neig= 2 the
cost CfsVFF, Eq. (5), uses two training states fUðΔtÞk ψ0j igk¼1;2
where U(t) is the first-order Trotter approximation of HXY. On the
IBM quantum computer we evaluated the full cost function for
each gradient descent iteration. However, the time available on
the Aspen-8 device was limited, so to speed up the rate of
optimization we evaluated the overlap on just one of the two
training states per iteration, alternating between iterations
(instead of evaluating the overlaps on both training states every
iteration). To allow the movement through parameter space to use
information averaged over the two timesteps, whilst only using a
single training state per cost function evaluation, momentum was
added to the gradient updates51.
To take advantage of the fact that more compact ansätze are

viable for fsVFF, we variationally searched for a short depth ansatz,
tailored to the target problem. Specifically, we started training

with a general 2-qubit unitary and then during training the
structure was minimized by pruning unnecessary gates. In Fig. 3c,
we show the circuit for the optimal ansatz obtained using the
method. The ansatz requires one CNOT gate and two single qubit
gates for W and only one Rz rotation for D. This is a substantial
compression on the most general two qubit ansatz for W which
requires 3 CNOTs and 15 single qubit rotations and the most
general 2 qubit ansatz for D which requires 2 Rz rotations and one
2-qubit ZZ rotation (though in the case of the XY Hamiltonian this
may be simplified to only 2 Rz rotations52).
Figure 3a shows the fsVFF cost function versus the number of

iterations for the implementations on ibmq_toronto (yellow) and
Aspen-8 (red). The dashed line indicates the noisy cost value
obtained from the quantum computer. To evaluate the quality of
the optimization, we additionally classically compute the true cost
(indicated by the solid lines) using the parameters found on
ibmq_toronto and Aspen-8. While the noisy cost saturates at
around 10−1, we obtained a minimum noise-free cost of the order
10−3. The two orders of magnitude difference between the noisy
and the noise-free cost is experimental evidence that the cost
function is noise resilient on extant quantum hardware.
Finally we took the two sets of parameters found from training

on ibmq_toronto and Aspen-8, and used them to implement a
fast-forwarded simulation of the state 10j i on ibmq_rome. To

Fig. 2 Gramian Determinant Calculation. Here we plot the
determinant of the Gramian matrix, DetðGÞ, for G measured on the
Honeywell quantum computer (solid) and simulated classically
(dashed) for a 2-qubit XY spin chain. Specifically we looked at states
with non-zero overlap with k= 1 (blue), k= 2 (yellow) and k= 3 (red)
eigenstates. For both sets of data DetðGðneigÞÞ � 0, demonstrating
the effectiveness of the method for determining neig that we
introduce in Section “Calculating neig”. For the Honeywell imple-
mentation we used 1000 measurement samples per circuit.

Fig. 3 Hardware Implementation. a The 2-qubit parameterized
quantum circuit shown in c was trained to diagonalize U(Δt), a first
order Trotter expansion of the 2-qubit XY Hamiltonian with Δt= 0.5,
in the subspace spanned by 10j i and its future evolution. The
dashed line plots the noisy cost as measured on ibmq_toronto
(yellow) and Aspen-8 (red) using 30,000 samples per circuit. The
solid line indicates the equivalent noise-free cost that was calculated
on a classical simulator. b The initial state ψ0j i ¼ 10j i is evolved
forwards in time on the ibmq_rome quantum computer using the
iterated Trotter method (blue) and using fsVFF with the optimum
parameters found on ibmq_toronto (yellow) and Aspen-8 (red). The
quality of the simulation is evaluated by plotting the fidelity F ¼
ψh jρ ψj i between the evolved state and exact evolution. The gray
dotted line at F= 0.25 represents the overlap with the maximally
mixed state. The black dotted line denotes a threshold fidelity at
F= 0.9. The inset shows the fast-forwarding of the ansatz trained on
ibmq_toronto on a longer timescale, where the fidelity dropped
below 0.9 (0.8) at 625 (1275) timesteps. All simulation data was taken
using 8192 samples per circuit. c The ansatz used to diagonalize the
2-qubit XY Hamiltonian in the subspace of initial state 10j i for the
implementation on Rigetti and IBM’s quantum computers. Here
RjðθÞ ¼ expð�iθσj=2Þ for j= x, y, z.
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evaluate the quality of the fast forwarding we calculated the
fidelity, FðNÞ ¼ ψðNÞh jρðNÞ ψðNÞj i, between the density matrix of
the simulated state, ρ(N), after N timesteps, and the exact time
evolved state, ψðNÞj i, at time T= NΔt.
Quantum State Tomography53 was used to reconstruct the

density matrix. An n-dimensional density matrix ρ can be
decomposed into the Pauli product basis as ρ= η ⋅ σ(n). Here σ(n)

is a 4n dimensional vector composed of the elements of the n-
qubit Pauli group Pn ¼ fσI; σX ; σY ; σZg�n and η is the correspond-
ing vector of Pauli weights, i.e., ηk ¼ 1

