
ARTICLE OPEN

A (quasi-)polynomial time heuristic algorithm for synthesizing
T-depth optimal circuits
Vlad Gheorghiu1,2, Michele Mosca1,2,3,4 and Priyanka Mukhopadhyay 1,3✉

We investigate the problem of synthesizing T-depth optimal quantum circuits for exactly implementable unitaries over the Clifford
+T gate set. We construct a subset,Vn, of T-depth 1 unitaries. T-depth-optimal decomposition of unitary U is eiϕ

Q
iV i

� �
C, Vi 2 Vn, C

is Clifford and jVnj � n � 25:6n. We use nested meet-in-the-middle technique to synthesize provably depth-optimal and T-depth-

optimal circuits. For the latter, we achieve space and time complexity Oðð4n2Þdd=ceÞ and Oðð4n2Þðc�1Þdd=ceÞ respectively (d is the

minimum T-depth, c ≥ 2 a constant). The previous best algorithm had complexity Oðð3n � 2kn2Þd
d
2e � 2kn2Þ(k > 2.5 a constant). We

design a more efficient algorithm with space and time complexity poly(n, 25.6n, d) (or polyðnlog n; 25:6n; dÞ with weaker assumptions).
The claimed efficiency, optimality depends on conjectures.

npj Quantum Information (2022) 8:110 ; https://doi.org/10.1038/s41534-022-00624-1

INTRODUCTION
The notion of a quantum computer was introduced by Feynman1 as
a solution to the limitations of conventional or classical computers. In
numerous fields algorithms designed for quantum computers
outperform their classical counterparts. Some examples include
integer factorization2,3, searching an unstructured solution space4.
One of the most widely used methods for describing and
implementing quantum algorithms is quantum circuits, which consist
of a series of elementary operations dictated by the implementing
technologies.
Circuit synthesis and optimization is a significant part of any

computer compilation process whose primary goal is to
translate from a human-readable input (programming lan-
guage) into instructions that can be executed directly on
hardware. In quantum circuit synthesis, the aim is to decom-
pose an arbitrary unitary operation into a sequence of gates
from a universal set, which usually consists of Clifford group
gates and at least one more non-Clifford gate5. The non-Clifford
gates are more expensive to implement fault-tolerantly than
Clifford gates. A popular universal fault-tolerant gate set is the
Clifford+T, in which the cost of fault-tolerant implementation of
the T gate6–8 exceeds the cost of the Clifford group gates by as
much as a factor of a hundred or more in most error correction
schemes. Fault-tolerant designs and quantum error correction
are essential in order to deal with errors due to noise in
quantum information, faulty quantum gates, faulty quantum
state preparation, and faulty measurements. In particular, for
long computations, where the number of operations in the
computation vastly exceeds the number of operations one
could hope to execute before errors make negligible the
likelihood of obtaining a useful answer, fault-tolerant quantum
error correction is the only known way to reliably implement
the computation. With recent advances in quantum information
processing technologies9–12 and fault-tolerant thresholds7,13,14,
as scalable quantum computation is becoming more and more

viable we need efficient automated design tools targeting fault-
tolerant quantum computers. And minimization of the number
of T gates in quantum circuits remains an important and widely
studied goal. It has been argued15–19 that it is also important to
reduce the maximum number of T gates in any circuit path.
While the former metric is referred to as the T-count, the latter
is called the T-depth of the circuit.
An n-qubit quantum circuit consisting of Clifford+T gates

implements a 2n × 2n unitary. In the context of reducing
resources (such as T gates) necessary to implement a unitary
U, two types of problems have been investigated—(a) synthesis
and (b) re-synthesis. The input to an algorithm for a quantum
circuit synthesis problem is a 2n × 2n unitary matrix and the goal
is to output a circuit implementing it20,21. When we impose
additional constraints like minimizing certain resources such as
T-count or T-depth16, we often call this as (resource)-optimal
synthesis problem. From here on, we focus on the T-depth as
the resource being minimized. To be more precise, there can be
more than one (equivalent) circuits implementing U. A T-depth-
optimal synthesis algorithm is required to output a circuit with
the minimum T-depth. We call this a T-depth-optimal circuit.
With a slight abuse of terminology, we use the terms ’synthesis
algorithm’ and 'T-depth optimal synthesis algorithm’ inter-
changeably, which should be clear from the context. It must be
observed that with the addition of this tighter constraint on the
output (i.e. that it be T-depth optimal), there is a probability
that the complexity of the problems change. For example, it
was known that a quantum circuit can be synthesized in
poly(2n) time, where 2n is the input size20,22. The work in ref. 23

was the first to propose a poly(2n) time algorithm for
synthesizing T-count-optimal circuits.
With an input size O(2n), we cannot hope to get an optimal

synthesis algorithm with a complexity of less than that. This makes
these algorithms practically intractable after a certain value of n.
Hence re-synthesis algorithms have been developed, where some

1Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada. 2softwareQ Inc., Kitchener, ON, Canada. 3Department of Combinatorics and Optimization,
University of Waterloo, Waterloo, ON, Canada. 4Perimeter Institute for Theoretical Physics, Waterloo, ON, Canada. ✉email: mukhopadhyay.priyanka@gmail.com

www.nature.com/npjqi

Published in partnership with The University of New South Wales

1
2
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41534-022-00624-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41534-022-00624-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41534-022-00624-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41534-022-00624-1&domain=pdf
http://orcid.org/0000-0001-6463-9100
http://orcid.org/0000-0001-6463-9100
http://orcid.org/0000-0001-6463-9100
http://orcid.org/0000-0001-6463-9100
http://orcid.org/0000-0001-6463-9100
https://doi.org/10.1038/s41534-022-00624-1
mailto:mukhopadhyay.priyanka@gmail.com
www.nature.com/npjqi

more information is provided as input, usually a circuit implementing
U17,24 and the task is to reduce (not minimize) the T-depth in the
input circuit. In the literature, nearly every re-synthesis algorithm
(usually with complexity poly(n)) does not account for the complexity
of generating the initial input circuit from U. This step itself has
complexity O(2n). A full study comparing these two kinds of
algorithms and the quality of their results is beyond the scope of
this work.
Despite their higher complexity compared to re-synthesis

algorithms, the importance of studying optimal synthesis
algorithms cannot be undermined. They can be used to assess
the quality of a re-synthesis algorithm, for example, how close
are their output to an optimal one. They can be used to
generate the input circuit of a re-synthesis algorithm. A large
circuit can be fragmented and the unitary of each part can be
synthesized optimally, giving an overall reduction in resources.
From a theoretical viewpoint, they shed light on the complexity
of problems that are usually harder than their relaxed re-
synthesis counterpart. As an illustration of the significance of
developing resource-optimal synthesis algorithms, we observe
the following. In our paper, we have been able to generate T-
depth-optimal circuits for standard unitaries like Toffoli,
Fredkin, Peres, and Quantum OR, which were not generated
by the re-synthesis methods used in ref. 16. Though this has a T-
depth-optimal synthesis algorithm, it could not synthesize
beyond 2-qubit unitaries with T-depth 2. For larger unitaries like
the mentioned 3-qubit ones, it used peep-hole optimization, a
popular re-synthesis method. Except for Toffoli, they obtained
T-depth 4, even for unitaries that are Clifford equivalent to
Toffoli. The approach in this paper has significantly lower
complexity than the synthesis method in ref. 16 and is able to
synthesize T-depth 3 circuits.
The Solovay–Kitaev algorithm20,25 guarantees that given a

unitary U, we can generate a circuit with a universal gate set like
Clifford+ T, such that the unitary U0 implemented by the circuit
is at most a certain distance from U (the distance being induced
by some appropriate norm). In fact, it has been proved that we
can get a Clifford+ T circuit that exactly implements U, i.e. U0 ¼
U (up to some global phase) if and only if the entries of U are in

ring Z i; 1ffiffi
2
p

h i
21. We denote this group of unitaries by J n. For

example, the Toffoli and Fredkin gates belong to J 3. Thus
quantum synthesis algorithms can be further subdivided into
two categories: (a) exact synthesis algorithms, that output a
circuit implementing U0 ¼ U (e.g. refs. 23,26) and (b) approximate
synthesis algorithms, that output a circuit implementing U0 such
that U0 is close to U (e.g. ref. 27).
In this paper we focus on the group J n of unitaries that can

be exactly synthesized and consider the following synthesis
problem.

