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Exploiting degeneracy in belief propagation decoding of
quantum codes
Kao-Yueh Kuo 1 and Ching-Yi Lai 1✉

Quantum information needs to be protected by quantum error-correcting codes due to imperfect physical devices and operations.
One would like to have an efficient and high-performance decoding procedure for the class of quantum stabilizer codes. A
potential candidate is Gallager’s sum-product algorithm, also known as Pearl’s belief propagation (BP), but its performance suffers
from the many short cycles inherent in a quantum stabilizer code, especially highly-degenerate codes. A general impression exists
that BP is not effective for topological codes. In this paper, we propose a decoding algorithm for quantum codes based on
quaternary BP with additional memory effects (called MBP). This MBP is like a recursive neural network with inhibitions between
neurons (edges with negative weights), which enhance the perception capability of a network. Moreover, MBP exploits the
degeneracy of a quantum code so that the most probable error or its degenerate errors can be found with high probability. The
decoding performance is significantly improved over the conventional BP for various quantum codes, including quantum bicycle,
hypergraph-product, surface and toric codes. For MBP on the surface and toric codes over depolarizing errors, we observe error
thresholds of 16% and 17.5%, respectively.
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INTRODUCTION
To demonstrate an interesting quantum algorithm, such as Shor’s
factoring algorithm1, a quantum computer needs to implement
more than 1010 logical operations, which means that the error rate
of each logical operation must be much less than 10−10 (see ref. 2).
With limited quantum devices and imperfect operations3,4,
quantum information needs to be protected by quantum error-
correcting codes to achieve fault-tolerant quantum computation5.
If a quantum state is encoded in a stabilizer code6,7, the error
syndrome of an occurred error can be measured without
disturbing the quantum information of the state. A quantum
stabilizer code constructed from a sparse graph is favorable since
it affords a two-dimensional layout or simple quantum error-
correction procedures. This includes the families of surface and
toric codes8, color codes9, random bicycle codes10, and general-
ized hypergraph-product (GHP) codes11,12.
For a general stabilizer code, the decoding problem of finding

the most probable coset of degenerate errors with a given error
syndrome is hard13,14, and an efficient decoding procedure with
good performance is desired. The complexity of a decoding
algorithm is usually a function of code length N. Edmonds’
minimum-weight perfect matching (MWPM)15 can be used to
decode a surface or toric code16–19, and the complexity of MWPM
is O(N3), which can be reduced to O(N2) if local matching is used
with minor performance loss19–21. Duclos-Cianci and Poulin
proposed a renormalization group (RG) decoder, which uses a
strategy analogous to the decoding of a concatenated code, to
decode a toric (or surface) code with complexity proportional to
N logð ffiffiffiffi

N
p Þ22. Both MWPM and RG can be generalized for color

codes 23–27.
On the other hand, most sparse quantum codes can be

decoded by belief propagation (BP)10,28–30 or its variants with
additional processes31–35. BP is an iterative algorithm and the
decoding complexity per iteration is O(Nj)30,36, where j is the mean
column-weight of the check matrix of a quantum code. In general,

an average number of iterations proportional to log logN is
sufficient for BP decoding37,38. In practice, a maximum number of
iterations Tmax proportional to log logN up to a large enough
constant will be chosen. So the overall decoding complexity of BP
is OðNjTmaxÞ or OðNj log logNÞ.
Although BP seems to have the lowest complexity, the long-

standing problem is that BP does not perform well on quantum
codes with high degeneracy unless additional complex processes
are included31,33. (We say that a code has high degeneracy or is
highly degenerate if it has many stabilizers of weight lower than
its minimum distance.) The Tanner graph of a stabilizer code
inevitably contains many short cycles, which deteriorate the
message-passing process in BP10,31, especially for codes with high
degeneracy33,34,39. Any message-passing or neural network
decoder may suffer from this issue. One may consider variants
of BP with additional efforts in pre-training by neural net-
works40–43 or post-processing33,34 such as ordered statistics
decoding (OSD)44, but these methods may not be practical for
large codes. In this paper, we will address this long-standing BP
problem by devising an efficient quaternary BP decoding
algorithm with memory effects (c.f. Eq. (10)), abbreviated MBP,
so that the degeneracy of quantum codes can be exploited.
Moreover, many known decoders in the literature treat Pauli X and
Z errors separately as binary errors, which may incur additional
computation overhead or performance loss. MBP directly handles
the quaternary errors.
The problem of hard-decision decoding of a classical code is like

an energy-minimization problem in a neural network45, where an
energy function measures the parity-check satisfaction (denoted
by JS).
It is known that BP has been used for energy minimization in