2n TrðσðnÞ
k ρÞ. The values ηk

were computed on the quantum device using 8192 shots, then
used to classically calculate the fidelity F(N). Since η is computed
on the quantum hardware this naturally induces some additional
noise; however, as single qubit rotations have a relatively high
fidelity (average U3 error of qubits 0 & 1 on ibmq_bogota during
usage was 4.60 × 10−4) and read-out errors are small (average
readout assignment error of qubits 0 & 1 on ibmq_bogota during
usage was 4.60 × 10−2) we expect this effect to be small compared
to simulation errors. Moreover, these errors affect the fast-
forwarded and iterated Trotter simulations equally.
As shown by the plots of F(N) in Fig. 3b, fsVFF significantly

outperforms the iterated Trotter method. Let us refer to the time
before the simulation falls below an error threshold δ as the high
fidelity time. Then the ratio of the high fidelity time for fsVFF (TFF

δ )
and for standard Trotterization (TTrot

δ ) is a convenient measure of
simulation performance,

RFFδ ¼ TFF
δ =TTrotδ : (12)

A simulation can be said to have been successfully fast-
forwarded if RFFδ >1. The iterated Trotter method dropped below a
simulation infidelity threshold of δ= 1− F= 0.1(0.2) after 4 (8)
timesteps. In comparison, fsVFF maintained a high fidelity for 625
(1275) timesteps. Thus we achieved a simulation fast-forwarding
ratio of RFF0:1 ¼ 156 (RFF0:2 ¼ 159).

Numerical simulations
We further validate fsVFF’s performance by testing it on a
simulator of a noisy quantum computer. The noise levels on the
simulator are lower than those experienced on current devices
and hence these results are indicative of the performance of the
algorithm in the near future as hardware improves.
For these numerics we diagonalize the evolution of the 4 qubit

XY Hamiltonian, in the subspace spanned by the domain wall state
ψ0j i ¼ 1100j i and its future evolution. This space spans 5 energy
eigenstates of the XY Hamiltonian and so we use the training
states fUðΔtÞk ψ0j ig5k¼1. Here U(Δt) is chosen to be a second-order
Trotter–Suzuki decomposition for the evolution operator under
HXY with Δt= 0.5. The noise model used was based upon the IBM
architecture.
To construct the ansatz for the diagonalizing unitary, W, we

developed an adaptive technique, similar to that proposed in
refs. 13,54, to evolve the discrete circuit structure, as well as
optimize the rotation parameters using gradient descent. This
method tends to produce shallower circuits than the ones
obtained with fixed ansatz approaches. It is also less prone to
get stuck in local minima. Since, the XY Hamiltonian is particle
number conserving we further use only particle number conser-
ving gates. This reduces the number of parameters in W, as well as
minimizing the leakage out of the symmetry sector when the
circuit is executed with a noisy simulator. Additional details on this
adaptive learning method are provided in Supplementary Note 6.
The ansatz for D, as in our 2 qubit hardware implementation,
simply consisted of Rz rotations on each qubit.
The result of the training is shown in the inset of Fig. 4. The

noisy cost was measured by the noisy quantum simulator,
whereas the noise-free cost is calculated simultaneously but in
the absence of any noise. The significant separation between the

noisy and noise-free cost again demonstrates the noise resilience
of the VFF algorithm. After successfully training the cost, the fast-
forward performance was then evaluated. Using the same noise
model, the output density matrix of the Iterated-Trotter state and
the fast-forwarded state was compared against the Iterated-
Trotter state in the absence of noise, with the fidelity between the
two states plotted. As shown in Fig. 4, the fast-forwarded
evolution significantly out performs the Iterated-Trotter evolution,
with the former’s fidelity dropping below 0.8 after 700 timesteps,
compared to only 8 steps of the latter. Thus we achieved a fast
forwarding ratio of RFF0:2 ¼ 87:5.
Finally, to probe the scalability and the breadth of applicability

of the fsVFF algorithm we performed a larger (noiseless) numerical
implementation of the algorithm on the Fermi–Hubbard model.
Specifically, we considered the 1D Fermi–Hubbard Hamiltonian on