MIN T-DEPTH
Given U 2 J n synthesize a T-depth optimal circuit for it. In the
decision version of this problem we are given U 2 J n and
m 2N, and the goal is to decide if the minimum T-depth of U is
at most m.
We consider the complexity of our exact synthesis algorithms as

a function of m and N= 2n. We treat arithmetic operations on the
entries of U at unit cost, and we do not account for the bit
complexity associated with specifying or manipulating them.
We first show (in the section “Methods”) that the nested meet-

in-the-middle (MITM) technique developed in ref. 23 can be
applied to the problem of synthesizing provably depth-optimal
circuits. This gives us a depth-optimal-synthesis algorithm with

time complexity OðjVn;Gjðc�1Þd
d0
c eÞ and space complexity

OðjVn;Gjd
d0
c eÞ, where Vn;G is the set of depth-1 n-qubit unitaries

over the gate set G, d0 is the min-depth of input unitary, and c ≥ 2
is the extent of nesting. This gives us a space–time trade-off for
MITM-related techniques applied to this problem.
Next, we apply this technique to synthesize T-depth optimal

circuits. We work with channel representation of unitaries. We
define a special subset, Vn, of T-depth-1 unitaries, which can
generate a T-depth-optimal decomposition of any exactly
implementable unitary (up to some Clifford). We prove
jVnj 2 Oðn � 25:6nÞ. Then we give an algorithm that returns
provably T-depth-optimal circuits and has time and space

complexity Oðð4n2Þðc�1Þd
d
ceÞ and Oðð4n2Þd

d
ceÞ, respectively, where d

is the min-T-depth of input unitary. This is much less than the
complexity of the algorithm in ref. 16. It had a complexity

Oð 3n Cnj jð Þd
d
2e � jCnjÞ, where Cn is the set of n-qubit Clifford

operators. jCnj 2 Oð2kn2Þ28–30, for some constant k > 2.5. In ref. 16

the authors iteratively used Cn, as indicated by the stated
complexity. It took more than 4 days to generate C316. In fact, in
ref. 16 the largest circuit optimally synthesized had 2 qubits and
had T-depth 2. We use much smaller sets, which has cardinality
Oð4n2Þ and can be derived from Vn. We can generate V3 in a few
seconds (Table 1). This gives a (rough) indication of the
computational advantage one can have if algorithms are designed
with such smaller sets, and thus the motivation to come up with
alternate representations.
To improve the efficiency further, we develop another

algorithm, MIN-T-DEPTH, whose complexity depends on some
conjectures that have been motivated by the polynomial
complexity algorithm in ref. 23 for synthesizing T-count optimal
circuits. At this point, our conjectures do not seem to be derived
from the ones in ref. 23. If our assumptions are true, then this
algorithm returns T-depth-optimal circuits with space and time
complexity poly(n, 25.6n, d). Under a weaker assumption, this
complexity is polyðnlog n; d; 25:6nÞ.
Apart from T-depth-optimal circuit synthesis algorithms for

exactly implementable unitaries, the generating set Vn, has found
other applications like optimal synthesis algorithms for approxi-
mately implementable unitaries31.
The technique of meet-in-the-middle (MITM) and its variant

(nested MITM) was used for the exact synthesis of provably
T-count optimal circuits in refs. 23,26 as well as provably depth
optimal circuits in ref. 16. This MITM technique has also been used
with deterministic walks in ref. 32 to construct a parallel framework
for the synthesis of T-count optimal circuits. The time as well as
space complexity of the algorithms in refs. 26,32 is O 2nð Þmð Þ where
m is the T-count of the 2n × 2n input unitary. (The T-count of a
unitary is the minimum number of T gates required to implement
it.) The time and space complexity of the algorithm in ref. 16 is

Oðð3n � 2kn2Þd
d
2e � 2kn2Þ, where k is a constant and d is the min-T-

depth. The first T-count-optimal synthesis algorithm which
reduces the complexity to poly(2n,m), assuming some conjectures,
was given in ref. 23.

Table 1. Comparison of generation time of Vn and Cn.

#Qubits (n) Vnj j Generation
time (s)

Cnj j Generation
time18

2 122 0.015 ≈11,520 1 s

3 2282 2.212 ≈92, 897, 280 >4 days

4 35,846 10min 24 s N/A N/A

V. Gheorghiu et al.

2

npj Quantum Information (2022) 110 Published in partnership with The University of New South Wales

1
2
3
4
5
6
7
8
9
0
()
:,;

RESULTS AND DISCUSSION
Preliminaries
We write [K]= {1, 2,…, K}. We assume that a set has distinct
elements. We denote the n × n identity matrix by In or I if the
dimension is clear from the context. The size of an n-qubit unitary
is denoted by N= 2n. We call the number of non-zero entries in a
matrix as its Hamming weight.
The single qubit Pauli matrices are as follows:

X ¼
0 1

1 0

� �
Y ¼

0 �i
i 0

� �
Z ¼

1 0

0 �1

� �
Parenthesized subscripts are used to indicate qubits on which an
operator acts. For example, Xð1Þ ¼ X� I�ðn�1Þ implies that Pauli X
matrix acts on the first qubit and the remaining qubits are
unchanged.
The n-qubit Pauli operators are: Pn ¼ fQ1 � Q2 � ¼ � Qn :

Qi 2 fI;X; Y; Zgg:
The single-qubit Clifford group C1 is generated by the Hadamard

and phase gates: C1 ¼ H; Sh iwhere

H ¼ 1ffiffi
2
p

1 1

1 �1

� �
S ¼

1 0

0 i

� �
When n > 1 the n-qubit Clifford group Cn is generated by these
two gates (acting on any of the n qubits) along with the two-
qubit CNOT ¼ 0j i 0h j � Iþ 1j i 1h j � X gate (acting on any pair of
qubits). Cliffords map Paulis to Paulis, up to a possible phase of
−1, i.e. for any P 2 Pn and any C 2 Cn we have CPCy ¼ ð�1ÞbP0
for some b ∈ {0, 1} and P0 2 Pn. In fact, given two Paulis (neither
equal to the identity), it is always possible to efficiently find a
Clifford which maps one to the other.
Fact 2.1 (Gosset et al.26) For any P, P′ ∈ Pn\{I} there exists a

Clifford C ∈ Cn such that CPC†= P′. A circuit for C over the gate set
{H, S, CNOT} can be computed efficiently (as a function of n).
The group J n is generated by the n-qubit Clifford group along

with the T gate. Thus

J 1 ¼ H; Th i and J n ¼ HðiÞ; TðiÞ;CNOTði;jÞ : i; j 2 ½n�
� �

It can be easily verified that J n is a group, since the H and CNOT
gates are their own inverses and T−1= T7. We denote the group of
unitaries exactly synthesized over the Clifford+ T gate set by J n.
Some elements of this group cannot be exactly synthesized over
this gate set without ancilla qubits21.

Channel representations
An n-qubit unitary U can be completely determined by consider-
ing its action on a Pauli Ps 2 Pn : UPsU†. Since Pn is a basis for the
space of all Hermitian N × N matrices we can write

UPsU
y ¼

X
Pr2Pn

bUrsPr ; where bUrs ¼
1
2n

TrðPrUPsUyÞ: (1)

This defines a N2 × N2 matrix bU with rows and columns indexed
by Paulis Pr ; Ps 2 Pn. We refer to bU as the channel representa-
tion of U26.
By Hermitian conjugation each entry of the matrix bU is real. The

channel representation respects matrix multiplication, i.e. cUV ¼ bUbV .
Setting V= U† and using the fact that bUy ¼ bU	
y

, we see that the

channel representation bU is unitary. If U 2 J n, implying its entries

are in the ringZ i; 1ffiffi
2
p

h i
21, then from Eq. (1) the entries of bU are in the

same ring. Since bU is real, its entries are from the subring

Z
1ffiffiffi
2
p
� �

¼ aþ b
ffiffiffi
2
pffiffiffi

2
p k : a; b 2 Z; k 2N

()

The channel representation identifies unitaries that differ by a
global phase. We write the following for the groups in which
global phases are modded out.cJ n ¼ bU : U 2 J n

n o
; bCn ¼ bC : C 2 Cn

n o
Each Q 2 bCn is a unitary matrix with one nonzero entry in each
row and each column, equal to ± 1. This is because Cliffords
map Paulis to Paulis up to a possible phase of −1. The converse
also holds: if W 2 cJ n has this property then W 2 bCn. Since the
definition of T-count is insensitive to the global phase, it is
well-defined in the channel representation and so T ðbUÞ is
defined to be equal to T ðUÞ. If a unitary U requires ancilla to be
implemented, then we can consider the unitary that acts on
the joint state space of input and ancilla qubits. From here on,
with a slight abuse of notation when we write U 2 J n we
assume it is the unitary that acts on this joint state space.