statistical physics31,38,46. Moreover, an iterative decoder based on
the gradient descent optimization of the energy function has
been proposed47. These motivate us to consider a soft-decision
generalization of the energy function with variables that are log-
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likelihood ratios (LLRs) of Pauli errors and make connections
between BP and the gradient descent algorithm. We define an
energy function with an additional term JD that measures the
distance between a recovery operator and the initial channel
statistics. Then we show that BP in the log domain is like a
gradient descent optimization for this generalized energy function
but with more elegant step updates48. This explains why the
conventional BP may work well on a nondegenerate quantum
code10, since this is similar to the classical case 47.
For a highly-degenerate quantum code, it has many low-weight

stabilizers corresponding to local minimums in the energy
topology so that the conventional BP easily gets trapped in these
local minimums near the origin. This suggests that we should use
a larger step (which can be controlled by message normal-
ization)30. However, this is simply not enough since the energy-
minimization process may not converge if large steps are made.
An observation from neural networks is that inhibitions (edges
with negative weights) between neurons can enhance the
perception capability of a network and improve the pattern-
recognition accuracy49–53. MBP is mathematically formulated to
have this inhibition functionality, which helps to resist wrong
beliefs passing on the Tanner graph (due to short cycles37) or to
effectively accelerate the search in a gradient descent optimiza-
tion. An important feature of MBP is that no additional
computation is required, and thus, the complexity of MBP remains
the same as the conventional BP with message normalization.
The performance of MBP can be further improved by choosing

an appropriate step-size for each error syndrome. However, it is
difficult to precisely determine the step-size. If the step-size is too
large, MBP may return incorrect solutions or diverge. We propose
to choose the step-size using an ε-net so the step-size can be
determined adaptively. This adaptive scheme will be called AMBP.
The overall complexity of AMBP is still OðNj log logNÞ since the
chosen ε is independent of N.
Another technique adopted in MBP is to use fixed initializa-

tion54,55. The energy function and energy topology are defined
according to the channel statistics. If MBP performs well on a
certain channel statistics (say, at a certain depolarizing rate ϵ0), it
means that MBP can correctly determine most syndrome-and-
error pairs on that topology. Thus it is better to decode using this
energy topology, regardless of the true channel statistics. This
technique works for any quantum code.
Computer simulations of MBP on various quantum codes are

performed. Note that MBP naturally extends to a more compli-
cated error model of simultaneous data and measurement
errors56; however, perfect syndrome measurements are assumed
in this paper since we focus on the algorithm and performance of
BP on degenerate quantum codes. In RESULTS, we demonstrate
the decoding of quantum bicycle codes10, a highly-degenerate
GHP code33, and the (rotated) surface or toric codes57,58. Our
simulation results show that MBP performs significantly better
than the conventional BP. In particular, any degenerate error of
the target error up to a stabilizer can also be the target and MBP is
able to locate such errors. (See more discussions and examples
about energy minimization and the memory effects of MBP in
ref. 48).

RESULTS
Computer simulations
Our main results are based on an efficient decoder for quantum
codes, the quaternary MBP (MBP4) (see Algorithm 1). MBP4 has a
configurable step-size, which is scaled by a positive constant α−1.
For comparison, the conventional quaternary BP (BP4) is similar to
MBP4 with α= 1 but without additional memory effects. MBP4 can
be extended as AMBP4 (Algorithm 2). We simulate the decoding
performances of various quantum codes by MBP4 and AMBP4 in

the following. The message-update schedule will be denoted by a
prefix parallel/serial28.
For an [[N, K, D]] quantum code that encodes K logical qubits

into N physical qubits with minimum distance D, if any errors of
weight smaller or equal to t are correctable, its logical error rate is

PBDDðtÞ≜ 1�
Xt

i¼0

N
i

� �
ϵið1� ϵÞN�i (1)

at depolarizing rate ϵ, using bounded distance decoding (BDD).
Let r × BDD denote the case that any N-fold Pauli error of weight
� t ¼ brD�1

2 c is correctable so that the logical error rate is
PBDDðbrD�1

2 cÞ. If D is unknown, we may directly specify BDD with
some t instead of r × BDD for comparison. Usually, a good classical
decoding procedure has a correction radius between 1 × BDD and
2 × BDD37. However, the degeneracy of a quantum code is not
considered in BDD; we may have decoding performance much
better than 2 × BDD in the quantum case. In addition, the optimal
achievable decoding performance is unknown13,14, so r × BDD
serves as a good benchmark.
The mean weight of the rows in the check matrix of a quantum

code is called the row-weight and denoted by k. If the row-weight
is small, then the quantum code has many low-weight stabilizers.
We say that a quantum code is more degenerate if the row-weight
of its check matrix is smaller compared to the minimum distance
of the code. We will see that MBP4 improves the conventional BP4
more when the tested code is more degenerate. In our
simulations, the normalization factor α for the step-size in MBP4
is chosen to be roughly proportional to k and inversely
proportional to the depolarizing rate ϵ. (See the analysis in ref. 48)
A relatively larger step-size may be needed for a highly-