Fig. 4 Numerical Simulations. a Noisy Training and Fast-Forwarding
of the 4 qubit XY Hamiltonian. The inset shows the cost curve as the
ansatz is evolved and optimized to diagonalize the 4 qubit XY
Hamiltonian in the 5-dimensional subspace spanned by initial state
1100j i and its future evolution. The final circuit found by the
learning algorithm for the diagonalizing unitary, W, had 50 CNOT
gates. The main plot evaluates the fast-forwarding performance of
the trained ansatz, in comparison to the Iterated-Trotter evolved
state. The fidelity is calculated against the ideal state found in
simulation using the iterated Trotter method in the absence of
noise, FðNÞ ¼ ψðNÞh jρ ψðNÞj i with ψðNÞj i ¼ UðΔtÞN ψ0j i. The black
dotted line highlights a threshold value F= 0.8. The gray dotted line
at F= 1/24 represents the overlap with the maximally mixed state.
b Training and Fast-Forwarding of the 8 qubit Hubbard Model. The
inset shows the cost as it is iteratively minimized using an adaptive
ansatz. Various quality diagonalizations are indicated by the colored
circles. In the main figure, we plot the fidelity between the simulated
state and the exact evolution as a function of time. The red, green
and yellow lines denote fsVFF simulations using the corresponding
quality diagonalization shown in the inset. In blue we plot the
fidelity of the Iterated-Trotter simulation, FexactðTÞ ¼ ψðTÞh jρtrot ψðTÞj i
with ψðTÞj i ¼ e�iHT ψ0j i and ρtrot the simulated iterated Trotter state.

J. Gibbs et al.

6

npj Quantum Information (2022)   135 Published in partnership with The University of New South Wales



an L-site lattice with open boundary conditions:

HFH ¼ �J
PL�1

j¼1

P
σ¼";#

cyj;σcjþ1;σ þ h:c:

þU
PL
j¼1

nj;"nj;#:
(13)

Here, cj,σ (cyj;σ) denotes fermionic creation (annihilation)
operator at site j for each of the two spin states σ= ↑, ↓ and
nj;σ ¼ cyj;σcj;σ is a particle number operator. The total number of
fermions with a spin σ is given by Nσ = ∑jnj,σ. The term with
coefficient J in Eq. (13) represents a single-fermion nearest-
neighbor hopping and the term with coefficient U introduces
on-site repulsion. The Hamiltonian preserves particle numbers
N↑ and N↓.
In our numerical studies, we choose L= 4 (which requires 8

qubits to simulate) and J= 1, U= 2 as well as N↑= N↓= 2 (half
filling). The initial state is chosen to be a superposition of neig= 5
eigenvectors of HFH in the particle sector N↑= N↓= 2. Similar to
our noisy simulations of the XY model, we utilize an adaptive
ansatz for W that is made out of gates that preserve particle
number N↑ and N↓. The ansatz for D takes the form of Eq. (16),
where we only allow for single-Z terms in Eq. (17). For this
numerical result, we trained using the full exponentiation of the
Hamiltonian as the evolution operator, with no Trotter error.
In the inset of Fig. 4b we show the cost function as it is

iteratively minimized. We then test the performance on a noisy
simulator based upon a fully connected 8-qubit trapped-ion
device23. As shown in Fig. 4b, small final cost values typically
require deeper circuits to achieve, the optimum diagonalization to
use depends on the length of time one wishes to simulate. At
short times, a larger final cost function value performs better since
this corresponds to a shorter ansatz which experiences less noise.
However, to simulate longer times, a higher quality diagonaliza-
tion is required, with the additional noise induced by increased
circuit depth resulting in a relatively small decrease in fidelity. As
shown in Fig. 4b, we find that the fast forwarding corresponding
to an optimized cost of 1.1 × 10−5 maintained a fidelity of greater
than 0.8 for T < 800. In contrast, the iterated Trotter method drops
below 0.8 for T > 4.6 and hence we here achieve a fast forwarding
ratio of RFF0:2 ¼ 174.
To demonstrate the viability of the batched training method

outlined in Section “Randomized Training”, we diagonalized the 5

(6) qubit XY Hamiltonian with initial state 11100j ið 111000j iÞ,
which has an neig= 9(12). For both training curves shown in Fig. 5,
only 2 training states per cost function evaluation were used. In
both cases, we trained with the unitary U(t/6)6 where U was the
second order Trotter–Suzuki operator, and tmax ¼ 1. The cost was
successfully minimized to 10−5 in both cases, and a noiseless
simulation error of less than 10−2 was maintained for over 100
time steps on fast forwarding.
Compared to its predecessor VFF, the fsVFF algorithm halves