Definition 2.1. For any non-zero v 2 Z 1ffiffi
2
p
h i

the smallest
denominator exponent, denoted by sde(v), is the smallest k 2N
for which

v ¼ aþ b
ffiffiffi
2
pffiffiffi

2
p k with a; b 2 Z:

We define sde(0)= 0. For a d1 × d2 matrix M with entries over this
ring we define

sdeðMÞ ¼ max
a2½d1�;b2½d2�

sdeðMabÞ

T-depth
The purpose of this section is to derive a generating set
consisting of T-depth 1 unitaries, such that we can write a T-
depth-optimal decomposition of any exactly implementable
unitary (up to global phase) as a product of elements of this set
and a trailing Clifford. This set must be efficiently generated
and have a finite cardinality. We first give some essential
definitions.

Definition 2.2. The depth of a circuit is the length of any critical
path through the circuit. Representing a circuit as a directed
acyclic graph with nodes corresponding to the circuit’s gates and
edges corresponding to gate inputs/outputs, a critical path is a
path of maximum length flowing from an input of the circuit to an
output.
In other words, suppose the unitary U implemented by a circuit

is written as a product U= UmUm−1…U1 such that each Ui can be
implemented by a circuit in which all the gates can act in parallel
or simultaneously. We say Ui has depth 1 and m is the depth of
the circuit. We often refer to each Ui as a stage or (parallel) block.
The T-depth of a circuit is the number of stages (or unitaries Ui)
where the T/T† gate is the only non-Clifford gate and all the T/T†

gates can act in parallel. The min-T-depth or T-depth of a unitary
U is the minimum T-depth of a Clifford+ T circuit that
implements it (up to a global phase). We often simply say
T-depth instead of 'T-depth of a unitary’. It should be clear from
the context.
Any unitary U, having a circuit with T-depth t can be written as

follows:

U ¼ Ct T ð1Þ¼ T ðnÞ
� �

Ct�1 T ð1Þ¼ T ðnÞ
� �

¼C1 T ð1Þ¼ T ðnÞ
� �

C0 (2)

In the above equation T 2 fT; Ty; Ig is used to indicate whether
there is T, T† or I gate in that qubit. C1; C2; C3 ¼Ct 2 Cn. For
simplicity we ignore the global phase. We can also write the above

V. Gheorghiu et al.

3

Published in partnership with The University of New South Wales npj Quantum Information (2022) 110

equation as follows:

U ¼ Ct
Q
i2½n�

T ðiÞ

 !
Cyt

 !
CtCt�1

Q
i2½n�

T ðiÞ

 !
ðCtCt�1Þy

 !
¼

¼ CtCt�1 ¼C1
Q
i2½n�

T ðiÞ

 !
ðCtCt�1 ¼ C1Þy

 !
CtCt�1 ¼C1C0

¼ Ct
Q
i2½n�

T ðiÞ

 !
Cyt

 !
C0t�1

Q
i2½n�

T ðiÞ

 !
ðC0t�1Þ

y
 !

¼ C01
Q
i2½n�

T ðiÞ

 !
ðC01Þ

y
 !

C00

½whereC01; ¼ C0t 2 Cn�

¼ VtVt�1 ¼ V1C00 where Vj ¼ C0j
Q
i2½n�

T ðiÞ

 !
ðC0jÞ

y
 !

(3)

We call each Vj as a (parallel) block. It is a product of T or T† gates
on distinct qubits, conjugated by a Clifford. Thus the following set

V0n ¼ f
Y
i2½n�

CT ðiÞC
y; C 2 Cn; T 2 fT ; T y; Igg (4)

can be regarded as a generating set (up to a Clifford) for the
decomposition of an exactly implementable unitary. More
precisely, any exactly implementable unitary U (ignoring the
global phase) can be written as a product of elements from this
set and a Clifford. The number of elements from Vn is equal to the
T-depth of this decomposition or circuit. Any decomposition of U
with the minimum number of parallel blocks is called a T-depth-
optimal decomposition. A circuit implementing U with the
minimum T-depth is called a T-depth-optimal circuit.
We can equivalently write each Vj as follows:

Vj ¼
Y
i2½n�

C0j T ðiÞC
0y
j

	

(5)

Now if C 2 Cn then

CT ðiÞC
y ¼ 1

2 ð1þ e
iπ
4 ÞIþ 1

2 ð1� e
iπ
4 ÞCZðiÞCy ¼ 1

2 ð1þ e
iπ
4 ÞIþ 1

2 ð1� e
iπ
4 ÞP ½P 2 ±Pn�

¼ RðPÞ ½Let�
(6)

The R(P) unitaries and somewhat similar unitaries called Pauli
gadgets have been studied extensively in previous works like
refs. 26,33. We believe that the conclusions derived in this paper
will enhance the study of these gadgets or special unitaries, such
that we can have more applications (for example, see ref. 31).
Also RðPÞð Þy ¼ CTyðiÞC

y ¼ RyðPÞ (let). Thus we can write Eq. (5) as
follows:

Vj ¼
Y
i2½n�

C0j T ðiÞC
0y
j

	

¼
Y1
i¼n

eRðPijÞ ½eR 2 fR; Ryg;eRðIÞ ¼ I; Pij 2 ±Pn�

(7)

The second subscript of Pij gives the index of the block. The
ordering of the intermediate T/T† gates does not matter. It merely
changes the sequence of eRðPijÞ, but we get the same product Vj.
Given a set S of qubits there are 3∣S∣ possible ways of placing a
T=Ty=I gate in each qubit. We call each such placement as a
configuration of T gates and denote it by TS.
From Eq. (7) we get a simple way of constructing V0n.

1. For each C 2 Cn do the following.

(a) For each configuration T ½n� do the following.
i. V I.
ii. For each i∈ [n] do the following.

If T ðiÞ ≠ I then determine P= CZ(i)C†. If T ¼ T then
V← V ⋅ R(P), else if T ¼ Ty then V← V ⋅ R†(P).

iii. Include V in V0n if it does not already exist.

The time complexity of this procedure is O jCnjð Þ or Oð2kn2Þ, where
k is a constant. A bound on jV0nj can be obtained by counting all

possible distinct n-length strings of eRðPÞ, where eR 2 fR; Ryg and
P 2 ±Pn. Without loss of generality we can assume that every
string or sequence is of length n, by filling in RðIÞ ¼ RyðIÞ ¼ I. Thus
it gives jV0nj< 2 � 2 � 4nð Þn ¼ 4nþn

2
. From ref. 26 we know that there

are at most 4n
2 � jCnj unitaries (up to global phase) with T-count n.

So it is highly plausible that jV0nj 2 Oð4n2Þ.
Every n-length string of eRðPÞ does not have T-depth 1. We are

over-counting a lot here. Our aim is to construct a more compact
(smaller) set of T-depth 1 unitaries such that it is possible to write any
T-depth 1 unitary as product of unitaries from this set and a Clifford.
This is sufficient because it will enable us to write any T-depth-d
decomposition (and hence T-depth-optimal decomposition) of a
unitary as product of elements from this set and a Clifford (up to
global phase). In this way, we can use information from a set of less
number of unitaries in order to make more intelligent guesses about
a T-depth-optimal decomposition (specially algorithm MIN-T-DEPTH).
We would want to prune many Cliffords to be considered at step 1.
Here we make the following observation. There are 2Oðn

2Þ

Clifford operators that can map Z(i) to a particular Pauli P 2 Pn. All
of them lead to the same unitary R(P). Similarly, there are many
Cliffords such that when ∏iZ(i) (where the Zs are on different
qubits) is conjugated it leads to the same sequence of Paulis
(ordering does not matter) i.e. it will give the same unitary ∏iR(Pi).
So for our purpose, what is more important are the mappings or
rather images of mappings, and not the Clifford operators. If
CPC†= P, we call it a trivial conjugation, for any P 2 Pn; C 2 Cn. P,
in this case, is trivially conjugated by C.
We now construct a smaller generating set, Vn. We consider eacheRðPÞ as the starting unit of a string and then determine the remaining

n−1 units. A formal constructive definition of Vn is as follows.

Definition 2.3. We define Vn, a subset of n-qubit unitaries with
T-depth 1, that is constructed as follows.