degenerate quantum code to decode those errors with a weight
larger than the row-weight of the check matrix. We use an ε-net of
α to adaptively determine the best value α* for each error
syndrome (Algorithm 2, denoted as AMBP4). Since MBP4 is queried
as a subroutine in AMBP4 at most ε−1 times, the computation
complexity of AMBP4 is higher. If ε is independent of N, then the
asymptotic complexity remains the same. To efficiently determine
α* is worth further studying.
We briefly explain how to interpret the simulation results. Let GN

be the N-fold Pauli group, S � GN be the stabilizer group that
defines a quantum code, and S? � fI; X; Y; Zg�N denote the set of
operators with phase+1 that commute with S in GN . Let ntot be
the number of tested error samples for a data point in the
simulation of the performance curve of a code. Suppose that E(i)

and Ê
ðiÞ 2 fI; X; Y; Zg�N are the tested and estimated errors,

respectively, for i= 1, 2, …, ntot. Denote

n0 ¼ # of pairs ðEðiÞ; ÊðiÞÞ : ÊðiÞ ≠ EðiÞ; (2)

ne ¼ # of pairs ðEðiÞ; ÊðiÞÞ : ÊðiÞ∉±EðiÞS; (3)

nu ¼ # of pairs ðEðiÞ; ÊðiÞÞ : ÊðiÞEðiÞ 2 S? n ±S: (4)

Empirically, we have the classical block error rate PðÊ≠ EÞ ¼ n0=ntot,
the quantum logical error rate PðÊ∉ ± ESÞ ¼ ne=ntot, and the
undetected error rate PðÊE 2 S? n ±SÞ ¼ nu=ntot.
Since ðÊ∉ ± ESÞ � ðÊ≠ EÞ, by Bayes’ rule, we have

PðÊ∉± ESÞ ¼ PðÊ∉± ES; Ê≠ EÞ
¼ PðÊ≠ EÞ ´ PðÊ∉± ESjÊ≠ EÞ
¼ n0

ntot
´ ne

n0
:

(5)

Usually, a classical decoding strategy is to lower n0/ntot, which
means that the target error needs to be accurately located from a
given syndrome. Such a strategy has a limit in performance due to
short cycles or strong degeneracy of the code. If a decoder
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converges to anyone of the degenerate errors, the decoding
succeeds. A better strategy has to also lower the ratio ne/n0, which
will be called the error suppression ratio, by exploiting the
degeneracy.
In the simulations, E(i) is drawn from a memoryless depolarizing

error model and then decoded as Ê
ðiÞ
. The pairs ðEðiÞ; ÊðiÞÞ are

collected until we have 100 logical error events for a data point.
Otherwise, an error bar between two crosses is used to show the
95% confidence interval (1.96 times the standard error of the mean).
If a maximum number of iteration Tmax is reached, but the BP does
not converge, the decoding stops, and this error sample is counted
as a logical error. Tmax is chosen to match the literature for
comparison if it was specified. (Empirically, Tmax is chosen to be
much larger than the average number of iterations τ.) We will see
that MBP4 significantly improves BP4 with better convergence speed
(smaller τ) and lower logical error rate (with ne/n0 < 1).

Bicycle codes
MacKay et al. constructed families of random bicycle codes, which
are sparse-graph codes with performance possibly close to the
quantum Gilbert–Varshamov rate10. To have an [[N, K]] random
bicycle code, the number of row-weight k is chosen and two
random circulant matrices are generated accordingly to define the
check matrix of a quantum code of rate K

N (after proper row-
deletion). Since the minimum distance of the code is no larger than
k due to the code construction, it may have a high decoding error-
floor when k is small. For [[3786, 946]] bicycle codes, MacKay et al.
showed that a code of row-weight k ≥ 24 can have good BP
decoding performance. However, the decoding complexity is lower
for a check matrix with a smaller k and the syndrome measurements
are simpler. Thus we would like to have a good decoder for random
bicycle codes of small row-weight.
We first construct bicycle codes with the same parameters as in

ref. 10. Figure 1a shows the conventional BP4 performance on
[[3786, 946]] bicycle codes for row-weights k= 24, 20, 16, 12. It
shows that the code of row-weight 24 is able to achieve the
logical error rate of 10−4 before hitting the error-floor. Also shown
in Fig. 1a are the performance curves from MacKay et al. using
binary BP (BP2), which treats Pauli X and Z errors separately. It can
be seen that BP4 performs better than BP2, because the
correlations between X errors and Z errors are considered28.
Now we show that the performance is significantly improved

with MBP4, as shown in Fig. 1b. The error-floor performance is
improved, and the code of row-weight 16 is able to well achieve
the logical error rate of 10−6. The minimum distance of a bicycle
code is usually unknown, so it is hard to compare its performance
with r × BDD for some r. However, we know that the minimum
distance is no larger than k for a bicycle code. Thus the
performance of a code with k= 16 is at most PBDDðb16�1