the width of circuits required to diagonalize an n-qubit
Trotterized unitary from 2n to n qubits. Additionally, fsVFF
does not need to generate the (potentially highly noise
inducing) 2n Bell pairs required by VFF. In particular, on a
device with limited connectivity this would require 2n non-
local CNOT gates and so potentially a large number of (hard-to-
implement) SWAP gates. These circuit simplifications all
contribute to making the fast-forwarding of Hamiltonians
more feasible on near-term quantum hardware.
Another less obvious but equally important advantage of fsVFF

over VFF is that it can utilize shallower diagonalizing circuits. Since
in fsVFF we only need to learn to reproduce the target unitary on
the neig dimension subspace explored by the initial state, there is a
larger set of possible diagonalizations that can be found. This is in
contrast to VFF which must reproduce the target on the full 2n

dimensional Hilbert space. Thus the set of solution unitaries for
fsVFF is much larger than VFF, greatly increasing the probability
that a good solution can be found using a short depth ansatz.
Shorter depth ansätze are both less resource intensive to
implement and easier to optimize. For example, if using a
gradient-based method, the number of cost evaluations to
evaluate the gradient scales with the number of parameters
(and so the depth) of the ansatz.
To demonstrate this advantage of fsVFF, we compare the

performance of both fsVFF and VFF to fast-forward the same
Hamiltonian, H ¼ P4

i¼1 XiXiþ1 þ YiYiþ1 þ 1
2 ZiZiþ1. For fsVFF the

initial state is chosen to be ψ0j i ¼ 10000j i. Both algorithms use
the same ansatz design with hardware-efficient layers composed
with particle number conserving gates. As shown in Fig. 6, with an
8 layer ansatz, fsVFF during training was able to achieve a CfsV
FF ≈ 10−6, which is shown in the inset of Fig. 6 to translate into a
successful fast forwarding of the initial state. In contrast, when

Fig. 5 Randomized Training. The 5 (6) qubit XY Hamiltonian with
initial state 11100j ið 111000j iÞ is diagonalized using the cost
function Eq. (10), using only 2 training states per cost function
evaluation to learn the evolution within the 9 (12) dimensional
subspace. The final circuit found by the learning algorithm for the
diagonalizing unitary, W, had 32 (134) CNOT gates. After completion
of the randomized training, the Hamiltonians were fast-forwarded,
with the fidelity evaluated in comparison to the noiseless Trotter-
iterated state UðΔtÞN ψ0j i as shown in the inset.

Fig. 6 fsVFF versus VFF training and fast forwarding. The 5-qubit
XXZ Hamiltonian H ¼ P4

i¼1 XiXiþ1 þ YiYiþ1 þ 1
2 ZiZiþ1 is diagonalized

using both fsVFF and VFF. Both algorithms use the same hardware
efficient layered ansatz and optimizer. For fsVFF the initial state is
ψ0j i ¼ 10000j i. The cost function as it is iteratively minimized using
fsVFF/VFF with various depth ansätze as indicated in the legend. The
inset shows the fast forwarded fidelity for the best diagonalizations
learnt by fsVFF and VFF respectively. Here, fsVFF was restricted to
only 8 layers and yet still dramatically outperforms VFF, even when
VFF is allowed a deeper circuit of 12 layers.
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using the same optimizer and layered ansatz, even after increasing
the depth of W to 12 layers, VFF is unable to find a successful
diagonalization, with the cost CVFF plateauing around 10−2. As
shown in the inset of Fig. 6, the corresponding diagonalization
was not able to simulate the Trotter evolution for any length of
time.
When performing fsVFF on too few training states, the cost

function CfsVFF may decrease arbitrarily small whilst not general-
izing outside of this training region. As the number of training
states is increased, a transition will occur at the point of sufficient
training states, where expectation values calculated with respect
to the fast-forwarded state converge to the exact value. The
Quantum No Free Lunch theorem28,29 implies that this transition
will occur at k= neig training states. This convergence provides a
method of implementing fsVFF without needing to pre-compute
neig.
This behavior is demonstrated in Fig. 7. Here we train on an

increasing number of training states, fUðΔtÞj ψ0j igkj¼1, for
k= 1, 2, 3, 4. For each of the 4 instances we trained down to CfsV
FF= 10−10 and use the saved ansätze to compute the expectation
of the Pauli operator Z2 as a function of time, which we compare
to the true value produced with the Iterated Trotter method. For
an insufficient number of training states CfsVFF can be made
arbitrarily small but this does not translate to an accurate
simulation outside the training region. The number of training
states needed can be inferred by noting the value of k such that
increasing k ceases to substantially change the fast forwarded
expectation values.
In this case, as shown in Fig. 7, we need k⩾ 3. Given that here

the initial state is ψ0j i ¼ 10000j i corresponding to neig= 5, this is
fewer states than predicted by the Quantum No-Free-Lunch
theorem. This discrepancy can perhaps be explained by the fact
that the overlap of ψ0j i with two of its eigenstates is small.
Specifically, we have ψ0j i ¼ P5

i¼1 αi Eij i with fjαij2g5i¼1 ¼
f0:33; 0:25; 0:25; 0:083; 0:083g such that the combined ampli-
tudes of two of the eigenvectors account for only 1/6th of the total
amplitude weight. Thus, these results suggest that the number of
training states required can be less than the number of
eigenvectors with a non-zero overlap with the initial state, as
long as these amplitudes are sufficiently small.

Energy estimation
The diagonalization obtained from the optimization stage of
fsVFF, WðθoptÞDðγopt;ΔtÞWðθoptÞy , implicitly contains approxima-
tions of the eigenvalues and eigenvectors of the Hamiltonian of
the system of interest. In this section we discuss methods for
extracting the energy eigenstates and eigenvalues from a
successful diagonalization and implement them on quantum
hardware.
The energy eigenvectors that the initial state ψ0j i overlaps can

be determined by the following simple sampling method. The first
step is to apply W† to the initial state ψ0j i. In the limit of perfect
learning and vanishing Trotter error, this gives

WðθoptÞy ψ0j i ¼
Xneig
k¼1

ak vkj i (14)

where ak=〈Ek∣ψ0〉 and f vkj igneigk¼1 is a set of computational basis
states. The energy eigenstates that the initial state ψ0j i overlaps
are then found by applying W(θopt) to any of the states obtained
from measuring WðθoptÞy ψ0j i in the computational basis, that is
f Ekj igneigk¼1 ¼ fWðθoptÞ vkj igneigk¼1.
Extracting the energy eigenvalues from D is more subtle. Firstly,

as WDW† and U, even in the limit of perfectly minimizing the cost
CfsVFF, may disagree by a global phase ϕ, at best we can hope to
learn the difference between, rather than absolute values, of the
energy eigenvalues of H. For simple cases, where the diagonal
ansatz D is composed of a polynomial number of terms, these
energy value differences may be extracted directly by rewriting D
in the computational basis. For example, in our hardware
implementation DðγÞ ¼ exp �i γΔtZ1

2

� �� 1 and therefore the dif-
ference in energy between the two eigenvalues that the state ψ0j i
has non-zero overlap with is given by γopt þ kπ

Δt. Here k is an integer
correcting for the arbitrary phase arising from taking the log of D
that can be determined using the method described in ref. 22.
Using this approach, we obtain 1.9995 and 2.0019 from the
training on IBM and Rigetti respectively, in good agreement with
the theoretically expected value of 2. For more complex cases, this
simple post-processing method will be become intractable and an
algorithmic approach will be necessary.
Quantum Phase Estimation (QPE)53 and Quantum Eigenvalue

Estimation (QEE)55 are fault tolerant quantum algorithms for
estimating the eigenvalues of a unitary operation. However, their
implementation on current quantum devices is limited by the
reliance on the execution of controlled unitaries from ancillary
qubits. These controlled unitaries require many entangling gates,
and introduce too much noise to be realized for large scale
systems on current hardware. Once an evolution operator has
been diagonalized in the subspace of an initial state, fsVFF can be
used to significantly reduce the circuit depth of QPE and QEE, as
shown in Fig. 8. In this manner, fsVFF provides a NISQ friendly
means of estimating the eigenvalues within a subspace of a
Hamiltonian.
To demonstrate the power of fsVFF to reduce the depth of QPE,

we perform QPE using the diagonalization obtained from training
on IBM’s quantum computer. Specifically, we consider the input
eigenvector E1j i :¼ 1ffiffi

2
p ð 01j i þ 10j iÞ. This is one of the eigenvec-

tors overlapped by the input state of our earlier hardware
implementation, ψ0j i ¼ 10j i. We then consider evolving E1j i
under HXY for a time step of Δt= 1/8. Since the energy of the state
E1j i equals 1, we expect this to result in a phase shift of e2πi/8

being applied to E1j i. We implemented QPE and fsVFF-enhanced
QPE to measure this phase using the circuits shown in Fig. 8. We
chose to measure to 3 bits of precision and therefore the output
should be the measurement 001 with probability one. As Fig. 9
shows, it appears that the standard QPE implementation was
unable to discern this phase. In contrast, when fsVFF was used to
reduce the circuit depth, the output distribution was strongly
peaked at the correct state.

Fig. 7 Observable Convergence for Increasing Training States.
The 5 qubit XY Hamiltonian is trained on an increasing number of
training states, for the initial state ψ0j i ¼ 10000j i. For each instance,
CfsVFF was trained down to 10−10 on k training states, then the fsVFF
ansätze V(NΔt)k=WD(Nγ)W† were used to fast-forward the initial
state. For the Pauli operator Z2, we plot the expectation value of
each fast-forwarded state. For k⩾ 3 the expectation exactly
reproduces the value produced by iterated Trotter evolved state,
shown by the black dotted line.
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VFF can also be used to enhance QPE. In Fig. 9 we compare the
effect of noise on fsVFF and VFF by implementing fsVFF and VFF
enhanced QPE. In both cases the optimization was performed
using the Qiskit "FakeVigo” noise model. During the training
routine, the lowest noise-free cost achieved by fsVFF and VFF
respectively were 3.56 × 10−5 and 3.63 × 10−6. For fsVFF, the
ansatz used was the same as in Fig. 3c; for VFF, the ansatz used for
W was a single Givens rotation, and D had an Rz gate on each

qubit. As shown in Fig. 9b, both algorithms were able to find the
correct phase applied with high probability. However, even
though VFF was able to achieve a lower noise free cost compared
to fsVFF, when QPE was performed fsVFF achieved a 40.1% lower
variation distance from the target probability distribution. Here,
the ansatz for W requires one CNOT for fsVFF compared to two
CNOTs in the VFF ansatz, however in the QPE execution we do not
need to apply W so we do not get a benefit from this circuit
reduction. The more significant effect here comes from the
simpler D ansatz, requiring only one Rz gate for fsVFF compared to
two Rz gate for VFF.
Quantum eigenvalue estimation (QEE) requires only one

ancillary qubit, a single implementation of e−iHt, and no Quantum
Fourier Transform and therefore is less resource intensive than
QPE. Nonetheless, we can again, as shown in Fig. 8, use fsVFF as a
pre-processing step to reduce the circuit depth.
We tested this on the 3-qubit XY Hamiltonian by first

performing fsVFF on a quantum simulator with the initial state
ψ0j i ¼ 110j i. Having obtained an approximate diagonalization, we
determined the eigenstates using the sampling method described
earlier. Figure 10a shows the results of the measurement of
WðθoptÞy ψ0j i, with four strong peaks corresponding to the four
eigenvectors in this subspace.
Figure 10 shows the results of QEE implemented on ibmq_boe-

blingen. We use the basis states found from the sampling method
as our inputs to reduce the depth of the circuit, and remove the
need to use the time-series method originally proposed for
extracting the eigenvalues, as we could calculate the eigenvalues
individually by inputting their corresponding eigenvectors. A
value of Δt= 1 was used so the phase calculated directly matched
the eigenvalue. After removing a global phase, QEE had accurately
found the eigenvalues of the four eigenvectors, with a mean-
squared error from the true values of 4.37 × 10−3.

DISCUSSION
In this work, we demonstrated that despite the modest size and
noise levels of the quantum hardware that is currently available, it
is possible to perform long time dynamical simulations with a high
fidelity. Specifically, we have introduced fsVFF, an algorithm for
NISQ simulations, which we used to simulate a 2-qubit XY-model
spin chain on the Rigetti and IBM quantum computers. We
achieved a fidelity of at least 0.9 for over 600 time steps. This is a
150-fold improvement on the standard iterated Trotter approach,
which had a fidelity of less than 0.9 after only 4 time steps.
Moreover, our numerical simulations of the 4 qubit XY model and
8 qubit Fermi–Hubbard model achieved fast-forwarding ratios of
87.5 and 174 respectively, indicating the viability of larger
implementations in the near future as hardware improves.
Central to the success of the fsVFF algorithm is the fact that it is

tailored to simulating a particular fixed initial state rather than an
arbitrary initial state. By sacrificing generality and focusing on this
less demanding task, we showed that it is possible to substantially

Fig. 9 Quantum Phase Estimation. a Hardware Implementation.
Using the 2-qubit diagonalization found from training on ibmq_tor-
onto, QPE was performed on ibmq_boeblingen on the eigenvector
E1j i :¼ 1ffiffi

2
p ð 01j i þ 10j iÞ. A phase of e

2πi
8 is applied, so the measured

output should be 001 with probability 1. The variation distance from
the target probability distribution when using fsVFF-enhanced QPE
was 0.578, compared to 0.917 using standard QPE. b Noisy
Simulation comparing fsVFF and VFF. A noisy simulation of both
VFF-enhanced and fsVFF-enhanced QPE is performed and com-
pared. The same eigenvector and phase is applied as in a). The
variation distance from the target probability distribution when
using fsVFF-enhanced QPE was 0.233, compared to 0.394 using VFF-
enhanced QPE.

Fig. 8 Energy estimation circuits. a and b show circuit diagrams depicting the enhancement of QPE/QEE using fsVFF. A circuit depth
reduction is achieved through replacing U(Δt) with D(γopt,Δt), and removing the need to prepare an eigenstate in favor of a computational

basis state, vkj i ¼ Wy Ekj i. QPE relies on implementing controlled unitaries of the form UðΔtÞ2j and therefore replacing these with D(γopt, 2jΔt)
results in an exponential reduction in circuit depth.
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reduce the algorithmic resources as compared to the previously
proposed VFF algorithm. In particular, fsVFF only requires finding a
diagonalization of a short-time evolution unitary on the subspace
spanned by the eigenstates of the Hamiltonian with non-zero
overlap with the initial state. When this subspace is much smaller
than the total Hilbert space, fsVFF can utilize much simpler ansätze
than VFF, which requires finding a diagonalization over the entire
Hilbert space. This is demonstrated in Fig. 6 where an 8 layered
number-preserving hardware efficient ansatz proved sufficient to
diagonalize the XXZ Hamiltonian for the initial state 10000j i but
12 layers was insufficient to find a full diagonalization using VFF.
Additionally, the fsVFF algorithm requires only n qubits rather than
the 2n qubits needed by VFF, thus opening up larger implementa-
tions on smaller devices.
The complexity of the fsVFF algorithm is determined by neig, the

dimension of the subspace the diagonalization needs to be learnt
on. This determines the amount of training data and depth of
circuits required for training, as well as the complexity of the
diagonalization ansätze. However, we stress that this limits the
generality of the algorithm (i.e., the set of initial states it can be
used to simulate) but not its scalability (the size of system it can be
applied to). Moreover, to mitigate these limitations of the fsVFF

algorithm, one could investigate using error mitigation methods
to manage the added noise associated with larger neig. It would
also be worth developing problem inspired ansätze, utilizing the
symmetry properties of the target system, to reduce the scaling of
the complexity of the ansatz.
The fsVFF algorithm, similarly to VFF, is fundamentally limited

by the initial Trotter error approximating the short time evolution
of the system. The Variational Diagonalization Hamiltonian (VHD)
algorithm22 may be used to remove this error. However, like VFF,
VHD is designed to simulate any possible initial state. There are a
number of different approaches inspired by fsVFF that could be
explored for reducing the resource requirements of the VHD
algorithm by focusing on simulating a particular initial state. Such
a "fixed state VHD” algorithm would allow for more accurate long
time simulations on NISQ hardware.
More generally, our work highlights the trade off between the

universality of an algorithm and the resources required to
implement it. One can imagine a number of alternative ways in
which the universality of an algorithm can be sacrificed, without
significantly reducing its utility, in order to make it more NISQ
friendly. For example, one is often interested in studying the
evolution of a particular observable of interest, rather than all
possible observables. It would be interesting to investigate
whether a fixed-observable fsVFF could further reduce the
resources required to implement long time high fidelity simula-
tions. More broadly, an awareness of this trade off may prove
useful beyond dynamical simulation for the ongoing challenge of
adapting quantum algorithms to the constraints of NISQ
hardware.

METHODS
Ansatz
The fsVFF algorithm, similarly to VFF, employs an ansatz of the
form

Vðα;ΔtÞ ¼ WðθÞDðγ;ΔtÞWyðθÞ; (15)

to diagonalize the initial Trotter unitary U(Δt). Here W(θ) is a
quantum circuit that approximately rotates the standard basis into
the eigenbasis of H, and D(γ) is a diagonal unitary that captures
the (exponentiated) eigenvalues of H. A generic diagonal operator
D can be written in the form

Dðγ;ΔtÞ ¼
Y

q
eiγqZ

qΔt; (16)

where γq 2 R and we use the notation

Zq ¼ Zq1
1 � � � � � Zqn

n ; (17)

with Zj the Pauli Z operator acting on qubit j. While Eq. (16)
provides a general expression for a diagonal unitary, for practical
ansätze it may be desirable to assume that the Zq operators are
local operators and the product contains a polynomial number of
terms, i.e., is in OðpolyðnÞÞ. There is more flexibility in the
construction of the ansätze for W since these are generic unitary
operations. A natural choice might be to use a hardware-efficient
ansatz56 or an adaptive ansatz13,54.
One of the main advantages of fsVFF is that diagonalization is

only necessary over the subspace spanned by the initial state and
its future evolution, rather than the entire Hilbert space which will
be significantly larger. To outperform standard VFF, it is in our
interest to take advantage of this small subspace to find compact
ansätze.
The two main impeding factors we wish to minimize to aid

diagonalization are error rates and optimization time. Therefore,
when searching for ansätze, our priorities are to minimize the
number of CNOT gates required (the noisiest component in the
ansätze) and the number of rotation parameters. There is,
however, a trade off between expressibility of the ansatz and its

Fig. 10 Eigenvalue Estimation. a Determining the eigenstates
overlapped by the initial state: The 3-qubit XY Hamiltonian was
diagonalized on a quantum simulator in the subspace of initial state
ψ0j i ¼ 110j i to obtain θopt and γopt. Here we show the output of
measuring WðθoptÞy ψ0j i in the computational basis on ibmq_boe-
blingen. The 4 non-zero states correspond to the 4 eigenvectors
overlapped by ψ0j i. b Eigenvalue Estimation using QEE. Here we
show the result of implementing QEE (using fsVFF as a pre-
processing step) on ibmq_santiago to calculate the eigenvalues of
the eigenvectors in the subspace overlapped by 011j i. The solid
yellow, red, blue and green lines represent the eigenvalues obtained
for the 000j i, 001j i, 100j i and 101j i states, with exact corresponding
energies of {−2.828, 0, 0, 2.828}, indicated by the dotted lines. The
eigenvalues are plotted as phases since for Δt= 1 there is a one to
one correspondence.
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trainability. There needs to be enough freedom in the unitary to
map the required eigenvectors to the computational basis but
generically highly expressive ansätze exhibit barren plateaus33.
For systems with symmetries and/or systems that are nearby

perturbations of known diagonalizable systems, it may be possible
to find a fully expressive, compact ansatz by inspection. This is the
case for a simple 2-qubit XY Hamiltonian, as discussed in Section
“Hardware implementation”.
More generally, it can be challenging to analytically find

compact but sufficiently expressible ansätze. Nonetheless, it is
possible to variationally update the ansatz structure and thereby
systematically discover simple structures. One straightforward
approach is to use a layered ansatz where each layer initializes to
the identity gate57,58. The ansatz can be optimized until it
plateaus, redundant single qubit gates removed, then another
layer can be appended and the process repeats. Alternatively,
more sophisticated discrete optimization techniques may be used
to variationally search the space of ansätze.

Gradient formulae
Gradient-based optimizers were used to produce the numerical
results, as these have been shown to improve the convergence of
variational quantum algorithms59, and the gradient can be
evaluated using the same depth circuit as the cost function via
the parameter shift rule60.
The fsVFF ansatz is defined in Eq. (1), and for convenience we

define CfsVFF≔ CfsVFF(U,WDW†). The parameter shifted operator Vl
+ (Vl−) is generated from the original operator V(θ) by the addition
of an extra π

2 (� π
2) rotation about a given parameter’s rotation axis:

Vl ± :¼ V θl ±ð Þwithðθl ± Þi :¼ ðθlÞi ±
π

2
δi;l : (18)

The partial derivative of CfsVFF with respect to parameter θl in the
diagonalizing unitary W(θ) is given by

∂CfsVFF
∂θl

¼ 1
2 CfsVFFðU;WlþDWyÞ�
� CfsVFFðU;Wl�DWyÞ
þ CfsVFFðU;WDðWlþÞyÞ
� CfsVFFðU;WDðWl�ÞyÞ

�
(19)

The partial derivative of CfsVFF with respect to parameter γl in
the diagonal unitary D(γ) is given by

∂CfsVFF
∂γl

¼ 1
neig

Pneig
k¼1

k
2 CðkÞ

fsVFF U;WDlþWy� ��

� CðkÞ
fsVFF U;WDl�Wy� �� (20)

where

CðkÞ
fsVFF :¼ 1� j ψ0h jWDkWyUk ψ0j ij2 (21)

The derivation for these formulae is provided in Supplementary
material.
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