1. Include eRðZðiÞÞ (i∈ [n]) in Vn.

2. For each P 2 ±PnnfIg, for each q ∈ [n] and for each eR 2
fR; Ryg do the following.

(a) For each Clifford C such that P= CZ(q)C†. (If P= Z(q), we
will skip this iteration for Z(q). We will discuss later which
Cliffords to consider.)
i. For each configuration T ½n�nfqg do the following.

A. V eRðPÞ.
B. For each i∈ [n]⧹{q} do the following.

If T ðiÞ ≠ I then determine P0 ¼ CZðiÞC
y. If T ¼ T then

V V � RðP0Þ, else if T ¼ Ty then V V � RyðP0Þ.
C. Include V in Vn if it did not already exist.

Cliffords to be considered (or not considered) at step 2(a). We have
explained before that for our purpose, combinations of images
obtained by conjugating Z(i) (ordering does not matter) is the most
important, in order to have distinct unitaries. So we can make
some choices of Cliffords to be considered (or rather, not to be
considered) at step 2(a). For this, we can make some observations.

1. If C
Q

iT ðiÞ
� �

Cy ¼
Q

j
eRðZðjÞÞ for any C 2 Cn then it is equal to

the unitary
Q

jT ðjÞ
	

, even if the set of indices i and j are not

same. Thus we have included each eRðZðjÞÞ at step 1. Products
of these also give T-depth 1 unitaries. In step 2(a) if P= Z(q)
then we skip the iteration. In this loop we always consider
those sequences of conjugations where there is at least one
non-trivial mapping. So we always start with a non-trivial
conjugation.

2. If C=⊗ iCi for some Cliffords Ci then it is easy to see that we

can write U ¼ C
Q

jT ðjÞ
	

Cy ¼
Q

iCi
Q

ji
T ðjiÞ

	

Cyi ¼

Q
iUi ,

V. Gheorghiu et al.

4

npj Quantum Information (2022) 110 Published in partnership with The University of New South Wales

where each Ui has T-depth 1. So it is sufficient to consider
each Ci and not C.

3. Let U ¼ C
Qb

i¼a T ðiÞ
	

Cy is such that CZ(j)C†= Z(j), where

a ≤ j ≤ b. Then we can decompose U= U1U2 where U1

excludes T(j) and U2= T(j) and each is of T-depth 1. This
implies we should be concerned with the images of non-
trivial conjugations (more reason to separate the trivial
conjugations at step 1).

To determine the Cliffords to be considered we follow the
mappings given in ref. 28. Consider i∈ [n]. First, we fix 2(4n− 1)4n

Cliffords in Cn that conjugate Z(i) or X(i) non-trivially. We call these
coset leaders of Z(i). The elements of Cn that conjugate Z(i) and X(i)
trivially, form a group isomorphic to Cn�1 with the number of cosets
at most 2(4n− 1)4n. For example, let C 2 Cn is a coset leader (of Z(i))
such that CZ(i)C†= P where P ≠ Z(i), then any other Clifford that does
the same conjugation (which is not a coset leader of Z(i)) is of the
form CC0 where C0ZðiÞC

0y ¼ ZðiÞ . In step 2(a) (when q= i) we consider
all these coset leaders only. Suppose C is a coset leader that
conjugates Z(i) to P ≠ Z(i). In the loop 2(a) we considered all possible
sequences of R(P) or images obtained by conjugation of Z(j) (j ≠ i) by
C. Let C0 is non-coset leader of Z(i) and does the trivial conjugation of
Z(i). Now among all the Z(j) (j ≠ i) where CC0 conjugates non-trivially, it
has to be the coset leader of one of them. This follows from the
counting argument. So again we take all possible combinations of
images obtained by conjugations by CC0, when the loop starts with
that particular position of T/T†.

Taking product. Now suppose U1 ¼ C1
Q

iT ðiÞ
� �

Cy1 2 Vn and

U2 ¼ C2
Q

jT ðjÞ
	

Cy2 2 Vn, and there is no qubit such that a T/T†-

gate is placed in both the unitaries. Let C1 conjugates Z(j) trivially if j is
a qubit in which there is a T/T† gate in U2. Similarly C2ZðiÞC

y
2 ¼ ZðiÞ,

where there is a T/T† gate on qubit i in U1. If [C1, C2]= 0 then it is easy
to check that U ¼ U1U2 ¼ C1C2

Q
kT ðkÞ

� �
Cy2C

y
1 has T-depth 1. If

C2ZðjÞC
y
2 ¼ Pj and C1PjC

y
1 ¼ Pj then we do not need the commu-

tation condition. It is straightforward to check that these conditions
satisfy the 3 observations made earlier. (While constructing Vn, we
can store the information about which unitaries can be multiplied to
have a T-depth 1 product.) Thus we can generate T-depth 1 unitaries
(without trailing Clifford) by taking product of unitaries from Vn.
Thus, from the above discussion, we can have the following

result.

Theorem 2.1. Any U 2 J n with T-depth 1 can be written as follows :
U ¼ eiϕ

Q1
i¼d Vi

� �
C0, where Vi 2 Vn, C0 2 Cn and d ≥ 1.

Proof. We ignore the global phase and the trailing Clifford. Let

U ¼ C
Q

i2½n�T ðiÞ
	

Cy (Eq. (3)). Let S⊆ [n] is the set of qubits such

that C conjugates Z(i) trivially, where i∈ S. Then we can write U ¼

Q
i2S
eRðZiÞ

	

C
Q

i2ST ðiÞ
� �

Cy ¼
Q

i2S
eRðZiÞ

	

U0: Each of these eRðZðiÞÞ

are included in Vn (step 1). So now let us consider the second
term, U0, in the product. If C=⊗ jCj then we can write

U0 ¼
Q

jCj
Q

k2Sj T ðkÞ
	

Cyj ¼
Q

jU
0
j , where Sj � S is the set of qubits

on which Cj acts. If there are no T/T† gates at any qubit of Sj then
CjC

y
j ¼ I. Else, there exists at least one k∈ Sj such that Cj

conjugates Z(k) non-trivially. In step 2 of the definition of Vn, we
have included each such Uj in our set. This proves the theorem.
In ref. 26 it has been shown that fRðPÞ : P 2 Png generates the

T-count-optimal decomposition of any exactly implementable
unitary, up to a Clifford. The channel representation inherits these
decompositions and in this representation, the global phase goes
away. Thus we can write the following:bU ¼ Y1

i¼d
bVi

	
cC0 (8)

LetcVn ¼ fbV 0 : V 0 2 Vng: (9)

Fact 2.2 jVnj � 2n � 3n�1 � 4n � 4n < n � 25:6n and hence
jcVnj<n � 25:6n.

Proof. From Definition 2.3, for each starting R(P)/R†(P) there can be n
positions for first T/T† gate respectively. In the remaining qubits we
can have T, T† or I. Thus there are at most 3n−1 ways to place the T/
T† gates in remaining (n−1) qubits. Given a starting Clifford and a
configuration, the rest of the R(P) unitaries are uniquely determined.
We have discussed that we need to consider at most 2 ⋅ 4n ⋅ 4n
Cliffords (coset leaders, as discussed before) that can map each Z(i) to
any P28–30. More precisely, there are at most 2 ⋅ 4n ⋅ 4n choices for the
starting Clifford for each of the n positions of the starting T/T† gate,
which can lead to distinct strings of R(P) during the construction of
Vn. So we get the stated bounds.
In Table 1 we have compared the cardinalities and generation

time of Vn and Cn. The latter has been used in16 to design a T-
depth-optimal-synthesis algorithm. We use the set Vn for our
heuristic algorithm MIN-T-DEPTH. In the next section we use a
bigger set with cardinality Oð4n2Þ, much less than jCnj 2 Oð2kn2Þ,
where k > 2.5. This set can be derived from Vn, or we can simply
use V0n. We will see in the following sections how the cardinalities
of these sets make a difference in the running time and space of
the various algorithms.
The following fact can be easily proved from Fact 3.2 in ref. 23.
Fact 2.3 Let W 0 ¼ deRðPÞW where W and W 0 are unitaries, eR 2
fR; Ryg and P 2 ±Pn. Then sdeðW 0Þ ¼ sdeðWÞ± 1 or
sdeðW 0Þ ¼ sdeðWÞ.
An O N4

� �
time algorithm for multiplying two N2 × N2

unitaries deRðPÞ and W (where N= 2n) has been given in ref. 23.

This will help in computing cVn faster, but it will not make much

Table 2. Performance of our algorithm on some benchmark circuit unitaries.