2 cÞ for
1 × BDD. On the other hand, the performance of MBP4 on the code
of row-weight 16 is close to PBDD(t) with t between 140 and 200
depending on the logical error rate as shown in Fig. 1b, which is
better than 17 × BDD.
The average numbers of iterations are shown in Fig. 1c. The

convergence behavior is good since the number of average
iterations decreases when the physical error rate decreases. It can
be seen that the number of average iterations using MBP4 for
k= 12 decreases more than in the other three cases of k= 16, 20,
and 24 since there are more lower-weight stabilizers and hence
more low-weight degenerate errors.
Next, we study whether MBP4 improves the error suppression

ratio ne/n0 defined in Eq. (5). Detailed error counts n0, ne, nu, and
ntot of (M)BP4 on the two codes of k= 16 and k= 12 at
depolarizing rate ϵ= 0.027, 0.037, and 0.049 are provided in
Table 1. MBP4 has ne/n0 < 1 for these two codes if ϵ ≤ 0.049. Note

0.02 0.03 0.04 0.05 0.06 0.07
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Fig. 1 Performance of parallel BP4 and MBP4 on the [[3786, 946]]
bicycle codes of different row-weights (k), based on Tmax ¼ 90.
a MBP4 with α= 1 (conventional BP4). b MBP4 with appropriate
α > 1 chosen for each ϵ. c Average numbers of iterations in
a (dotted lines) and b (solid lines). The [M04] curves in a are
obtained using a conversion from bit-flip error rate to depolariz-
ing error rate, based on Fig. 6 and Eq. (40) in ref. 10. In a and
b, 100 logical error events are collected for each data point; or
otherwise, an error bar between two crosses indicates the 95%
confidence interval.
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that ne/n0 is small if the decoder finds degenerate errors most of
the time. We observe that the decoder exploits the degeneracy
more for a code with stabilizers of lower-weight. If the
depolarizing rate is smaller, the ratio ne/n0 is smaller for MBP4
on both codes. For k ≤ 12, the minimum distance of a bicycle code
would be too small to have a low error-floor.
We remark that the conventional BP4 has ne/n0 ≈ 1 for most

cases when k ≥ 16. Also listed in Table 1 are the numbers of
undetected errors, which are nonzero for k= 12. However, the
ratio nu/ntot tends to be small.
To further improve the performance of these bicycle codes, we

use AMBP4 with α* ∈ {2.4, 2.3, …, 0.5}. Herein we consider the
serial schedule because it accelerates the message update and
enlarges the error-correction radius in finite iterations. The
performance curves in Fig. 1b are significantly improved, as
shown in Fig. 2.
In the case of quantum communication, we may focus on a

target logical error rate of 10−4 (see ref. 10), where quantum
retransmission is possible if necessary59. Consider ϵ ¼ t

N for large
N. The quantum Gilbert–Varshamov rate6,60 states that there exists
a code of rate 1

4 with the target logical error rate at ϵ= 0.063. One
can see from Fig. 2 that the [[3786, 946]] bicycle code with k= 16
has this target logical error rate at ϵ= 0.057, which is close to the
quantum Gilbert–Varshamov rate.

Generalized hypergraph-product code
Herein we consider the decoding of an [[882, 48, 16]] GHP code
constructed in ref. 33. This code has row-weight 8, which is less
than its minimum distance and is thus highly degenerate. The
performance of this code under each decoding strategy is shown
in Fig. 3. The conventional BP4, no matter parallel or serial, does
not perform good enough. On the other hand, we find that most
errors can be decoded by MBP4 with α∈ [1.2, 1.5]. The results can
be further improved by AMBP4 with α* ∈ {1.5, 1.49, …, 0.5}, for
both the parallel and serial schedules.
For reference, we also plot the performance curves in the

literature33 in Fig. 3. The curve “[PK19] BP” is quaternary BP with a

layered schedule and the curve “[PK19] BP-OSD-ω” is BP with OSD
and additional post-processing. In addition to BP and OSD, BP-
OSD-ω has to sort out 2ω errors in ω unreliable coordinates, so its
complexity is high. For this [[882, 48, 16]] GHP code, as shown in
Fig. 3, the performance of AMBP4 is better than BP-OSD-ω with
ω= 15. The complexity of AMBP4 is low enough, so we simulate to
lower logical error rate.
We also plot several r × BDD performance curves for compar-

ison. Observe that the curve of serial AMBP4 has a slope roughly
aligned with 1 × BDD, but its performance is close to 8 × BDD at a
logical error rate of 10−6, since more low-weight errors are
corrected. We also draw the curve of the classical block error rate
PðÊ≠ EÞ ¼ n0=ntot. It becomes the logical error rate after times the
ratio ne/n0. Figure 3 shows that the improvement by the ratio ne/

Table 1. Numbers of various events in the simulations of BP4 and
MBP4 on the bicycle codes of row-weights 16 and 12.

