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Efficient quantum state tomography with convolutional neural
networks
Tobias Schmale1✉, Moritz Reh1✉ and Martin Gärttner1,2,3✉

Modern day quantum simulators can prepare a wide variety of quantum states but the accurate estimation of observables from
tomographic measurement data often poses a challenge. We tackle this problem by developing a quantum state tomography
scheme which relies on approximating the probability distribution over the outcomes of an informationally complete measurement
in a variational manifold represented by a convolutional neural network. We show an excellent representability of prototypical
ground- and steady states with this ansatz using a number of variational parameters that scales polynomially in system size. This
compressed representation allows us to reconstruct states with high classical fidelities outperforming standard methods such as
maximum likelihood estimation. Furthermore, it achieves a reduction of the estimation error of observables by up to an order of
magnitude compared to their direct estimation from experimental data.
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INTRODUCTION
With modern day noisy intermediate scale quantum (NISQ)1

simulators outperforming each other in terms of system size and
complexity on a timescale of mere months, characterizing the
physically prepared states becomes exceedingly difficult. Quan-
tum state tomography (QST)2 describes the reconstruction of a
density matrix from experimental measurement data and might
be considered one of the hardest feats, exhausting not only
experimental, but also numerical resource limits. This is due to the
curse of dimensionality, inherent to all quantum systems, from
which QST suffers in two-fold form: Not only do standard
tomography schemes require an exponential amount of experi-
mental data, but also the classical post-processing is often of
intractable nature. We consider four main properties to be
desirable for QST-schemes:

(i) Sub-exponential scaling in required experimental data.
(ii) Sub-exponential scaling in classical post-processing.
(iii) ’Observable universality’, requiring that upon performing a

successful tomography, any linear or non-linear quantum
observable should be faithfully reconstructable, without
requiring further experimental data.

(iv) ’State universality’ meaning that the algorithm should be
indifferent to the (possibly mixed) target state that is
prepared experimentally.

Obviously, no algorithm can exist that perfectly satisfies all
these conditions. Most tomography schemes that have recently
been developed or applied to experimental systems, give up one
or more of these conditions in order to gain w.r.t. the remaining.
Standard maximum likelihood estimation (MLE)3 scales exponen-
tially, giving up on requirements (i) and (ii). Some Bayesian
methods4 gain on (i) by giving up (ii). Many entanglement
detection schemes5,6 as well as shadow tomography7,8 give up on
requirement (iii). A multitude of variational approaches have been
developed which restrict the state space in which they seek for an
optimal solution, therefore giving up on property (iv) and possibly
(iii). Examples are matrix-product state tomography9–11, which

restricts its search space to weakly entangled states; compressed
sensing (CS)12–14, which restricts to low-rank density matrices, and
permutationally invariant (PI) tomography15,16, which restricts to PI
states. It is this restriction of the search space, that allows these
methods to obtain target state approximations from datasets of
significantly reduced sizes, which is the feature that also our work
aims to exploit.
A new class of variational ansatz functions, which has been

employed for QST recently are neural network quantum states
(NQS)17–19. The exploration of NQS is motivated by universal
approximation theorems20,21 and the observation that many NQS
can efficiently encode volume-law entanglement and thereby have
higher representational power compared to most tensor-network
based approaches22–24 as well as a favorable generalization to
higher dimensions. These emerging neural network QST (NN-QST)
approaches18,19,25–30 are starting to receive attention from the
experimental communities with applications to Rydberg-, trapped-
ion and optical systems31–34. We note that neural networks have
also been applied to quantum state readout tasks without relying on
NQS35–38, which we, however, exclude from our definition of NN-
QST, since our focus is on efficient variational methods.
A major challenge for the successful application of NN-QST

schemes is the choice of the variational ansatz, i.e. the network
architecture, and the understanding of its intrinsic limitations.
Recently, it was shown that convolutional neural networks (CNNs)
are capable of efficiently encoding volume-law entanglement39