Unitary #qubits T-depth T-count Optimal? Time Max #nodes Prev T-depth

Toffoli 3 3 7 Yes 27m 41s 358 318

Fredkin 3 3 7 Yes 29m 49s 386 418

Peres 3 3 7 Yes 27m 36s 358 418

Quantum OR 3 3 7 Yes 27m 35s 358 418

Negated Toffoli 3 3 7 Yes 27m 12s 358 418

The T-depth returned by our algorithm (3rd column) is optimal for all unitaries. In most cases it is less than the Tdepth of the circuits shown in ref. 18. We have
also tabulated the T-count (4th column) of the T-depth-optimal circuits, running time (5th column) as well as the maximum number of nodes or intermediate
unitaries (6th column) that accumulate at any level while running our algorithm. The running time excludes the pre-processing time to generate V3.

V. Gheorghiu et al.

5

Published in partnership with The University of New South Wales npj Quantum Information (2022) 110

difference in the asymptotic complexity of any of our
algorithms. So these are not essential for the rest of the paper.

Discussion of implementation results
We implemented our heuristic algorithm MIN-T-DEPTH (described in
the section “Methods”) in standard C++17 on an Intel(R) Core(TM)
i7-7700K CPU at 4.2 GHz, with 8 cores and 16 GB RAM, running
Debian Linux 9.13. We used OpenMP34 for parallelization and the
Eigen 3 matrix library35 for some of the matrix operations. Our
algorithm returns a T-depth-optimal decomposition of an input
unitary. We can generate a circuit for each R(P) using Fact 2.1 and the
trailing Clifford using the algorithm in ref. 5. We remind the reader
that the numerical results of this subsection, together with
instructions on how to reproduce them, are available online at
https://github.com/vsoftco/t-depth. We have implemented MIN-T-
DEPTH and not the optimal nested MITM algorithm because the
former has better complexity.
We have synthesized T-depth-optimal circuits for three-qubit

benchmark unitaries like Toffoli, Fredkin, Peres, Quantum OR,
Negated Toffoli (Table 2). We found the min-T-depth of all these
unitaries is 3, which is less than the T-depth of the circuits shown in
ref. 16 (except Toffoli). The authors did not perform a T-depth-optimal
synthesis of these 3 qubit circuits, since their algorithm required to
generate a (pre-processed) set of more than 92,897,280 elements,
which took more than 4 days (Table 1). The running time as well as
space requirement, being an exponential (in min-T-depth) of this set,
it would have been intractable on a PC. The largest T-depth-optimal
circuit implemented in ref. 16 had 2-qubits and had T-depth 2. In our

case the set generated during pre-processing is Vn. In case of three
qubits it has 2282 elements and takes about 2 s to be generated. The
average searching time is 27.5min. Thus our algorithm clearly
outperforms the previously best T-depth-optimal synthesis algorithm
in ref. 16.
We would like to mention here that for T-depth-optimal

synthesis algorithms like16 or ours, the input is a unitary matrix
and no other additional information is provided. The T-depth of
some unitaries may be related. For example, the authors have
been pointed out that T-depth of Fredkin, Peres can be obtained
from T-depth of Toffoli because they are Clifford equivalent. There
are some concerns here. We do not know of any efficient test for
Clifford equivalence given arbitrary exactly implementable uni-
taries. Second, we are unaware of any set of benchmark unitaries
from which we can derive the T-depth of any exactly implemen-
table unitary. In fact, these extra information can serve as litmus
tests for the correctness of the output of any algorithm.
We have synthesized T-depth-optimal circuits for 2 and 3-qubit

permutation unitaries. We found that all 2-qubit permutations are
Cliffords. It took us, on average, 0.726 seconds to synthesize 2-qubit
permutations. We considered about 100 random 3-qubit permuta-
tion unitaries and (due to time constraints) we synthesized
completely (up to Clifford) the unitaries with T-depth at most 5.
The permutations with T-depth at most 3 took on average 15min.
The permutations with T-depth at most 5 took on average 4.5 h.
We have also tested our algorithm on random 2 and 3 qubit

circuits (Table 3). The input 2 and 3 qubit circuits had T-depth 2-10
and 2-7, respectively. Each line in Table 3 is computed from 10
random circuits. By Max.# nodes we mean the maximum number
of unitaries selected at any level. ’avg’ means we average this
statistic over all unitaries considered. ’std’ means we find the
standard deviation of this statistic. We found out that the circuits
output by our algorithm had T-depth at most of the input T-depth.
Now the min-T-depth can be at most the input T-depth. We could
not verify the optimality of our results, since we do not know of
any T-depth-optimal synthesis algorithm that can implement such
large circuits. However, this is a good indication that our algorithm
MIN-T-DEPTH actually obtains the min-T-depth for most unitaries.

METHODS
A faster synthesis algorithm for T-depth
In this section, we describe an exact synthesis algorithm that finds a
circuit that is provably T-depth-optimal. We modify the algorithm by
Amy et al.16 and employ a nested meet-in-the-middle technique, as
has been done by Mosca and Mukhopadhyay23, to optimize the
T-count. This gives a more space-efficient algorithm to get optimal
depth circuits. Furthermore, we work with channel representations to
get T-depth-optimal circuits. This reduces both the time and space
complexity compared to the algorithm in ref. 16.

An exact algorithm for depth-optimal circuits
We first describe a general algorithm where we are given a set of
gates (and their inverses), G, with which we want to design a depth
optimal circuit implementing a unitary U. The set G is called the
instruction set. Let Vn;G be the set of n-qubit unitaries of depth 1 that
can be implemented by a circuit designed with the gates in G. We
state the following lemma which can be regarded as a generalization
of Lemma 1 in ref. 16. This observation allows us to search for circuits
of depth d by only generating circuits of depth at most ddce (c ≥ 2).

Lemma 3.1. Let Si⊂ U(2n) be the set of all unitaries implementable
in depth i over the gate set G. Given a unitary U, there exists a
circuit over G of depth (d1+ d2) implementing U if and only if
Syd1U

T
Sd2 ≠ ;.

Table 3. Performance of MIN-T-DEPTH on random circuits.

#Qubits Max.
T-depth

Time
(avg.) (s)

Time
(std.) (s)

Max.
#nodes (avg.)

Max.
#nodes (std.)

2 2 0.015 0.006 2.90 3.45

3 0.055 0.035 6.70 4.75

4 0.184 0.153 21.1 20.1

5 0.49 0.62 56.5 71.7

6 1.17 0.91 99.9 73.0

7 3.10 4.19 256.3 355.0

8 8.39 8.36 443.0 435.2

9 15.1 7.81 721.1 499.9

10 38.1 32.5 1727.7 1282.7

11 48.3 50.5 2049.7 1809.5

12 47.6 59.5 1853.9 2218.8

13 188.2 158.8 6705.8 5991.0

14 547.1 921.0 12,293.9 16,351.1

15 315.8 295.4 9515.6 7925.2

16 238.3 169.1 7025.4 4905.8

17 495.8 589.7 12,118.6 13,545.6

18 408.3 265.3 9466.6 4937.4

19 625.8 478.1 14,390.3 9332.9

20 1008.2 656.6 15,313.2 9205.1

3 2 17.4 21.6 8.50 8.36

3 209.4 190.8 123.5 173.0

4 999.9 780.3 253.2 226.2

5 3926.6 3424.7 1203.5 1968.8

6 11,349.5 11,076.0 1024.1 643.1

7 28,750.9 18,652.0 4481.3 4165.9

For each entry in the table, we generate 10 random circuits.

V. Gheorghiu et al.

6

npj Quantum Information (2022) 110 Published in partnership with The University of New South Wales

https://github.com/vsoftco/t-depth

Proof. We note that U 2 Syi ¼ fUyjU 2 Sig if and only if U can be
implemented in depth i over G. (Though this was proved in
Lemma 1 of ref. 16 we include it briefly here for completion). Let
U= U1U2…Ui where U1;U2; ¼ ;Ui 2 Vn;G and so Uy ¼ Uyi ¼Uy2U

y
1.

As G is closed under inversion so Uy1;U
y
2; ¼ ;Uyi 2 Vn;G , and thus a

circuit of depth i over G implements U†. Since Syi
	
y

¼ Si the

reverse direction follows.
Suppose U is implementable by a circuit C of depth d1+ d2. We

divide C into two circuits of depth d1 and d2, implementing
unitaries W1 2 Sd1 and W2 2 Sd2 respectively, where W1W2= U. So
W2 ¼ Wy1U 2 Syd1U and hence W2 2 Syd1U

T
Sd2 .