BP4 at ϵ: 0.027 0.037 0.049

k= 16: ntot 398,936 95,977 21,590

n0 100 100 103

ne 100 100 100

nu 0 0 0

k= 12: ntot 101,997 31,765 15,155

n0 134 154 206

ne 100 100 100

nu 1 0 3

MBP4 at ϵ: 0.027 0.037 0.049

k= 16: ntot 12,635,150 3,920,434 79,172

n0 34 126 102

ne 20 100 100

nu 0 0 0

k= 12: ntot 1,251,769 410,670 89,821

n0 518 466 270

ne 100 100 100

nu 1 3 2

0.04 0.05 0.06 0.07 0.08 0.09 0.1
10-5

10-4

10-3

10-2

10-1

100

Fig. 2 Performance of serial AMBP4 on [[3786, 946]] bicycle
codes. Each [[3786, 946]] bicycle code is constructed with a specific
row-weight k. Several BDD performance curves are provided for
reference.

10-3 10-2 10-1

10-6

10-4

10-2

100

Fig. 3 The performance of the [[822, 48, 16]] GHP code. The
maximum number of iteration is Tmax ¼ 32. The decoding error rate
for curve PðÊ≠ EÞ is the classical block error rate, and for the other
(non-BDD) curves, it is the logical error rate. The [PK19] curves are
from ref. 33.
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n0 is quite significant, which means that AMBP4 is able to exploit
the code degeneracy to have better performance.

Surface and toric codes
In this subsection, we simulate the surface codes with a 45∘

rotation for lower overhead57,58. Our analysis can be applied to
rotated toric codes as well.
An [[L2, 1, L]] surface code for an odd integer L can be defined

on an L × L square lattice. Figure 4a provides an example of L= 5.
A stabilizer generator of a surface code is of weight 2 or 4,
independent of the minimum distance. Consequently, a large
surface code is highly-degenerate. As mentioned in the Introduc-
tion, the conventional BP cannot handle highly-degenerate
quantum codes since there could be many errors of similar
likelihood, so BP will hesitate among these errors. The decoding
performance curves of the conventional (parallel) BP4 and (serial)
MBP4 on several surface codes are shown in Fig. 5. It can be seen
that the conventional BP4 does not work well on these surface
codes. Moreover, the logical error rate is worse for a surface code
with a larger minimum distance.
On the other hand, serial MBP4 is able to decode the surface

codes, as shown in Fig. 5. For L= 17, the decoding performance of
serial MBP4 with α= 0.65 is around 1 × BDD to 2 × BDD, which
agrees with Gallager’s expectation on BP decoding of classical
codes37.
How MBP4 decodes the surface codes is examined as follows. As

previously discussed, ne/n0 would be small if a decoder can find
degenerate errors of the target, which is indeed the case for MBP4,
as shown in Fig. 6a. We also observe undetected error events in
the serial MBP4 decoding. For the conventional BP4, we have ne/
n0 ≈ 1 and the undetected error rate ≈ 0 for L > 7. Thus the
improvement of serial MBP4 over BP4 comes at the cost of some
undetected error events, as shown in Fig. 6b. (A similar
phenomenon was also observed in the neural BP decoder)42. This
unwanted phenomenon is not surprising, since a large step-size is
used so that BP may jump too far, causing logical errors. (We
remark that this is not a random search, or otherwise the ratio ne/
n0 would be as large as 3/4 since there are four logical operators, I,
X, Y, and Z, for a logical qubit). However, the undetected error rate
is smaller for larger L so this is fine for the purpose of fault-tolerant
quantum computation. Figure 6c compares the average numbers
of iterations for serial MBP4 and conventional BP4. It can be seen
that serial MBP4 uses fewer iterations than the conventional BP4,
and yet the performance of serial MBP4 is better. It means that the

convergence behavior of serial MBP4 is more accurate and the
computation is more economic and effective.
Next, we verify that the runtime of MBP4 is O(Nj) per iteration.

First, consider the toric codes with mean column-weight j= 4. We
test serial MBP4 with α= 0.75 at depolarizing rate of 0.32 on one
core (4.9 GHz) of an Intel i9-9900K machine. The average runtime
per iteration is shown in Fig. 7, which is obviously linear in N. Then
we consider the surface codes, which have a mean column-weight
slightly smaller than 4. As expected, the average runtime per
iteration is again linear in N and the slope is smaller than that for
the toric codes, as shown in Fig. 7.
Although MBP4 succeeds to decode topological codes from our

simulations, it is also observed that the performance of MBP4 on
surface codes saturates for large L, i.e., the slope of the
performance curve does not increase as L increases. For better
decoding performance, we use AMBP4 with α* ∈ {1.0, 0.99, …, 0.5},
and the performance for L= 17 is greatly improved, as shown in
Fig. 5. In Fig. 8, we plot the performance of AMBP4 for each surface
code of lattice size L ∈ {3, 5, 7, …, 17} and an error threshold of
about 16% is observed. Similarly, a slightly higher error threshold

Fig. 4 The lattice representations of (rotated) surface and toric codes. a [[L2, 1, L]] surface code with L= 5. b [[L2, 2, L]] toric code with L= 4.
In both figures, a qubit is represented by a yellow box numbered from 1 to N. Since the toric code is defined on a torus, there are orange
boxes on the right and bottom in b, each representing the qubit of the same number. An X- or Z-type stabilizer is indicated by a label W∈ {X,
Z} between its neighboring qubits. For example, in a, the label X between qubits 1 and 2 is X1X2 and the label Z between qubits 1, 2, 6, and 7 is
Z1Z2Z6Z7.

10-6 10-5 10-4 10-3 10-2 10-1
10-6

10-5

10-4

10-3

10-2

10-1

100

Fig. 5 Performance curves of several surface codes using the
conventional BP4 and serial (A)MBP4. The maximum number of
iterations is Tmax ¼ 150. The technique of fixed initialization is used
with ϵ0= 0.013.
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of roughly 17.5% can be observed on the toric codes, using AMBP4
decoding48.
Finally, we compare various polynomial-time decoders in terms

of error thresholds and computation complexity in Table 2. Let ϵsurf

and ϵtoric denote the error thresholds for the surface and toric
codes, respectively. Certain decoders can approach the quantum
hashing bound (which is roughly 18.9%6,60,61) for the surface or
toric codes, but they will not be considered due to high
complexities62–64. MWPM achieves ϵsurf ≈ ϵtoric= 15.5%17,19. RG
combined with BP (RG-BP) achieves ϵtoric= 16.4%22. The matrix
product states (MPS) decoder achieves 17% ≤ ϵsurf ≤ 18.5% with
complexity O(N2) specified65. Union-find (UF) has complexity
almost linear in N, but its decoding performance is slightly worse
than MWPM66. BP-assisted MWPM (BP-MWPM) has high thresholds
for both the surface and toric codes, but its complexity is O(N2.5)32.
AMBP4 achieves roughly ϵsurf= 16% and ϵtoric= 17.5%, and its
complexity is only OðN log logNÞ. Thus AMBP4 is very competing in
both decoding performance and computation complexity.

DISCUSSION
We analyzed the energy topology of BP and proposed an efficient
BP decoding algorithm for quantum codes called MBP. MBP
explores the degeneracy of a quantum code by finding
degenerate errors of the target. MBP is competing in both
decoding performance and computation complexity. The reader
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Fig. 6 Some statistical results of serial MBP4 (α= 0.65) on surface codes (solid lines). a The error suppression ratio ne/n0. b Undetected
error rate. c Average numbers of iterations (solid lines); also shown in c are the numbers for the conventional BP4 (dotted lines). In b, an error
bar between two crosses indicates the 95% confidence interval.
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Fig. 7 Almost linear runtime of MBP4. The average runtime of
MBP4 on each toric or surface code is plotted.
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Fig. 8 The threshold performance of serial AMBP4 on the surface
codes. The dashed line represents the error rate without error-
correction.

Table 2. The error thresholds and computation complexities of
various decoders on the surface codes (ϵsurf) and toric codes (ϵtoric)
over depolarizing errors. An entry is denoted− if the value is not
provided in the literature.

decoder ϵsurf ϵtoric complexity

MWPM15 15.5%19 15.5%a,b17 O(N2)20

RG-BP22 – 16.4% OðN logNÞ
MPS65 17–18.5% – O(N2)

UF66 – 14.85%a O(N)

BP-MWPM32 17.76%b 17.76% O(N2.5)

AMBP4 (this paper) 16% 17.5% OðN log logNÞ
aIf the threshold is derived by assuming only bit-flip errors, it will be
rescaled by a factor 3/2 (as in Eq. (40) of ref. 10).
bIt is generally believed that ϵsurf ≤ ϵtoric. Figure 10 in ref. 19 seems to
suggest ϵtoric= 15% < ϵsurf= 15.5% by the intersection points. However,
the MWPM threshold on toric codes over bit-flip errors is 0.103117, which,
after rescaled by 3/2, provides a higher threshold value of ϵtoric= 15.5%.
Similarly, Figs. 10 and 12 in ref. 32 seem to confusingly suggest
ϵtoric= 17.76% < ϵsurf= 17.84% by the intersection points. Thus only the
value of 17.76% is concluded in the literature.
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can find a detailed comparison of the thresholds and complexities
of MWPM- or BP-based decoders on various topological codes
(including color codes and XZZX codes) over depolarizing errors in
Table II of ref. 67.
It is known that BP can be treated as a recurrent neural network

(RNN)68. Similarly, our MBP induces an RNN with inhibition
without the pre-training process. This may provide an explanation
why RNN decoders can work on degenerate codes42. Thus, one
may consider an MBP-based neural network decoder, which
naturally generalizes the BP-based neural networks42,68. One
would have an adjustable parameter αmn,i for each edge (m, n) at
iteration i.
In AMBP4, one has to find a proper value for α*. An efficient

strategy to select α* is desired. A clue is that α* should be related
to the properties of the error syndrome. For example, a syndrome
vector of high weight usually corresponds to an error of high
weight and a smaller value of α should be chosen.
Our decoder can be extended for fault-tolerant quantum

computation with imperfect quantum gates, following the initial
study of BP decoding for both data and syndrome errors56. This is
our ongoing work.

METHODS
BP with additional memory effects (MBP)
Decoding an [[N, K]] quantum code subject to an (unknown) error
E 2 GN is to estimate an Ê 2 ± ES, given a check matrix S∈ {I, X, Y,
Z}M×N (where M ≥ N− K), a syndrome z∈ {0, 1}M, a real α > 0, and
initial LLRs fΛn ¼ ðΛX

n ;Λ
Y
n ;Λ

Z
nÞ 2 R3gNn¼1 of the error rate at each

qubit (see ref. 30). The error syndrome z ∈ {0, 1}M is defined by

zm ≜
0; if E and Sm commute;

1; if E and Sm anticommute;

�

where Sm is the m-th row of S. For simplicity, an E∈ {I, X, Y, Z}⊗N is
represented by E= (E1, E2, …, EN)∈ {I, X, Y, Z}N.
The LLR value ΛW

n ≜pI
n=p

W
n for W∈ {X, Y, Z} is initialized by a

distribution vector pn ¼ ðpI
n;p

X
n ;p

Y
n ;p

Z
nÞ ¼ ð1� ϵ0;

ϵ0
3 ;

ϵ0
3 ;

ϵ0
3 Þ for

independent depolarizing errors. The value of ϵ0 can be the channel
error rate ϵ or an independent fixed point∈ [0, 1]. When the LLR is
initialized by a fixed point, this is referred to as fixed initialization.
We denote NðmÞ ¼ fn : Smn ≠ Ig and MðnÞ ¼ fm : Smn ≠ Ig.

Define functions λW : R3 ! R

λWðγX ; γY ; γZÞ≜ ln
1þ e�γW

e�γX þ e�γY þ e�γZ � e�γW
(6)

for W ∈ {X, Y, Z}. Also define an operation⊞ : for a set of k real
scalars a1; a2; ¼ ; ak 2 R,

⊞
k

n ¼ 1
an ≜ 2tanh�1

Yk

n¼1
tanh

an
2

� �
: (7)

We may simplify a notation MðnÞ n fmg as MðnÞ nm.

Algorithm 1:. Quaternary MBP (MBP4)
Input: S ∈ {I, X, Y, Z}M×N, z∈ {0, 1}M, Tmax 2 Zþ, a real α > 0, and
initial LLRs fðΛX

n ;Λ
Y
n ;Λ

Z
nÞ 2 R3gNn¼1.

Initialization. For n= 1 to N and m 2 MðnÞ, let
ΓWn!m ¼ ΛW

n ; W 2 fX; Y; Zg:
Horizontal Step. For m= 1 to M and n 2 NðmÞ, compute

Δm!n ¼ ð�1Þzm ⊞
n02N ðmÞnn

λSmn0 ðΓn0!mÞ: (8)

Vertical Step. For n= 1 to N and W∈ {X, Y, Z}, compute

ΓWn ¼ ΛW
n þ 1

α

X
m2MðnÞ

hW;Smn i¼1

Δm!n: (9)

● (Hard Decision.) Let Ê ¼ ðÊ1; Ê2; ¼ ; ÊNÞ, where Ên ¼ I if
ΓWn > 0 for all W∈ {X, Y, Z}, and Ên ¼ arg min

W2fX;Y;Zg
ΓWn ,

otherwise.
● If hÊ; Smi ¼ zm 8m, halt and return “CONVERGE”;
● Otherwise, if the maximum number of iterations Tmax is

reached, halt and return “FAIL”;
● (Fixed Inhibition.) Otherwise, for n= 1 to N, m 2 MðnÞ,

and W∈ {X, Y, Z}, compute

ΓWn!m ¼ ΓWn � hW; SmniΔm!n: (10)

● Repeat from the horizontal step.

Motivated by the energy topology of a degenerate quantum
code and gradient decent energy optimization, we propose MBP4
in Algorithm 1. MBP4 has variable-to-check messages λSmnðΓn!mÞ
and check-to-variable messages Δm→n, similarly to the log-BP in
ref. 30; however, the message Δm→n is used differently when
generating ΓWn!m in Eq. (10). Especially we can rewrite Eq. (10) as

ΓWn!m ¼ ΛW
n þ 1

α

P
m02MðnÞ

hW;Sm0ni¼1
Δm0!n

� �

�hW; SmniΔm!n:

(11)

The term−〈W, Smn〉Δm→n is called inhibition, which provides
adequate strength to resist the wrong belief looped in the short
cycles. Unlike refs. 28,30, where the corresponding inhibition is also
scaled by 1/α, we suggest to keep this inhibition strength (Eq. (11))
since this part is the belief inherited in check node m, and it must
remain unchanged when we update the belief in variable n to
make the decoding less affected by the short cycles. Consequently,
these introduce additional memory effects in MBP. How to choose
the factor α is intriguing. Please see ref. 48 for more discussions; for
reference, MBP4 can also be defined in the linear domain.

Remark 1. In Algorithm 1, one can verify that

λSmnðΓn!mÞ ¼ λSmnðΓnÞ � Δm!n: (12)

It is more efficient to update λSmnðΓn!mÞ in this way so that for
each n, computing λSmnðΓnÞ needs at most three computations of
λSmnð�Þ for Smn ∈ {X, Y, Z}; otherwise, directly computing λSmnðΓn!mÞ
needs jMðnÞj (usually ≥3) computations of λSmnð�Þ. On the other
hand, the computation in the horizontal step can be simplified as
in Remarks 1 and 4 of ref. 30. Then the MBP4 complexity is
proportional to the number of edges Nj per iteration, and thus the
overall complexity is OðNjTmaxÞ or OðNj log logNÞ.

Adaptive MBP

Herein we propose a variation of MBP4 with α chosen adaptively,
as shown in Algorithm 2. The value of α controls the search radius
of MBP4. Typically, a fixed α is chosen so that BP focuses on an
error-correction region between 1 × BDD and 2 × BDD. For highly-
degenerate codes, we intend to correct errors in a much wider
region, and thus we need to consider variations in α. More
specifically, α should be chosen according to the given syndrome
vector. Precisely determining a required value of α helps to
achieve the desired performance, but in general, it is difficult to do
so. Generating a solution by referring to multiple instances of the
decoder is an important technique in Monte Carlo sampling
methods (cf. parallel tempering in ref. 62), as well as in neural
networks (cf. Fig. 4 of ref. 68). This is like using an ε-net of α. Thus
we conduct multiple instances of MBP4 with different values of α,
and choose a valid (syndrome-matched) solution with the largest
(the most conservative) value of α. This value of α is adaptively
chosen and denoted by α*, so Algorithm 2 is referred to as AMBP4.
For this algorithm, the prefix parallel/serial is used to indicate the
schedule type of the oracle function MBP4.
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Note that in Algorithm 2 each value of αi is tested in a
sequential manner; these αi’s can be tested in parallel if the
physical resources for implementation are available.

Algorithm 2:. Adaptive MBP4 (AMBP4)
Input: S∈ {I, X, Y, Z}M×N, z ∈ {0, 1}M, Tmax 2 Zþ,

fΛn ¼ ðΛX
n ;Λ

Y
n ;Λ

Z
nÞ 2 R3gNn¼1, a sequence of real values α1 > α2 >

⋯ > αl > 0, and an oracle function MBP4.
Initialization: Let i= 1.
MBP Step: Run MBP4ðS; z; Tmax; αi; fΛngÞ, which will return

“CONVERGE” or “FAIL” with estimated Ê 2 fI; X; Y; ZgN .
Adaptive Check:

● If the return indicator is “CONVERGE”, then return
"SUCCESS” (with valid Ê and α*= αi);

● Let i← i+ 1. If i > l, return “FAIL” (with invalid Ê);
● Otherwise, repeat from the MBP Step.
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