for pure states, motivating us to explore this architecture also for
NN-QST tasks operating on mixed states. We use CNNs to learn a
state’s probabilistic representation from measured data, bridging
the gap between quantum theory and neural networks by
employing Positive Operator Valued Measures (POVMs). The
resulting QST scheme scales subexponentially in the system size
as it contains no exponentially large state representations and
makes no assumption on the target state’s purity, generalizing
previous approaches18,19. While this scheme has been demon-
strated for specific classes of states and network architectures25,
applications to experimental systems have not exceeded the few
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qubit regime27,33. The main reason for this are poorly understood
performance advantages. Making further progress crucially
requires the strengths and limitations of neural network based
tomography schemes to be evaluated in comparison to standard
tomography methods. Here we perform quantitative comparisons
between our NN-QST scheme and standard techniques like MLE.
For a broad range of typical experimental scenarios, we see
improvements compared to MLE for small datasets, i.e. few
measurement samples, as well as a noise reduction for the
estimation of local observables on larger systems, thus decreasing
the necessary amount of experimental samples at a given error
threshold.

RESULTS
POVM formalism
For efficient NN-QST a suitable variational ansatz is crucial. Here we
adopt an approach pioneered in25, where the quantum state is
encoded by a probability distribution over the outcomes of
experimental measurements. This probability distribution, in turn, is
approximated by a neural network. This has the advantage that it
allows for a tomography scheme that is directly compatible with
experimentally measured data and allows for applying standard
probabilistic machine learning models operating on real numbers. In
the following we briefly summarize the employed learning rule and
the POVM formalism, and direct to25, as well as33,40,41 for further
details on NQS in combination with POVMs.
In the probabilistic formulation of quantum mechanics, the

state of a system is not represented by its density matrix ρ, but by
the Born-rule probabilities

PðaÞ ¼ Tr½ρMa� (1)

of an informationally complete (IC) POVM, consisting of measure-
ment operators Ma, where a labels possible measurement
outcomes. ‘Informationally complete’ means that the Ma form a
complete basis for the set of hermitian operators, implying that
any density matrix or observable can be expanded using the
POVM operators. Therefore, knowing P(a) is equivalent to knowing
ρ and in principle ρ can be inferred from P(a) by inverting Eq. (1)
to ρ ¼ PðaÞT�1

aa0Ma0 using the overlap matrix Taa0 ¼ Tr½MaMa0 � and
by summing over repeated indices. Any observable may be
computed by sampling from the POVM distribution using

Tr½ρO� ¼
X
a

PðaÞOa ¼ hOaia�PðaÞ; (2)

where Oa ¼ Tr½Ma0O�T�1
aa0 is the POVM representation of an

observable O. We consider systems of N qubits where each qubit
is read out individually and thus the POVM elements are product
operators Ma ¼ Ma1 � ¼ �MaN . With such a factorized POVM,
the overlap matrix T also factorizes, which allows the computation
of Oa to be efficient, given that O is a local observable, or can be
expressed as a sum of few (polynomially many in N), possibly non-
local, Pauli strings25.
The experimentally most convenient IC measurement scheme

consists of single qubit Pauli measurements. By randomly
selecting the x, y or z basis for measuring each qubit in each
experimental run, one effectively measures a POVM with 6
possible outcomes per qubit (3 bases with 2 outcomes each).
Unfortunately, this results in an overcomplete POVM, with an
overlap matrix T that is not invertible. This can easily be remedied
by grouping three out of the six outcomes into one, resulting in
four POVM operators such as e.g.