In the other direction let Syd1U
T
Sd2 ≠ ;. So there exists some

W2 2 Syd1U
T
Sd2 . Since W2 2 Syd1U so W2 ¼ Wy1U for some

W1 2 Syd1 . Now W2 2 Sd2 and W1W2= U. Thus U is implementable
by some circuit of depth d1+ d2.
We now describe our procedure (Nested MITM), whose

pseudocode has been given Algorithm 1. The input consists of
the unitary U, instruction set G, depth d and c ≥ 2 that indicates
the extent of nesting or recursion we want in our meet-in-the-
middle approach. If U is of depth at most d then the output
consists of a decomposition of U into smaller depth unitaries, else
the algorithm indicates that U has depth more than d. At the
beginning of the algorithm we generate the set Vn;G .

Algorithm 1. Nested MITM

The algorithm consists of ddce iterations and in the ith such
iteration we generate circuits of depth i (Si) by extending the
circuits of depth i−1 (Si−1) by one more level. Then we use these
two sets to search for circuits of depth at most ci. The search is
performed iteratively where in the kth (1 ≤ k ≤ c−1) round we
generate unitaries of depth at most ki by taking k unitaries
W1,W2,…,Wk where Wi∈ Si or Wi∈ Si−1. Let W=W1W2…Wk and
its depth is k0 � ki. We search for a unitary W 0 in Si or Si−1 such
that WyU ¼ W 0. By Lemma 3.1 if we find such a unitary it would
imply that depth of U is k0 þ i or k0 þ i � 1, respectively. In the
other direction if the depth of U is either k0 þ i or k0 þ i � 1 then
there should exist such a unitary W 0 in Si or Si−1, respectively. Thus
if the depth of U is at most d then the algorithm terminates in one
such iteration and returns a decomposition of U. This proves the
correctness of this algorithm.

Time and space complexity. We impose a strict lexicographic
ordering on unitaries such that a set Si can be sorted with
respect to this ordering in O jSi j log jSijð Þ time and we can search
for an element in this set in O log jSi jð Þ time. An example of such
an ordering is ordering two unitaries according to the first
element in which they differ. Now consider the kth round of the
ith iteration (steps 3–17 of Algorithm 1). We build unitaries W of
depth at most ki using elements from Si or Si−1. Number of such
unitaries is at most ∣Si∣k. Given a W, time taken to search for W 0

in Si or Si−1 such that WyU ¼ W 0 is O log jSi jð Þ. Since jSjj � jVn;Gjj ,
so the kth iteration of the for loop within the ith iteration of the

while loop, takes time O jVn;Gjðc�1Þi log jVn;Gj
	

. Thus the time

taken by the algorithm is O jVn;Gjðc�1Þd
d
ce log jVn;Gj

	

.

In the algorithm we store unitaries of depth at most ddce. So
the space complexity of the algorithm is O jVn;Gjd

d
ce

	

. Since

jVn;Gj 2 O jGjnð Þ, so we have an algorithm with space complexity

O jGjnd
d
ce

	

and time complexity O njGjnðc�1Þd

d
ce log jGj

	

.

Reducing both space and time complexity to find T-depth
optimal circuits
We now consider the special case where G is the Clifford+T gate
set and the goal is to design a T-depth optimal circuit for a given
unitary U. We work with the channel representation of unitaries.
We generate the set V

00

n, which consists of products of unitaries
from Vn and has T-depth 1. We have explained in Section T-depth
how to perform such products. We can even use V0n described in
the previous section. In Section T-depth we gave conditions for

generating these products. Thus we replace Vn;G with cV00

n. It is easy

to see that for any T-depth 1 unitary bU there exists bV 2 cV00

n such
that bU ¼ bVbC for some Clifford C 2 Cn. This motivates us to use the
following definition from ref. 26.

Definition 3.1 (Coset label). Let W 2 cJ n. Its coset label W(co) is
the matrix obtained by the following procedure. (1) Rewrite W
so that each nonzero entry has a common denominator, equal

to
ffiffiffi
2
p sdeðWÞ

. (2) For each column of W, look at the first non-zero
entry (from top to bottom) which we write as v ¼ aþb

ffiffi
2
pffiffi

2
p sdeðWÞ. If a < 0,

or if a= 0 and b < 0, multiply every element of the column
by− 1. Otherwise, if a > 0, or a= 0 and b > 0, do nothing and
move on to the next column. (3) After performing this step on
all columns, permute the columns so that they are ordered
lexicographically from left to right.
Since unitaries stored in cV00

n are distinct, we can say that this set
stores the coset labels of T-depth 1 unitaries. The following can
be shown.

Theorem 3.1 (Proposition in ref. 26). Let W; V 2 cJ n. Then
W(co)= V(co) if and only if W= VC for some C 2 bCn.
The nested meet-in-the-middle search for T-depth-optimal circuit

is performed as described before, except for the following changes.

We replace the set Vn;G with the set cV00

n (step 4 of Algorithm 1), for
reasons described before. This helps us to generate coset labels of
unitaries with increasing T-depth. We work with channel representa-
tions bW; cW1; cW2; ¼ . So at the kth round of the ith iteration, we
calculate bW ¼Qk

j¼1
cWj where cWj 2 Si or Si−1. Then we check if

9cW 0 2 Si (or Si−1 respectively) such that ð bWybUÞðcoÞ ¼ cW 0. If such a
unitary exists it would imply U ¼ eiϕWW 0C for some Clifford C 2 Cn.
From Lemma 3.1 we can say that U can be implemented by a circuit

V. Gheorghiu et al.

7

Published in partnership with The University of New South Wales npj Quantum Information (2022) 110

with T-depth equal to the sum of the T-depth of the circuit forW and
W 0.

Space and time complexity. From Fact 2.2 we know that jcVnj �
n � 25:6n and V

00

n is formed by taking the product of unitaries from
Vn. The most naive upper bound that we can have is jV00

nj 2 Oð4n2Þ,
which is the bound on V0n discussed in the section “T-depth”. (We
believe that jV00

nj is much less than 4n
2
.) Thus analyzing in the same

way as before we can say that the algorithm has space complexity

Oðð4n2Þd
d
ceÞ and time complexity Oðð4n2Þðc�1Þd

d
ceÞ (c ≥ 2). This is much

less than the space and time complexity of the T-depth-optimal
algorithm in ref. 16. They use the MITM technique and the space and

time complexity is Oðð3njCnjÞd
d
2e � jCnjÞ. The cardinality of the n-qubit

Clifford group, Cn, is Oð2kn2Þ (k > 2.5)28,29. So the space and time

complexity is Oðð2kn2Þd
d
2eþ13nd

d
2eÞ, where k > 2.5. Clearly, even if the

extent of nesting is 2 i.e. c= 2, in which case our procedure
becomes a MITM algorithm, we get a significant improvement in
both time and space complexity.

A more efficient algorithm to synthesize T-depth optimal
circuits
In this section, we describe an algorithm that on input a 2n × 2n

unitary U finds a T-depth optimal circuit for it and has space and
time complexity poly(n, 25.6n, d) with some conjecture (or
polyðnlogn; d; 25:6nÞ with a weaker conjecture), where d is the min-
T-depth of U. We draw inspiration from some observations made in
ref. 23, while developing a polynomial time algorithm for synthesizing
T-count-optimal circuits. We came up with another way of pruning
the search space. The numerical results of this section (Tables 2 and
3) are available online at https://github.com/vsoftco/t-depth.

Algorithm 2. A

V. Gheorghiu et al.

8

npj Quantum Information (2022) 110 Published in partnership with The University of New South Wales

https://github.com/vsoftco/t-depth

Algorithm 3. MIN T-DEPTH

Fig. 1 The tree built in A (Algorithm 2). Each node stores a unitary, the root at level 0 storing bU. The edges are labeled by unitaries in cVn
�1
. A

child node unitary is obtained by multiplying the edge unitary with the parent node unitary. The edges are grouped into hyper-edges, where

each hyper-edge is labeled by a unitary in dVn;j
�1
. The nodes are grouped into hyper-nodes, where each hyper-node has a number indicating

the number of dRðPÞ�1 in the path from the root to each node in this hyper-node. Within each hyper-node we select some nodes according to
some criteria and the nodes in the next level are built from these selected (black) nodes.