M0=1=2 ¼ 1
3
"x=y=z
�� E

"x=y=z
D ��;M3 ¼ 1�M0 �M1 �M2

� �
:

Here M3 now incorporates the 3 #j i outcomes for all axes x, y and
z. This POVM is typically referred to as the Pauli-4 POVM25. In this

setting, a measurement outcome a= a1a2 . . . aN is a string of N
single qubit outcomes for an N qubit system, over which the
POVM distribution P(a)= P(a1, a2, . . . , aN) is defined. A dataset of
size Ns is a set of multiple such outcomes D ¼ a1; a2; :::; aNsf g.
We use a neural network as a non-linear function that returns a

single POVM probability P(a) given a POVM outcome a as input.
We can thus write our neural network ansatz for the POVM
distribution as PθNNðaÞ, where θ denotes the tuple of variational
parameters describing the ansatz. Fitting the variational para-
meters of the network builds on standard machine learning
methods: We use the established ADAM optimizer42 to find the
parameters θ that have the highest likelihood of reproducing the
data. This is equivalent to minimizing the cross-entropy between
the dataset distribution and the NN distribution. The ADAM

optimizer gave considerably better results than less advanced
optimizers like the pure gradient-descent optimizer or a
momentum optimizer.
We finally point out, that the positivity condition on the density

matrix is not known to easily translate into the POVM formalism,
without introducing exponential scaling43. Therefore, one cannot
guarantee that all sampled observables obey physical constraints
(such as Tr½ρ2�<1). We have observed violations of such constraints
very rarely, hence we argue that the lack of the positivity
condition is not a limiting factor of this approach. While RBM
purifications44 are one means of achieving a positive neural
network density matrix, these can currently not make use of other,
more flexible network architectures such as CNNs.

CNN architectures
NN-QST in conjunction with POVMs has been successfully applied
to recurrent neural networks (RNNs)25 as well as attention based
models27. We expand on this knowledge, by employing two
distinctly different versions of CNNs, motivated by recent
theoretical developments, which frame CNNs as a generalization
to matrix product states24,39.
The first architecture we consider is the ‘standard’ CNN in

Fig. 1a, which is fed a one-hot encoded vector of single-site
outcomes, performs repeated convolutions on it and returns the
corresponding (unnormalized) POVM probability ~PNNðaÞ. Motiva-
tions for using this architecture are its established representational
power when operating on pure states24,39, the ability to represent
1D and 2D states, as well as the ability to encode symmetries such
as translation invariance without increasing the computational
complexity. Unfortunately, one has to resort to Markov Chains in
order to draw samples from the network, which can lead to
unintended correlations between generated samples45.
The second architecture is a 1D autoregressive CNN

(ARCNN)46,47, illustrated in Fig. 1b. This architecture is very similar
to the standard CNN, but makes use of the autoregressive
property, which states that a probability of multiple variables can
be partitioned into a product of conditionals, which are returned
by the final layer of the ARCNN: P(a)= P(a1)P(a2∣a1)…P(aN∣a1. . aN
−1). Other network architectures that also make use of this
property include recurrent neural networks25 and Transformers27.
The autoregressive property of the ARCNN allows probabilities to
be exactly normalized, and for samples to be drawn exactly,
circumventing the need for Markov Chains. More details on both
architectures can be found in the methods section.

Expressivity of CNNs
For both the CNN with product-output layer (see methods) and
the ARCNN, one can write down a maximum (physical) distance
dmax, beyond which correlations are typically not captured
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correctly anymore:

dCNNmax ¼ ðK � 1ÞL; (3)

dARCNNmax ¼ ðK � 1ÞLþ 1; (4)

where L is the network depth and K the size of the convolution
kernels. Both can be understood intuitively from the schematics in
Fig. 1a and b: With each layer (i.e. L times), the dependence of any
single site outcome gets propagated by a distance of one less
than the kernel size (i.e. K− 1). For the autoregressive CNN, an
input of ai results in the probability for ai+1, explaining the fact,
that correlations reach one site further as compared to the CNN.
These cutoff points for correlations can be seen in Fig. 1c and d.
For the following results, we are mainly interested in systems

with long-range correlations, hence we use architectures with
dmax ¼ l, where l is the (side-) length of (2D) 1D systems. This gives
a very compact ansatz, with the number of variational parameters
scaling only cubically in the system size. For the benchmark cases
studied in this work, we did not find a benefit in increasing dmax
beyond this point, as this increases the number of network
parameters, artificially enlarging the search space and increasing
the risk of overfitting, resulting in worse generalization. In the
following it will be crucial to quantify how well the networks
generalize, i.e. how many samples one needs to learn a state well,
or equivalently, what errors one can expect for given dataset sizes.

NN-QST benchmarks
We benchmark the tomography scheme by comparing it to two
conventional schemes: MLE, i.e. parametrizing the full density

matrix and maximizing the likelihood of this reproducing the
dataset, as it presents the go-to choice for many small scale qubit
systems and is commonly used in experiments3,48, as well as direct
estimation of observables from the dataset. To carry out this
comparison we generate synthetic measurement data sets. We
compute a target density matrix exactly and compute its POVM
distribution, from which we draw samples (1k− 100 k for 16 qubit
systems). We then use these samples to train the network,
resulting in the optimal variational representation PNN(a). For small
systems, i.e. those where it is feasible, we perform MLE to obtain
an estimate for the density matrix following3, of which we
compute the POVM distribution PMLE(a). We then ask, which of
these two estimates is closer to the ground truth target
distribution, as measured by the classical infidelity
DNN=MLE ¼ 1�

X
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PNN=MLEðaÞPTruthðaÞ

q
: (5)

This allows us to quantify, which of the two estimates is better, by
using the quotient DNN/DMLE. If it is less than one, the network
gives the better estimate for the target state compared to MLE,
and vice versa.
For systems where MLE is infeasible, we instead consider the

root mean square (RMS) error of observables

RMSNN=Data ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðONN=Data � OTruthÞ2
D Er

; (6)

inspired by26. These can either be computed from the training
dataset itself, or from the network-encoded distribution, from
which we draw 500k samples for 16 qubit systems. In this situation
the NN acts in a way of replacing the measured dataset with a
larger, network-generated one, aiming to decrease statistical
measurement noise. Here we can ask, if the NN gives an
advantage for the estimation of observables, by looking at the
quotient RMSNN/RMSData.

Transverse field Ising model. We start by benchmarking this
method on ground states of a translation-invariant TFIM

H ¼ �J
X
hi;ji

σz
i σ

z
j � B

X
i

σx
i (7)

with coupling strength J > 0 using the standard CNN. This serves
as a proof of concept in an idealized scenario, as the translation
invariance is directly encoded in the neural network. Since the
comparison of a symmetrized network to an unsymmetrized
reference is somewhat unfair, we refrain from enforcing any
symmetries for the later examples.
Figure 2 shows the method being applied to small, i.e. MLE-

suitable 1D states at the Ising-critical point. Our method achieves a
reduction of infidelity by a factor 2-5, depending on system and
dataset size. The figure shows one main trend: the network
advantage shrinks for increased dataset size. This is also an
expected result, as MLE has to outperform any variational
approach in the limit of infinite dataset size since the network is
an approximation while MLE uses a full parameterization of the
state. We generally see this behavior for all studied systems.
In Fig. 3, we show the method being applied to a 4 × 4 lattice,

which is not feasible for MLE anymore. The histograms show how
enhancing the dataset using the NN can lead to a reduced
variance of observable estimates. For the network advantage, we
see two trends: An increased advantage for small datasets, as well
as an improved performance for smaller coupling strengths. The
latter results in states closer to product states, which are easier for
the network to learn. If J/B becomes too large, training the
network becomes unreliable on such small datasets and the
advantage disappears.

Noisy long-range interacting ion chain. For a more experimentally
motivated49 example, we look at ground states ψ0j i of a 16-site,

Fig. 1 CNN architectures and their expressivity. a, b Schematics of
the CNN architectures. Entries of cells should be understood as a
dependency, not as literal values, e.g. bottom right cell of standard
CNN depends on a2, a3 and a4. Lighter cells are padding cells. The
green arrows indicate the dot-product of the originating cells with a
kernel. See the methods section for details. a Standard CNN, here
with circular boundary (CCNN), b Autoregressive CNN (ARCNN). c, d
hσzi σzj i correlator as a function of distance d= ∣i− j∣, for varying
network depth L and kernel size K, shown for 1D transverse-field
Ising model (TFIM) ground states (N= 16, J/B= 1). Error bars are
standard deviations across multiple independent tomography
datasets and neural network training runs with randomly initialized
parameters.

T. Schmale et al.

3

Published in partnership with The University of New South Wales npj Quantum Information (2022)   115 



long-range interacting ion chain Hamiltonian

H ¼ �
X
i;j

J

ji � jj1:1 σ
z
i σ

z
j � B

X
i

σx
i (8)

with J > 0, open boundary conditions and small (3%) added
dephasing noise. The target state is thus ρTarget ¼
0:97 ψ0j i ψ0h j þ 0:03

216
1. As this is naturally a 1D system, we use the

ARCNN. Here we study the NN advantage for correlation functions
of increasing order. This is interesting, as higher order correlators

are typically harder to estimate from samples, as the variance of
the POVM-observable scales exponentially in correlation order.
Thus, higher moments require a better approximation of the state,
providing a sensitive benchmark for the quality of the state
representation. Specifically, we look at powers n of the Pauli-Z
operator

Cn :¼ 1
16� nþ 1

X16�nþ1

i¼1

σz
i σ

z
iþ1:::σ

z
iþn�1

� �
: (9)

Local observables, like the terms in Eq. (9), only depend on the
reduced density matrix of the subsystem they act on. Thus, these
observables can in principle be estimated by performing MLE on
this subsystem only. We show this ’local MLE’ applied to the bare
dataset and to the NN-enhanced dataset in Fig. 4 in addition to
the previously employed benchmarks. Using the NN-generated
dataset, we see a reduction in RMS to a degree, that allows
sampling for correlators of three orders higher, than what is
possible with the bare dataset. When applying the local MLE to
both bare and NN-generated dataset, this advantage is reduced
significantly, but does not disappear. However, we emphasize
that the ARCNN is on par with MLE, at a greatly reduced
computational complexity. We note that the computational cost
depends on the specific implementation and that there exist
more efficient MLE algorithms than the one used here (eg,
ref. 50). However, the difference in scaling behaviour between
MLE and NN-QST persists (cf. Methods section). Notice also the
peak in RMS at a correlation order of 2 for MLE, leading to an
increased RMS compared to plain sampling. We find this to be
systematic, which is why we refrain from doing this comparison
to local MLE in the remainder of this work, where second order
correlation functions are of interest.
Close examination of the datapoint for C6 in Fig. 4 reveals effects

of the lack of a positivity constraint on the density matrix for direct
estimation from samples and POVM based NN-QST. Here the
dataset estimate lies outside the physical range−1 ≤ Cn ≤ 1, but
the network is able to correct this due to the reduced statistical
error. Only for C8 (not shown) the network cannot cure the
unphysical feature present in the dataset. Testing that observables
only take physical values may serve as a useful sanity check for
whether the network generalizes towards a physical state.

Steady states of a driven dissipative 2D-system. As a final system,
we consider steady states of a 4 × 4 TFIM with spontaneous decay,
motivated by ongoing research into phase diagrams of open
quantum systems51, with potential applications to Rydberg
systems. We switch back to the standard CNN with dense output
layer, since the system is two-dimensional. However, now no
symmetries are enforced in the network. We use the Monte-Carlo
wave function approach52, to simulate the dynamics under the
Lindblad master equation

_ρ ¼ �i½H; ρ� þ γ
X
j

LjρL
y
j �

1
2

Lyj Lj; ρ
n o� 	

(10)

with the Hamiltonian from Eq. (7) with antiferromagnetic coupling
J < 0, B < 0 and

Lj ¼ σ�
j ¼ 1

2
ðσx

j � iσy
j Þ; (11)

until the steady state is reached. We consider the density matrix
that is obtained using 1000 pure-state trajectories as our exact
target. This system undergoes a dissipative phase transition51

which is visible as a peak in the correlation length

ξ2z ¼
X
i;j

jri � rjj2ðhσz
i σ

z
j i � hσz

i ihσz
j iÞ: (12)

We show this phase transition as obtained by computing the
correlation length on the 1D diagonal of the 2D lattice, once

Fig. 2 Tomography of 1D Ising groundstates: NN vs MLE.
a Residual classical infidelity of CCNN and MLE on 1D Ising ground
state with periodic boundary conditions, J/B= 1. Shown for different
dataset sizes Ns. b Residual network infidelity normalized to residual
MLE infidelity. Error bars are standard deviations across multiple
independent tomography datasets and neural network training runs
with randomly initialized parameters.

Fig. 3 Tomography of 2D Ising groundstates: NN vs plain data.
Comparing the performance of the CCNN against the plain dataset
in estimating local observables on a 4 × 4 Ising lattice with periodic
boundaries. a Histogram of observable estimates from independent
datasets and network initializations, with J/B= 0.3 and Ns= 10 k.
b RMS errors of observables for varying coupling strengths and
dataset sizes, as well as comparisons of NN and plain dataset in
terms of the quotient of their respective RMS errors. Error bars are
standard deviations across multiple independent tomography
datasets and neural network training runs with randomly initialized
parameters.
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directly from the training data, as well as from a NN-enhanced
dataset in Fig. 5. The network is able to capture the phase
transition, as a peak in the correlation length at ∣B/γ∣ ≈ 2 is clearly
visible. At the dashed gray line, we exchange ↑ and ↓ in the POVM
that the CNN uses (i.e. M3 now groups all the "j i outcomes instead
of the #j i outcomes), ensuring that the target state does not
contain exact zeros in its POVM distribution. For small ∣B∣, the
steady state tends towards an eigenstate of the observable in
question. Thus the variance of sampling this observable is
significantly reduced and the network has no advantage here.
For the limit of large ∣B∣ we see a huge variance in the sampled
correlation length, which the CNN trades for a small bias, i.e.
systematic error. The overall effect is that the CNN bias and CNN
variance lead to a significantly smaller RMS error as compared to
the bare dataset. Notice that this bias also shrinks with increasing
dataset size (Fig. 5, insets).
Depending on the observable of interest, the bias can have a

more severe effect than depicted. When computing the correla-
tion length over the 1D diagonal, as in Fig. 5, the corresponding
sum in Eq. (12) is a weighted average of 4

2


 � ¼ 6 connected
correlators of the form hσz

i σ
z
j i � hσz

i ihσz
j i. After sampling, one may

consider each of these connected correlators as a random variable
with a variance and a bias. For the plain dataset, this bias is of
course zero. However, when evaluating Eq. (12) over the entire
lattice, the sum contains 16

2


 � ¼ 120 terms, with roughly similar
variance and bias. For the sampled case, by simple addition of
probability distributions, the variance of the latter observable is
thus reduced by a factor of

ffiffiffiffiffiffiffiffiffiffiffiffiffi
120=6

p � 4:5 compared to the

former one. Due to the bias, the network is not able to make use
of this self averaging effect, resulting in a significantly reduced
advantage. We show this full system correlation length in the
methods section. Thus the network advantage is the largest, if one
is interested in the expectation values of individual correlators,
and might be smaller if large sums over many similarly distributed
correlators are involved as the bias inherent to the variational
approach becomes more statistically significant for the averaged
results.

DISCUSSION
Motivated by the proven superior representation capabilities of
CNNs39, we explored the application of two different CNN
architectures to NN-QST tasks, i.e. the reconstruction of pure and
mixed quantum states. We especially found the autoregressive
CNN to be extremely versatile, due to its great expressivity, exact
sampling and stability during training. For a broad range of
experimentally relevant scenarios, including pure and dephased
ground states, as well as steady states, we presented quantitative
comparisons to traditional schemes. This showed a significant
advantage over MLE or, for system sizes inaccessible to MLE,
direct sampling of local observables from an IC-POVM dataset.
Although we demonstrated the described properties on syn-
thetic data, the method may be readily applied to real quantum
simulation experiments. Once the quantum state has been
successfully learned from experimental data, any linear or non-

Fig. 4 Tomography of noisy long-range interacting groundstates:
NN vs plain data. Evaluating the ARCNN by evaluating observables
from Eq. (9) and comparing to those obtained from the plain
dataset, on a length 16 ion chain with 3% dephasing noise, J/B= 0.6
and open boundaries, with a dataset size of Ns= 10 k. Dashed lines
show results of applying local MLE directly to dataset (orange) and
to a neural network enhanced dataset (blue). a Observables
according to Eq. (9), b residual RMS error, c residual network RMS
normalized to dataset RMS. Error bars are standard deviations across
multiple independent tomography datasets and neural network
training runs with randomly initialized parameters.

Fig. 5 Tomography of steady states: NN vs plain data. Dissipative
phase transition of a 4 × 4 TFIM with spontaneous emission at
J=−1.25γ with open boundaries. Ns= 1 k (insets: 100 k). Gray
vertical line: Switch ↑ and ↓ in POVM for CNN. a Observables
according to Eq. (12) but summed only over system diagonal,
b residual RMS error, c residual network RMS normalized to dataset
RMS. Error bars are standard deviations across multiple independent
tomography datasets and neural network training runs with
randomly initialized parameters.
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linear observable can be extracted from the resulting NQS
representation.
Like any variational approach, which benefits from restricting

the state space to a representable subspace, this scheme is subject
to potential bias. The effect of such bias intimately depends on the
estimated observable, the approximated state, as well as the
sample size, as discussed above. This makes it necessary to a priori
validate the method to ensure generalization of a given model to
the situation at hand, as we have done in this work for a range of
experimentally motivated cases.
We emphasize that the proposed method can harness the

strengths of any variational function approximator, thus directly
profiting from the rapid development of ever more expressive
architectures in the machine learning community. New network
architectures can only enhance the state space that is covered by
NN-QST, motivating further research in this area. For future
projects it would be interesting to compare many of the NN-QST
schemes, to methods like shadow tomography7,8, which explicitly
claim superiority over NN-QST.

METHODS
Details on network architectures
To better explain the obtained parameter counts for the neural
networks, we briefly explain the convolution operation in more
detail, which the CNNs perform iteratively (here shown for the 1D
case).

convðx; k; bÞð Þi ¼ f bþ Pjkj�1

j¼0
kjxjþi

 !
;

for i 2 f0; ::: ; jxj � jkjg
(13)

of the input data x with a so-called kernel k denotes a single
convolution. Here the length of a vector v is denoted by ∣v∣, b is a
bias and f is a non-linear activation function acting element-wise
on the results of the convolution. This can be thought of as taking
dot-products of the kernel and translated section of the input
vector. For a 2D CNN, k would be a matrix, and Eq. (13) would
compute dot products between this matrix and translated
submatrices of the then two-dimensional input x.
Multiple kernels are used per layer l resulting in multiple

intermediate representations xl,m. The latter is then computed via

xlþ1;m ¼
X
n

convðxl;n; kl;m;n; bl;mÞ: (14)

This structure on kernel-level is not explicitly depicted in Fig. 1.
The axis indexed by m here is often called the feature dimension.
Keeping the number of features per layer f= N constant, as

done throughout this work and using Eq. (3), the kl,m,n tensor has
K � L � f � f ¼ OðNÞ � N � N ¼ OðN3Þ parameters.
We employ two distinctly different network architectures. The

first is the ‘standard’ CNN in Fig. 1a, which is fed a one-hot
encoded vector of single-site outcomes (leading to an input shape
of (Batch-Size, N, 4)) and performs L convolutions with kernels of
size K. Boundary conditions are either open or periodic, depending
on the symmetries of the target state. In Eq. (13) a periodic

boundary condition implies that xi+j wraps around to x0 when i+ j
reaches the length of x. A final layer turns the network output into
a single scalar. Two common options are a dense layer, or a
product layer, the latter resulting in network outputs of the form
~PNNðaÞ ¼ e

P
last layer. This results in an un-normalized probability

distribution. Therefore, before each training step, a Monte Carlo
estimate of the normalization constant has to be performed. For
normalization, we generate as many uniform POVM samples as
there are samples within each training batch. For translation
invariant states, we use the product output layer and the dense
output layer otherwise.
The second architecture is a 1D autoregressive CNN

(ARCNN)46,47 in Fig. 1b. This architecture makes use of the
autoregressive property, which states that a probability of multiple
variables can be partitioned into a product of conditionals:
P(a)= P(a1)P(a2∣a1)… P(aN∣a1. . aN−1), see47 for more details on the
autoregressive structure. The autoregressive CNN only differs from
the standard CNN in the boundary conditions and in the fact that
the physical dimension is shifted by one site, so that the last site is
not used as an input. The outputs are fed into a softmax layer,
which results in four conditional probabilities to be returned from
each site. The exactly normalized probabilities may be computed
by passing a POVM outcome through the network and selecting
the conditional probability according to the input at each site.
Exact samples can be drawn from this distribution, by passing
zeros through the network, sampling the first site, passing this
outcome through the network and sampling the next site, etc.
This results in N forward passes in order to generate one exact
POVM sample, at the benefit of circumventing Markov chains.
In addition to exact normalization and sampling, we empirically

find this network architecture to be substantially easier to train,
and the training algorithm to converge for a wider variety of
states. There is no simple generalization of this approach to higher
dimensional systems, however approaches like46 have been
proposed.
The hyperparameter configurations used for producing the data

shown in each figure are summarized in Table. 1.
All training runs throughout this project took less than 2000

epochs to complete while all MLE runs required less than 100
iterations. This shows that there is no prohibitive issue in training-
complexity for the states tested. One training epoch using the NN
takes a time of Oðnum:ParametersÞ ¼ OðN3Þ42, while one
iteration in the MLE takes a time of Oð4NÞ3.

Self-averaging can reduce network advantage
As explained in the main text, the effect of a bias, that the network
might introduce for a given observable may be amplified when one
is interested in observables which contain sums over many
independent observables. In this scenario the network-bias inhibits
any positive influence of possible self averaging effects. We
demonstrate this, by computing the correlation length from Eq.
(12) by summing over all pairs of lattice sites, as opposed to only
summing over a diagonal as in Fig. 5. The result is shown in Fig. 6.
The sampled observables self-average, resulting in a smaller
statistical error at fixed sample size, while the network systematically

Table 1. Network architectures used for each figure. In all cases we used a tanh-activation function, a learning rate of 10−3, N features per layer for N
particles, and an exponential output function. [x] denotes the nearest integer function and ⌈x⌉ the ceiling function.

Figure Network architecture Network boundary conditions Num. Layers L Kernel size K Num. Parameters

2 - Small 1D TFIM CNN Circular
ffiffiffiffi
N

p�  d ffiffiffiffi
N

p e þ 1 73–673

3 - Larger 2D TFIM CNN Circular 2 2 1329

4 - Ion Chain ARCNN Open 3 6 3572

5 - Steady States CNN Open 2 3 3169
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overestimates the correlation length for fields greater than the
critical field.

DATA AVAILABILITY
The code developed for this project for generating test data is available at
gitlab.com/ann-povm/qst-code.

CODE AVAILABILITY
The code developed for this project for performing the NN-QST benchmarks is
available at gitlab.com/ann-povm/qst-code.
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