The input of our algorithm is the channel representation of a
2n × 2n unitary U. From Theorem 2.1 we know there exists a T-

depth-optimal decomposition of bU as follows : bU ¼ Q1
i¼d00

bVi

	
cC0,

where C0 2 Cn, bVi 2 Vn, d ≤ d″ ≤ dn and d is the T-depth of U. We
iteratively try to guess the blocks bVi by looking at the change in

some ’properties’ of the matrix bVi
�1 bU0 where bU0 ¼Qiþ1

j¼d00
bVj
�1bU. If

we have the correct sequence then we should reach cC0, a matrix
consisting of exactly one +1 or −1 in each row and column. As in
ref. 23 we consider two properties of the resultant matrices—their
sde and Hamming weight. The intuition is as follows. Consider a

unitary bW and we multiply it by cV1 2 cVn. Let bY ¼ dWV1 , Δs ¼
sdeð bWÞ � sdeðbYÞ and Δh ¼ hamð bWÞ � hamðbYÞ, where ham(.) is

the Hamming weight. Now we multiply bY by bVi
�1

where bVi 2 cVn.

Let bZ ¼ dYV�1i , Δi
s ¼ sdeðbYÞ � sdeðbZÞ and Δi

h ¼ hamðbYÞ � hamðbZÞ.
If Vi= V1 then Δs ¼ �Δi

s and Δh ¼ �Δi
h. But if Vi ≠ V1 then with

high probability we do not expect to see this kind of change. This
helps us to distinguish the Vi’s in at least one T-depth-optimal
decomposition.
The pseudocode for algorithm MIN T-DEPTH has been given

in Algorithm 3. We iteratively call the sub-procedure AðbU; d0Þ
with the value d0 2 Z increasing in each iteration. We
accumulate all decompositions returned by A. Then in MIN
T-DEPTH we check if in each such decomposition we can
combine consecutive unitaries to form a T-depth 1 unitary (refer
to the section “T-depth”). We output a decomposition with the
minimum T-depth. Here let us explain the starting value for d0. If
we know that any circuit requires at least x T gates to implement

U, we know that the T-depth of any circuit implementing U will
be at least dxne. Thus if we know T ðUÞ i.e. the T-count of U we can

start the iterations with d0 ¼ dT ðUÞn e. If we do not know that, we

can consider sdeðbUÞ. Due to Fact 2.3 we know T ðUÞ � sdeðbUÞ,
so we can also start the iterations with d0 ¼ dsdeðbUÞn e. We can also
determine stopping criteria from these information. For
example, if we get a decomposition with T-depth dT ðUÞn e, then
we can stop immediately. Alternatively, we can generate the set
V
00

n, described for our nested-MITM algorithm and stop as soon
as we get a decomposition in A.

It will be useful if we depict the procedure A using a tree (Fig. 1),
where each node stores a unitary. The root (depth 0) stores bU. The
edges are labeled by unitaries from cVn

�1
, which is defined as

cVn
�1
¼ fbV�1 : bV 2 cVng

This is a set of n-qubit unitaries with T-depth 1 (refer to the
section “T-depth”). A child node unitary is obtained by multi-
plying the parent unitary with the unitary of the edge. We refer
to these two types of unitaries as ’node-unitary’ and ’edge-
unitary’ respectively. The product of the edge unitaries on a
path from the root to a non-root node is referred to as the ’path
unitary’ with respect to the non-root node. By ’path T-count’ of a
non-root node, we refer to the sum of the number of R(P) terms
in the edge-unitaries. Each R(P) has one T-gate. At each depth of
the tree, we group the nodes into some ’hypernodes’ such that
the path T-count of each node within a hypernode is the same.

At this point it will be useful to observe cVn
�1
¼
S

1�j�n
dVn;j

�1
,

V. Gheorghiu et al.

9

Published in partnership with The University of New South Wales npj Quantum Information (2022) 110

where dVn;j
�1

is the set of unitaries with j number of dRðPÞ�1. In
Fig. 1 we have grouped the edges such that the edge-unitaries

within one such ’hyperedge’ are from dVn;j
�1

for some j.
At each depth, within each such hypernode we sub-divide

the nodes according to the sde of its unitary and change in
Hamming weight of this unitary compared to the parent node-
unitary. By change in Hamming weight we mean if it has
increased or decreased or remains unchanged, with respect to
the Hamming weight of the parent node. Within each
hypernode we select the set of nodes with minimum cardinality
such that sde of its unitaries can be reduced to 0 within depth
d0 of the tree. We build the nodes in the next level from the
‘selected’ node-unitaries only. We stop building the tree as soon
as we reach a node-unitary with sde 0, indicating we reached a
Clifford. If we have not reached any Clifford within depth d0 we
quit and conclude that minimum T-depth of bU is more than d0. A
pseudocode of the procedure A has been given in Algorithm 2.
The number of hypernodes in depth i can be at most ni− i+ 1,
since the path T-count of any unitary can be at most ni and at
least i. Also, since the sde can change by at most 1 after

multiplying by any dRðPÞ�1 (Fact 2.3), then after multiplying by
any unitary in V�1n;j sde of any unitary can change by at most j.
So (at step 25 of Algorithm 2) we select the minimum sized set
among those sets of unitaries which has the potential to reach
the Clifford within the remaining steps.
To analyze the space and time complexity of our algorithm we

make the following conjecture.

Conjecture 1
(a) While dividing the nodes according to their sde and change in
Hamming weight within any hypernode, the minimum cardinality
of any set (such that its sde can be potentially reduced to 0) is
bounded by poly(2n). (b) Also, we get at least one T-depth-optimal
decomposition.
So our conjecture has two parts. (a) bounds the size of the tree

and thus determines the complexity of the algorithm. (b) implies
that we can preserve at least one T-depth-optimal decomposition
by pruning in this way. So it determines the efficiency. We can
make a weaker conjecture with a more relaxed bound.

Conjecture 2
(Weaker version) (b) While dividing the nodes according to their
sde and change in Hamming weight within any hypernode, the
minimum cardinality of any set (such that its sde can be
potentially reduced to 0) is bounded by polyðnlog n; 2nÞ. (b) Also,
we get at least one T-depth-optimal decomposition.

Comparison with Conjecture 1 in ref. 23. In ref. 23 the authors
proposed some conjectures to reduce the complexity of
synthesizing T-count-optimal circuits. Our algorithm has been
motivated by that work but based on current knowledge it does
not appear that Conjectures 1 or 2 can be derived from the
conjecture used in ref. 23, with the present knowledge. The
main intuition of these conjectures stems from the following

observation. Suppose we multiply a unitary bU0 by dRðP1Þ. We will
notice some change in the properties (like sde, Hamming

weight) in the product unitary bW 0 ¼ bU0 dRðP1Þ compared to the

initial bU0. Now when we multiply bW 0 by dRðP1Þ�1 we will see these

effects reversed. But if we multiply bW 0 by dRðPiÞ�1 (where i ≠ 1)
then with high probability we will observe some other effects.
In ref. 23 the authors used these intuitions to design a T-count-
optimal algorithm, where they iteratively tried to guess a
sequence of R(P)s in a T-count-optimal decomposition of U, by
observing these change in properties. In our present algorithm
(see Fig. 1) we consider many paths with different T-counts at

each level. Now the T-depth-optimal decompositions will follow
some of these paths. When we select the minimum cardinality
set in each hypernode (where all unitaries have the same path
T-count), we expect that the distinguishing property that we
explained before does not get destroyed even if we multiply an

(intermediate) unitary by up to n dRðPÞ�1. We do not see how this
observation follows from the conjecture in ref. 23, without some
more knowledge about the underlying mathematics. So for T-
depth-optimal decompositions, we have made separate
conjectures.

Space and time complexity. We consider the time and space
complexity of A. From Fact 2.2 we know jcVn

�1
j � n � 25:6n. These

are the number of unitaries we always store.
In the ith iteration we have up to ni−i+ 1 children hypernodes.

There are at most n(i−1)−(i−1)+1 parent hypernodes and within
each at most poly(2n) parent nodes are selected by Conjecture 1.

Each parent node is multiplied by jcVnj22n × 22n unitaries. Arguing
in similar way space and time complexity of procedure A is
poly d0; n; 25:6n

� �
.

Since MIN T-DEPTH consists of at most dn iterations of A, where
d is the minimum T-depth of U, so space and time complexity is
poly d; n; 25:6n

� �
.

If we assume the weaker Conjecture 2 then we get a space and
time complexity poly d; nlog n; 25:6n

� �
.

DATA AVAILABILITY
Numerical results together with instructions on how to reproduce them, are available
online at https://github.com/vsoftco/t-depth.

CODE AVAILABILITY
The code is available from the corresponding author on request.

Received: 24 May 2021; Accepted: 23 August 2022;

REFERENCES
1. Feynman, R. P. Simulating physics with computers. Int. J. Theor. Phys 21, 467–488

(1982).
2. Shor, P. W. Polynomial-time algorithms for prime factorization and discrete

logarithms on a quantum computer. SIAM Rev. 41, 303–332 (1999).
3. Shor, P. W. Algorithms for quantum computation: discrete logarithms and fac-

toring. In Proc. 35th Annual Symposium on Foundations of Computer Science,
124–134 (IEEE, 1994).

4. Grover, L. K. A fast quantum mechanical algorithm for database search. In Proc.
28th Annual Symposium on Theory of Computing, 212–219 (ACM, 1996).

5. Aaronson, S. & Gottesman, D. Improved simulation of stabilizer circuits. Phys. Rev.
A 70, 052328 (2004).

6. Bravyi, S. & Kitaev, A. Universal quantum computation with ideal Clifford gates
and noisy ancillas. Phys. Rev. A 71, 022316 (2005).

7. Fowler, A. G., Stephens, A. M. & Groszkowski, P. High-threshold universal quantum
computation on the surface code. Phys. Rev. A 80, 052312 (2009).

8. Aliferis, P., Gottesman, D. & Preskill, J. Quantum accuracy threshold for con-
catenated distance-3 codes. Quantum Inf. Comput. 6, 97–165 (2006).

9. Britton, J. W. et al. Engineered two-dimensional Ising interactions in a trapped-ion
quantum simulator with hundreds of spins. Nature 484, 489 (2012).

10. Brown, K. R. et al. Single-qubit-gate error below 10−4 in a trapped ion. Phys. Rev. A
84, 030303 (2011).

11. Chow, J. M. et al. Universal quantum gate set approaching fault-tolerant
thresholds with superconducting qubits. Phys. Rev. Lett. 109, 060501 (2012).

12. Rigetti, C. et al. Superconducting qubit in a waveguide cavity with a coherence
time approaching 0.1 ms. Phys. Rev. B 86, 100506 (2012).

13. Bombin, H., Andrist, R. S., Ohzeki, M., Katzgraber, H. G. & Martín-Delgado, M. A. Strong
resilience of topological codes to depolarization. Phys. Rev. X 2, 021004 (2012).

V. Gheorghiu et al.

10

npj Quantum Information (2022) 110 Published in partnership with The University of New South Wales

https://github.com/vsoftco/t-depth

14. Fowler, A. G., Whiteside, A. C. & Hollenberg, L. C. L. Towards practical classical
processing for the surface code. Phys. Rev. Lett. 108, 180501 (2012).

15. Fowler, A. G. Time-optimal quantum computation. Preprint at https://arXiv.org/
quant-ph/1210.4626 (2012).

16. Amy, M., Maslov, D., Mosca, M. & Roetteler, M. A meet-in-the-middle algorithm for
fast synthesis of depth-optimal quantum circuits. IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst. 32, 818–830 (2013).

17. Amy, M., Maslov, D. & Mosca, M. Polynomial-time T-depth optimization of Clifford
+T circuits via matroid partitioning. IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst. 33, 1476–1489 (2014).

18. Amy, M. et al. Estimating the cost of generic quantum pre-image attacks on SHA-2
and SHA-3. In Int. Conf. on Selected Areas in Cryptography, 317–337 (Springer, 2016).

19. Di Matteo, O., Gheorghiu, V. & Mosca, M. Fault-tolerant resource estimation of
quantum random-access memories. IEEE Trans. Quantum Eng. 1, 1–13 (2020).

20. Dawson, C. M. & Nielsen, M. A. The Solovay–Kitaev algorithm. Quantum Inf.
Comput. 6, 81–95 (2006).

21. Giles, B. & Selinger, P. Exact synthesis of multiqubit Clifford+T circuits. Phys. Rev. A
87, 032332 (2013).

22. de Brugière, T. G., Baboulin, M., Valiron, B. & Allouche, C. Quantum circuits synthesis
using Householder transformations. Comput. Phys. Commun. 248, 107001 (2020).

23. Mosca, M. & Mukhopadhyay, P. A polynomial time and space heuristic algorithm
for T-count. Quantum Sci. Technol. 7, 015003 (2021).

24. Häner, T. & Soeken, M. Lowering the T-depth of quantum circuits by reducing the
multiplicative depth of logic networks. Preprint at https://arXiv.org/quant-ph/
2006.03845 (2020).

25. Kitaev, A. Y. Quantum computations: algorithms and error correction. Russ. Math.
Surv. 52, 1191 (1997).

26. Gosset, D., Kliuchnikov, V., Mosca, M. & Russo, V. An algorithm for the T-count.
Quantum Inf. Comput. 14, 1261–1276 (2014).

27. Ross, N. J. & Selinger, P. Optimal ancilla-free Clifford+T approximation of
Z-rotations. Quantum Inf. Comput. 16, 901–953 (2016).

28. Ozols, M. Clifford group. Essays at University of Waterloo (Springer, 2008).
29. Koenig, R. & Smolin, J. A. How to efficiently select an arbitrary Clifford group

element. J. Math. Phys. 55, 122202 (2014).
30. Calderbank, A. R., Rains, E. M., Shor, P. M. & Sloane, N. J. A. Quantum error

correction via codes over GF(4). IEEE Trans. Inf. Theory 44, 1369–1387 (1998).
31. Gheorghiu, V., Mosca, M. & Mukhopadhyay, P. T-count and T-depth of any multi-

qubit unitary. Preprint at https://arXiv.org/quant-ph/2110.10292 (2021).
32. Di Matteo, O. & Mosca, M. Parallelizing quantum circuit synthesis. Quantum Sci.

Technol. 1, 015003 (2016).
33. Cowtan, A., Dilkes, S., Duncan, R., Simmons, W. & Sivarajah, S. Phase gadget

synthesis for shallow circuits. In 16th Int. Conf. on Quantum Physics and Logic,
213–228 (Open Publishing Association, 2019).

34. The OpenMP API Specification for Parallel Programming. https://www.openmp.org/
(2021).

35. Eigen: A C++ Template Library for Linear Algebra. http://eigen.tuxfamily.org
(2021).

ACKNOWLEDGEMENTS
The authors wish to thank NTT Research for their financial and technical support. This
work was supported in part by Canada’s NSERC. IQC and the Perimeter Institute (PI)
are supported in part by the Government of Canada and the Province of Ontario (PI).
We thank the anonymous reviewers for their comments, that not only helped us
improve the write-up significantly, but also led to a tighter bound in Fact 2.2.

AUTHOR CONTRIBUTIONS
The ideas were given by P.M. The software implementations were done by V.G. All
the authors have made substantial contributions to the preparation of the
manuscript.

COMPETING INTERESTS
The authors declare no competing non-financial interests but the following
competing financial interests. M.M. is co-founder of softwareQ Inc. and has filed a
provisional patent application for this work. P.M. is a co-inventor of this patent.

ADDITIONAL INFORMATION
Correspondence and requests for materials should be addressed to Priyanka
Mukhopadhyay.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://
creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022

V. Gheorghiu et al.

11

Published in partnership with The University of New South Wales npj Quantum Information (2022) 110

https://arXiv.org/quant-ph/1210.4626
https://arXiv.org/quant-ph/1210.4626
https://arXiv.org/quant-ph/2006.03845
https://arXiv.org/quant-ph/2006.03845
https://arXiv.org/quant-ph/2110.10292
https://www.openmp.org/
http://eigen.tuxfamily.org
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	A (quasi-)polynomial time heuristic algorithm for synthesizing T-nobreakdepth optimal circuits
	Introduction
	MIN T-nobreakDEPTH

	Results and discussion
	Preliminaries
	Channel representations
	T-nobreakdepth
	Cliffords to be considered (or not considered) at step 2(a)
	Taking product

	Discussion of implementation results

	Methods
	A faster synthesis algorithm for T-nobreakdepth
	An exact algorithm for depth-optimal circuits
	Time and space complexity

	Reducing both space and time complexity to find T-nobreakdepth optimal circuits
	Space and time complexity

	A more efficient algorithm to synthesize T-depth optimal circuits
	Comparison with Conjecture 1 in ref.�23
	Space and time complexity

	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION

