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Cooperative-effect-induced one-way steering in open cavity
magnonics
Si-Yu Guan1, Hong-Fu Wang 1,2✉ and Xuexi Yi 1✉

We propose to generate and control stationary one-way steering with strong entanglement between photon and magnon modes
by the cooperative effect of coherent coupling and dissipative coupling. Due to the combination of two couplings, the system
becomes a parity-time-like symmetric non-Hermitian system, and two exceptional points (EPs)-like appear in the real and imaginary
parts of the eigenvalues. We demonstrate that the especially obvious quantum entanglement and perfect one-way steering can be
obtained around two EPs-like. The continuous variable entanglement and steering produced by this cooperative effect show
stronger robustness to environment temperature and system dissipation than that induced by nonlinearity. The one-way steering
directivity can be controlled by the relative phase of cooperative dissipation and the frequency detuning of the magnon mode. Our
work shows the controllability advantage of the open cavity magnonic system and may open up a platform for the generation of
stationary one-way steering.
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INTRODUCTION
Quantum entanglement and Bell nonlocality, as the core of
quantum information theory, challenge human’s intuition and
understanding of nature and become the emerging resources of
quantum information technology. As a subtle supplement to
entanglement and Bell nonlocality1, Einstein-Podolsky-Rosen (EPR)
steering2 stands as a bridge between the two concepts.
Entanglement as a vital quantum phenomenon is the most
intrinsic feature of quantum mechanics with a variety of
applications in continuous variable information processing3, which
has received widespread attention. And a great deal of effort has
been devoted to generating and controlling entanglement4–8. The
EPR steering, as a sufficient condition for entanglement, and a
necessary condition for Bell nonlocality, was recognized by
Schrödinger in 19359, and put on a firm mathematical footing
by refs. 10,11. Importantly, essentially different from entanglement
and Bell nonlocality, the distinctive feature of EPR steering is
intrinsically asymmetric between two observers10,12. The non-
classical correlations in a bipartite scenario in which one of the
parties can deduce the state that the other distant one holds
according to the local measurement outcomes applied on the part
of the entangled state in one side. No matter from the perspective
of theory2,13–22 or experiment23–29, this feature makes quantum
steering very important for various quantum information proto-
cols that rely on entanglement by providing additional security30,
such as semisided device-independent quantum key distribu-
tion31–33, quantum secret sharing23,34, one-way quantum comput-
ing35, subchannel discrimination36, to name but a few. The
quantum steering has been achieved in various systems, such as
optomechanical systems37,38, antiferromagnetic systems23,39,
and so on.
As we all know, most systems are inevitably coupled to

environment via dissipation processes and the phenomenon of
collective spontaneous radiation into the environment is so-called
dissipative coupling40. It is an indirect coupling mechanism
mediated by dissipative channels in open cavity systems.

Specifically, the external dissipations of subsystems are non-
trivial but correlated due to their interactions with the common
reservoir41. In addition, the coherent coupling that stems from the
direct dipole-dipole interaction is also ubiquitous in nature, it
underpins a myriad of applications42–44 and plays a crucial role in
information processing technology. Intuitively, the coherently
coupled subsystems exchange energy between each other
periodically, which is determined by the coupling strength. This
is different from the dissipatively coupled system, which is
determined by the external dissipation strength.
In recent years, more attention has been focused on the

physical study based on the coherent coupling and the dissipative
coupling, we also note that the combination of coherent and
incoherent manipulations was first widely used in atomic
physics45,46. The dissipation-structured quantum self-
organization predicts that the non-equilibrium initial state will
‘drop’ to metastable states in long-time limit, i.e., the entangled
mixed states47. In physics, the classical interference between
coherent coupling and dissipative coupling can induce one-way
invisibility in the cooperative dissipation system48. Moreover, the
quantum phenomenon induced by non-classical interference
between two coupling ways is also fascinating. In the separated
variable system, the selection of synergetic dissipation relative
phase will dissipate the specific quantum state quickly (super-
additive effect) and maintain its orthogonal state (subradiative
effect)47. However, the relative phase dissipates the entanglement
between subsystems in continuous variable systems, i.e., achiev-
ing one-way quantum steering.
Inspired by the previous research, in this paper, in light of the

dissipation-coupled physics revealed in cavity magnonic systems,
we propose a scheme to implement the controllable one-way
steering by cooperative effect in a non-Hermitian cavity magnonic
system involving photon and magnon modes. The one-way
steering directivity depends only on the relative phase of
cooperative dissipation and the frequency detuning of the
magnon mode rather than the dissipations of subsystems, which
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provides an effective method to generate and control the one-
way steering instead of adding asymmetric losses or noises to
subsystems at the cost of reducing steerability. Besides, the
quantum correlation originating from the coherence between two
coupling channels shows the robustness to environment tem-
perature and the system dissipation. Furthermore, the entangle-
ment can be obtained under the weak coherent coupling
mechanism, as well as one-way steering can be obtained
regardless of the strong coherent coupling mechanism or a large
range of weak coherent coupling mechanism by adopting feasible
experimental parameters.

RESULTS
Continuous variable open system
The physical model with cavity magnonics is depicted schema-
tically in Fig. 1a, where a 1-mm diameter yttrium-iron-garnet (YIG)
sphere is placed close to a cross-line microwave circuit. In the
device, the circuit is designed to support both standing wave
(coherent coupling) and traveling wave (dissipative coupling). In
addition, the cavity and the YIG sphere are coupled to the same
dissipative environment [Fig. 1b]. Here ‘open’ means that the
external damping rate of the cavity is much larger than its intrinsic
damping rate. The YIG sphere is glued to the end of a wooden
stick, which is connected to a three-dimensional adjustable
stage48. In our scheme, both the coherent coupling and the
dissipative coupling can be drastically changed by moving the YIG
sphere. In addition, a grounded loop antenna above the YIG
sphere is used to control the damping rate of the magnon mode.
The magnetic field of standing wave is shown in Fig. 1c, at the
center of the cavity, the magnetic field strength is equal to zero,
hence the coupling way is single dissipative coupling when the
YIG sphere is local at the center of cross-line microwave circuit.
The ratio between intrinsic damping and external damping of the
magnon mode depends on the distance from the YIG sphere to
the traveling wave cavity [Fig. 1d], i.e., dissipative coupling
strength. When the distance is far, the energy radiated by the
YIG sphere cannot be completely absorbed by the traveling wave
cavity. On the contrary, once the YIG sphere is close to the
traveling wave cavity, most of its spontaneously radiated energy
can be dissipated into the microwave circuit. The device is placed
inside a uniform magnetic field and the open cavity magnonic
system is at the 20mK temperature environment49. The non-

Hermitian Hamiltonian of the whole system is

H=_ ¼ ωca
yaþ ωmb

ybþ ðJ � iΓeiθÞðaybþ abyÞ; (1)

where a† and b† (a and b) are, respectively, the creation
(annihilation) operators of the cavity mode with frequency ωc

and the magnon mode with frequency ωm, satisfying standard
commutation relations for bosons (see “Methods” section for the
derivation of the effective Hamiltonian). In addition, the frequency
of the magnon mode ωm can be adjusted in a large range by the
bias magnetic field B in the z direction with amplitude Bz via
ωm= γ0Bz, where γ0/2π= 28 GHz/T is the gyromagnetic ratio7. The
parameter J (Γ) denotes the cavity-magnon coherent (dissipative)
coupling rate, which can be modulated by varying the position of
the YIG sphere above the microwave circuit49. Without losing
generality, we choose the relative phase θ between the coherent
and dissipative couplings as 0 and π for microwaves loaded from
ports 1 and 2, respectively. In this case, the quantum Langevin
equations for the operators in the system can be given by

_a ¼ �κa� ðΓeiθ þ iJÞbþ
ffiffiffiffiffi
2κ

p
ain;

_b ¼ �ðiΔm þ γÞb� ðΓeiθ þ iJÞaþ
ffiffiffiffiffi
2γ

p
bin;

(2)

where Δm=ωm−ωc is the frequency detuning. Here κ= α+ κex
and γ= β+ γex are the dissipation rates of the photon and magnon
modes, including the intrinsic (external) damping rates α and β (κex
and γex), as well as the external dissipation rates are much larger
than the intrinsic dissipation rates for two modes. Here, the external
damping rates which induce the magnon-photon dissipative
coupling are defined as Γ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

κexγex
p

. The input noise operators
oin (o= a, b) are zero mean and are characterized by the following
correlation functions: hoinyðtÞoinðt0Þi ¼ noδðt � t0Þ and
hoinðtÞoinyðt0Þi ¼ ðno þ 1Þδðt � t0Þ, where no ¼ ðe_ωo=kBT � 1Þ�1

is
the mean thermal excitation numbers in the environmental
temperature T, with kB being Boltzmann constant.

Exceptional points-like in model
In this part, we show that the coherent coupling and dissipative
coupling play an important role in this scheme. The introduction
of the dissipative coupling makes the Hermitian system become a
PT symmetric non-Hermitian system. We display the real and
imaginary parts of the eigenvalues for Hamiltonian in Eq. (1) as a
function of the dissipative coupling strength Γ and the frequency
detuning Δm in Fig. 2a, b. The real and imaginary parts of the
eigenvalues of the Hamiltonian represent the eigenfrequency and
dissipation rate of the two modes, respectively. Figure 2a shows
that when the magnon-photon coherent coupling is not

Fig. 1 Sketch of the open cavity magnonic system. a The yttrium-iron-garnet (YIG) sphere is placed inside a cross-line cavity which supports
both standing wave and traveling wave. The entire experimental device is placed inside a uniform magnetic field, at the same time in the
20mK temperature environment. b Both the cavity and the YIG sphere are coupled to the same dissipative environment. c The magnetic field
strength and magnetic field distribution of the standing wave cavity. d The dissipative coupling strength can be adjusted by changing the
distance between the YIG sphere and the cross-line circuit. The traveling wave is represented by a black line.
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introduced into the system (J= 0) and in the absence of the
dissipative coupling, the real and imaginary parts of the
eigenvalues of the Hamiltonian show the standard eigenvalue
energy spectrums of the Hermitian Hamiltonian. As the dissipative
coupling strength increases, two EPs appear in the intrinsic energy
spectrums, the real parts of the eigenvalues between the two EPs
is degenerate and indistinguishable, and the imaginary parts of
the eigenvalues dissipates separately into a superradiative state
and a subradiative state47, as shown in Fig. 2b. Nevertheless, when
the magnon-photon coherent coupling is introduced, the strict
EPs become EPs-like, as shown in Fig. 2c, d. As the coherent
coupling strength increases with a fixed dissipative coupling rate,
two EPs gradually disappear in the intrinsic energy spectrum,
which is caused by the interference between the coherent
coupling and dissipative coupling. Cearly, the real parts of the
eigenvalues show the energy level repulsion in Fig. 2c, it is proved
that the dominant coupling way is the magnon-photon coherent
coupling. However, it is worth noting that the imaginary parts of
the eigenvalues always split when the magnon-photon coherent
coupling plays a dominant role [Fig. 2d], which is obviously
different from the energy spectrum of the imaginary parts that
only contain the dissipative coupling, therefore, the EPs (EPs-like)
in Fig. 2a, b [Fig. 2c, d] are marked with red circles. In addition,
both the EPs and EPs-like appear in two symmetrical positions in
the case that the frequency detuning is close to zero. In the above
discussion, one can see that the dissipative coupling and the
coherent coupling are crucial in the scheme. Next, we will show
detailedly the quantum interference between the two coupling
ways can induce the quantum correlations between subsystems,
such as quantum entanglement and quantum steering. Further-
more, the maximum correlation between subsystems which
appears near two EPs-like are also confirmed.

Quantum interference induces quantum correlation
The foremost task of studying the properties of the entanglement
and steering in cavity magnonic system is to find the optimal

frequency detuning Δm, i.e., the optimal effective quantum
interference between two coupling ways that can generate the
entanglement and the steering. The entanglement between two
modes can be quantified by the logarithmic negativity EN arising
from the covariance matrix (CM), and the one-way EPR steering
can be quantified by Ga!b or Gb!a . The calculation methods of
these quantities are detailed in the “Methods” section. In order to
observe the quantum correlations between subsystems more
intuitively, we display the entanglement EN, the one-way steering
(Ga!b and Gb!a), and the populations of modes in Fig. 3a–c,
respectively, for microwaves loaded from port 1 (θ= 0). Similarly,
Fig. 3d–f corresponds to the case of θ= π. We adopt experimen-
tally feasible parameters: ωc/2π= 10 GHz, κ/2π= γ/2π= 6 MHz,
κex/2π= γex/2π= Γ/2π= J/2π= 5 MHz, α/2π= β/2π= 1 MHz, and
low temperature T= 20mK. In addition, the 1-mm diameter YIG
sphere we considered has the total number of spins
N= ρV≃ 1.77 × 1019, where V is the volume of the sphere and
ρ= 4.22 × 1027 m−3 is the spin density of the YIG sphere7. All
the results are obtained in the steady state guaranteed by the
negative real parts of eigenvalues of the drift matrix (see the
“Methods” section for details).
In order to make the description more convenient, we discuss

the case of θ= 0 in detail. Figure 3a shows that the magnon-
photon entanglement EN reaches the maximum when the
frequency detuning between the magnon and photon modes is
close to zero but not zero (near the EPs-like), and the
entanglement EN between the subsystems gradually increases
for a greater dissipative coupling strength. In order to show the
unidirectionality of the EPR steering more clearly, we plot the
evolutions of the steerings Gb!a and Ga!b, respectively, and
merge them into Fig. 3b [This combined method is also applied to
Fig. 3c, e, and f]. In the left half of Fig. 3b, we can clearly observe
that under the current parameter conditions, the one-way steering
Gb!a completely occurs when the frequency detuning is negative.
Similarly, in the right side of Fig. 3b, the one-way steering Ga!b

completely occurs when the frequency detuning is positive. In

Fig. 2 Energy-level anti-crossing in the dissipative mechanism induced by coherent coupling. a, c Real parts and b, d imaginary parts of
the eigenvalues of the Hamiltonian versus Δm, a, b Γ and c, d J. The parameters are set as J/2π= 0 in a and b, Γ/2π= 6 MHz in c and d, the
other parameters are ωc/2π= 10 GHz, κ/2π= γ/2π= 6MHz, α/2π= β/2π= 1 MHz, θ= 0, and T= 20mK.
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other words, in the evolution of EPR steering with the frequency
detuning, the one-way steering Ga!b and Gb!a appear in positive
frequency detuning and negative frequency detuning, respec-
tively, that is, the EPR steering in the two directions no overlap at
all. Therefore, the perfect one-way steering is achieved in our
scheme. We also note that the quantum steering as a strict subset
of entanglement has the similar properties to the entanglement in
Fig. 3b. The one-way steering (Ga!b or Gb!a), which is the same
with the magnon-photon entanglement, reaches its maximum
when there is a slight frequency detuning. Moreover, the optimal
choice of the frequency detuning determines the direction of the
one-way steering whose maximum value is greater than
entanglement. In the previous studies, the degree of quantum
entanglement is generally greater than EPR steering. This is due to
that these schemes are always studied in the Hermitian
systems37–39,50, as well as the generations of quantum correlations
in the previous studies rely on nonlinear effects, such as
optomechanical interaction, Kerr nonlinearity, squeezed light,
and more. However, compared to the previous studies, the
quantum entanglement and EPR steering in our scheme are

discussed in the non-Hermitian system. In addition, the strict EPs-
like appear in the special non-Hermitian system, and the abundant
quantum correlations occur near the EPs-like. Furthermore, the
quantum correlations come from the quantum interference
between the two coupling ways inside the non-Hermitian system,
that is, the quantum correlations are generated by different
mechanisms. The populations of modes is caused by the
interference between the energy exchange channels are shown
in Fig. 3c. In the left half of Fig. 3c, we can observe that the
population of magnon mode 〈b†b〉 completely occurs when the
frequency detuning is negative. Similarly, in the right side of Fig.
3c, the population of cavity mode 〈a†a〉 completely occurs when
the frequency detuning is positive. Because of the selection of
frequency detuning and the increase of the dissipative coupling,
the magnon and photon modes exchange energy acutely, almost
all of the particles converge on one of the modes, so only one
mode has significant amount population. The generation of one-
way steering can be explained by the population of subsystems,
i.e., the fact is that the mode with a larger population is more

Fig. 3 Quantum correlations results. a, b Entanglement EN, b, e steering (Gb!a and Ga!b), c, f population of modes (〈b†b〉 and 〈a†a〉) versus
Δm and Γ for a–c θ= 0 and d–f θ= π, where J/2π= 5MHz, the other parameters are the same as those in Fig. 2.
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difficult to steer by the other one. Consequently, the desired one-
way steering can be achieved8.
In the separated variable system, the relative phase of the

coordinated dissipation between the subsystems can be under-
stood as the decoherent phase. The initial state of the two
individual qubits determines the coherence of the initial state of
the system. If the phase of initial state coherence matches the
phase of the dissipative channel, it will appear as a decoherence
behavior with superradiation effect47. However, the relative phase
of the coordinated dissipation in the continuous variable system is
embodied as the decoherence behavior of the unilateral
entangled state, i.e., one-way quantum steering. Figure 3d–f
shows the variation of quantum correlations and the population of
subsystems when the coordinated dissipation super-operator is
changed from ô ¼ âþ b̂ to ô ¼ â� b̂ (i.e., θ= 0→ θ= π). Figure 3d
shows that we can obtain the identical entanglement correlation
when the propagation direction of the microwave is reversed. At
this time, the direction of achievable one-way steering and the
population of the relevant mode are reversed near the same EPs-
like are shown in Fig. 3e, f, which means that the direction of the
one-way steering in the coordinated dissipative open cavity
magnonics system can be flexibly controlled by two key
parameters, namely the frequency detuning Δm and the
cooperative dissipation phase θ. The frequency detuning of the
magnon mode can be adjusted by an external bias magnetic field,
and the phase of the cooperative dissipation can be changed by
varying the direction of traveling wave transmission48. It can be
seen from quantum correlations that the present scheme has the
following advantages: (i) the open cavity magnonic system has
very flexible controllability; (ii) the generation of one-way steering
adds no asymmetric losses or noises to the subsystems at the cost
of reducing steerability, but changes the population of two modes
through the interference between the energy exchange channels.
Next, in order to show the quantum coherence between the

photon and magnon modes at the EPs-like, we utilize the first-
order coherence function, which is defined as gð1Þ ¼ ðjhbyaijÞ=
ðhbybi1=2hayai1=2Þ, to further analyze the reasons for the existence
of quantum correlations, as shown in Fig. 4a. It shows that the
cooperative effect between the coherent coupling and dissipative
coupling is affected by the frequency detuning of the magnon
mode. Similar to the classic case, we can classify the coherence
according to the value of g(1). There are three different situations,
namely g(1)= 1, 0 < g(1) < 1, and g(1)= 0, corresponding to first-
order completely coherence, first-order partial coherence, and
first-order completely irrelevance, respectively. We find that when
the microwave cavity resonates with the YIG sphere (Δm= 0), the
first-order coherence degree g(1)= 1, which implies the appear-
ance of completely constructive interference. At the same time,
the populations of the two modes 〈a†a〉 and 〈b†b〉 are equal,
showing serious constructive interference [Fig. 3c, f], making the
quantum correlations (entanglement and steering) decoherent

[Fig. 3a, b, d, and e], i.e., EN= Ga!b = Gb!a = 0. However, when
there is a slight frequency detuning between the magnon and
photon modes (near the EPs-like), the entanglement and one-way
steering gradually appear, and both the populations of the two
modes are always <1 (〈b†b〉 < 1, 〈a†a〉 < 1), which is a prerequisite
for generating the desired quantum correlations8.
To further verify the obtained quantum correlation results, we

introduce and plot the indistinguishability D, defined as
D= (∣〈b†b〉− 〈a†a〉∣)/(〈b†b〉+ 〈a†a〉)50, as shown in Fig. 4b. Physi-
cally, the g(1)= 0 means that there is no interference effect, and
D= 0 means that the two subsystems are completely separable.
On the contrary, when the value of D increases, i.e., there is a slight
frequency detuning, it proves that the two subsystems are more
indistinguishable. The above results indicate the reasons why the
cooperative dissipation can induce quantum correlations in the
open cavity magnonics system, i.e., the quantum correlations are
caused by the interference between the two coupling ways near
the EPs-like. In other words, both the quantum entanglement and
one-way steering can be derived from the cooperative effect
between the two coupling ways. This is clearly shown in Fig. 3,
where the cavity-magnon entanglement and the quantum
steering are equal 0, and the populations of the two modes are
constant and equal when the dissipative coupling Γ= 0, by this
time the two modes are not dissipated into the same
environment.
Generally speaking, the coherent coupling has many different

forms, such as weak coherent coupling, strong coherent coupling,
even ultrastrong coherent coupling, etc. In contrast, since the
dissipative coupling (Γ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

κexγex
p

) is caused by the external
dissipations of the two modes to the common reservoir, in which
the coupling strength is always less than one or two dissipation
rates. In such case, the dissipative coupling is always in a weak
coupling mechanism (κ, γ > Γ) or in a magnetically induced
transparency mechanism (κ > Γ > γ or γ > Γ > κ)51. However, in
general, the external dissipation is much larger than the internal
dissipation. Therefore, it is meaningful to study the decoherence
of quantum correlation from a general perspective. In order to
make the cooperative effect between the coherent coupling and
dissipative coupling sufficiently strong, while avoiding system
asymmetry and the rapid decoherence of quantum effects caused
by excessive single mode dissipation, we consider the case where
the dissipation rates of the two modes are the same (i.e., κ= γ ≥ Γ).
To this end, we show the entanglement EN and one-way steering
Ga!b versus ξ, environment temperature T, and the coherent
coupling strength J in Fig. 5, where ξ= κ= γ= Γ and κex≫ α,
γex≫ β, the white contour curves in figures are the dividing lines
for the existence of entanglement and steering, and the dotted
blue lines are the dividing line between the strong coherent
coupling and the weak coherent coupling mechanisms. Figure 5a
shows that the entanglement characteristic is quite robust to the
system dissipations and environment temperature. When the
dissipation rates of the subsystems and the coherent coupling

-0.4 -0.2 0 0.2 0.4
0

0.5

1

g(
1)

-0.4 -0.2 0 0.2 0.4
0

0.2

0.4

D

ba

Fig. 4 Quantum coherence degree and indistinguishability. a First-order coherence degree g(1) and b indistinguishability D versus Δm for
θ= 0 or θ= π. The corresponding parameters are J/2π= 5MHz and Γ/2π= 6MHz, and the other parameters are the same as those in Fig. 2.
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parameter are relatively small, the entanglement is quite robust to
the increase of environment temperature T, and within a certain
range of dissipation parameters, the entanglement between the
subsystems can be realized. However, once the dissipation
parameter of the system is relatively large, approximately
>13MHz, no matter what the environment temperature is, the
entanglement in the open cavity magnonic system cannot be
achieved, that is the so-called entanglement sudden death
phenomenon. In addition, the steering Ga!b has the similar
evolution characteristics compared to entanglement under the
same parameter condition, as shown in Fig. 5c. It graphically
shows that for larger system dissipation parameters, we can still
achieve ideal one-way steering Ga!b. We can achieve the strong
entanglement between the subsystems under the strong coherent
coupling mechanism, and also can achieve a certain degree of
correlation between subsystems under the weak coherent
coupling mechanism, which is shown in Fig. 5b. Similarly, it also
exhibits the entanglement sudden death phenomenon when the

dissipation strength of system is approximately greater than
15MHz. Figure 5d also shows that we can achieve the one-way
steering Ga!b regardless of the strong coherent coupling
mechanism or a large range of weak coherent coupling
mechanism. It is worth noting that we do not describe the
steering Gb!a in this part, because it is nonexistent under this
parameter condition, which proves the feasibility of perfect
asymmetric one-way steering.
Without loss of generality, we plot the measures of quantum

steerings Ga!b and Gb!a as functions of the relative phase θ and
frequency detuning Δm, as shown in Fig. 6. It clearly shows that
the maximum value for one-way steering appears when there is a
slight frequency detuning, which exactly corresponds to the
results of Fig. 3b, e. Apparently, the one-way steering evolves with
π periodically, maximized at phase θ ≈ nπ (n2 Z) and minimized at
θ ≈ (n+ 1/2)π. Interestingly, the steering in two directions behaves
asymmetrically with phase, i.e., the steering from mode a to mode
b quantified by the parameter Ga!b exhibits the phase-dependent

Fig. 6 Periodic asymmetric one-way steering. Quantum steering a Ga!b and b Gb!a as a function of the relative phase θ and frequency
detuning Δm. The corresponding parameters are J/2π= Γ/2π= 5MHz, and the other parameters are the same as those in Fig. 2.

Fig. 5 Robust quantum entanglement and one-way steering. Entanglement EN and steering versus ξ, a, c T and b, d J. The corresponding
parameters are J/2π= 5MHz in (a, c), ξ= κ= γ= Γ in (a–d), and the other parameters are the same as those in Fig. 2, where the white contour
lines depict the critical temperature and critical coherent coupling of entanglement and steering observability when the dissipation is fixed to
a certain value.
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behavior, where steering in the other direction measured by the
parameter Gb!a behaves completely opposite result. Overall, Fig. 6
demonstrates that the coherent competition between the two
couplings determines the unidirectionality of information transfer.
This provides an active method to manipulate the steering
directivity instead of adding asymmetric losses or noises to
subsystems at the cost of reducing steerability.

DISCUSSION
In conclusion, we have proposed a way to achieve the controllable
one-way quantum steering with strong entanglement in a non-
Hermitian open cavity magnonic system. The one-way steering is
the result of unilateral entanglement being dissipated induced by
the cooperative effect. We use the cooperative dissipation to
induce a unilateral quantum correlation between the two
subsystems, which is different from the previous research on
one-way steering that adds asymmetric losses or noises to
subsystems at the cost of reducing steerability. The steering
directivity can be controlled by the relative phase of the
cooperative dissipation and the frequency detuning of the
magnon mode. Furthermore, we also analyze the quantum
entanglement sudden death phenomenon caused by the
collective dissipation and the environment temperature, as well
as the generation of the quantum entanglement and one-way
steering under the weak coherent coupling mechanism and a
range of the strong coherent coupling mechanism. Without loss of
generality, we also discuss the effect of the relative phase θ on
one-way steering. Our scheme is experimentally feasible and may
promote to understand the asymmetric quantum correlation
behavior in open cavity magnonic system, which has potential
applications in semisided device-independent quantum key
distribution, quantum secret sharing, one-way quantum comput-
ing, and subchannel discrimination, etc.

METHODS
Effective Hamiltonian of the coupled systems
When the interaction between cavity mode and magnon mode only
includes the coherent coupling, the Hamiltonian of the system is given by

Hc=_ ¼ ωca
yaþ ωmb

ybþ Jðaþ ayÞðbþ byÞ; (3)

where a† and b† (a and b) are, respectively, the creation (annihilation)
operators of the cavity mode with frequency ωc and the magnon mode with
frequency ωm. The coherent coupling strength J is a real number that includes
a beam-splitter interaction and a parametric amplification interaction. Under
the rotating wave approximation, the Hamiltonian (3) can be written as

HRWA=_ ¼ ωca
yaþ ωmb

ybþ J aybþ aby
� �

: (4)

When the collective dissipation is considered, the system can be
described by the specific form of Lindblad master equation:

d
dt

ρ ¼ � i
_
HRWA; ρ½ � þ ηL½c�ρþ αL½a�ρþ βL½b�ρ; (5)

where the standard dissipative super-operator L½s� is defined as:

L½s�ρ ¼ 2sρsy � sysρ� ρsys; s ¼ fa; b; cg: (6)

The second term of Eq. (5) describes the collective dissipation between
the cavity mode and the magnon mode into the traveling wave with rate
η, and the third and fourth terms represent the intrinsic damping of the
cavity mode and magnon mode with rate α and β, respectively. The jump
operator c is expressed as the superposition operator of cavity operator
and the magnon operator, and it depends on which port the microwave is
loaded into. It has the general form (from port 1)40:

c � λaþ ξb: (7)

Here, the individual couplings of the cavity mode and magnon mode to
the traveling wave characterized by the coefficients λ and ξ satisfying
η ⋅ λ2= κex and η ⋅ ξ2= γex, which lead to the dissipative magnon-photon

coupling. Furthermore, we can easily obtain the dissipative coupling
between the two modes, which can be expressed as η � λξ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

κexγex
p 47,48.

The quantum Langevin equations governing the dynamical behavior of
the system are given by

d
dt

a ¼ �iωca� ðαþ κexÞa� ðiJ þ ffiffiffiffiffiffiffiffiffiffiffiffi
κexγex

p Þb;

d
dt

b ¼ �iωmb� ðβþ γexÞb� ðiJ þ ffiffiffiffiffiffiffiffiffiffiffiffi
κexγex

p Þa:
(8)

According to these two equations, the effective dissipative coupling
strength between cavity mode and magneton mode is �iΓ ¼ �i

ffiffiffiffiffiffiffiffiffiffiffiffi
κexγex

p
clearly can be seen. However, when the microwave is loaded via port 2, the
jump operator becomes c≡ λa− ξb, in the same way, the effective
dissipative coupling becomes iΓ ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffi
κexγex

p
. We introduce the phase θ to

represent the inclusion of both propagation directions, the effective non-
Hermitian Hamiltonian of the coupled system containing the coherent
coupling and dissipative coupling can be rewritten as:

H=_ ¼ eωca
yaþ eωmb

ybþ J � ieiθΓ
� �

aybþ aby
� �

; (9)

where eωc ¼ ωc � iα and eωm ¼ ωm � iβ represent the complex eigenvalues
of the uncoupled cavity and magnon modes. For the convenience of
subsequent descriptions, we use ωc to represent eωc in the preceding part
of the text.

Entanglement and steering
To quantify the entanglement and steering between the magnon and
photon modes, we introduce two sets of quadrature components

XðinÞ
a ; YðinÞ

a ; XðinÞ
b , and YðinÞ

b , which are defined as
ffiffiffi
2

p
XðinÞ
o ¼ oðinÞ þ oðinÞy

and i
ffiffiffi
2

p
YðinÞ
o ¼ oðinÞ � oðinÞy . Then, the linearized Langevin equations can

be written in the compact matrix form,

_σðtÞ ¼ AσðtÞ þ ϱðtÞ; (10)

with σ ¼ ½Xa; Ya; Xb; Yb�T and ϱ ¼ ½
ffiffiffiffiffi
2κ

p
X in
a ;

ffiffiffiffiffi
2κ

p
Y in
a ;

ffiffiffiffiffi
2γ

p
X in
b ;

ffiffiffiffiffi
2γ

p
Y in
b �

T

being the vectors of quantum fluctuations and noises, respectively. The
drift matrix A reads

A ¼

�κ 0 Γ± J

0 �κ �J Γ±

Γ± J �γ Δm

�J Γ± �Δm �γ

0
BBB@

1
CCCA; (11)

with Γ±≡ ± Γ for θ= π(0). Due to the linearity of the Langevin equations
and Gaussian nature of the quantum noises, the system will decay to a
stationary Gaussian state, which can be completely characterized by a 4 × 4
covariance matrix (CM) V in the phase space V ij ¼ hσiðtÞσjðt0Þ þ
σjðt0ÞσiðtÞi=2 (i, j= 1, 2, 3, 4). The steady-state CM V can be obtained
straightforwardly by solving the Lyapunov equation,

AV þ VAT ¼ �D; (12)

with Dijδðt � t0Þ ¼ hϱiðtÞϱjðt0Þ þ ϱjðt0ÞϱiðtÞi=2.
The coherence between subsystems in the separated variable system is

characterized by the off-diagonal elements of the density matrix47.
However, for the continuous variable two-mode Gaussian state, a
computable criterion of quantum steering based on quantum coherent
information has been introduced12. While for quantum entanglement, it is
convenient to use the logarithmic negativity EN to quantify its level52. Note
that all the above-mentioned measures can be computed from the 4 × 4
CM for the photon and magnon modes

V ¼
V1 V3

VT
3 V2

� �
; (13)

where V1, V2, and V3 are 2 × 2 sub-block matrices of V . In this case, the
logarithmic negativity EN between subsystems is expressed as

EN � max 0;� lnð2νÞ½ �; (14)

where ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E � ðE2 � 4RÞ1=2

q
=

ffiffiffi
2

p
and E ¼ R1 þR2 � 2R3 with

R1 ¼ detV1, R2 ¼ detV2, R3 ¼ detV3, and R ¼ detV being symplectic
invariants. And the Gaussian quantum steering is given by14

Ga!b � max 0; 12 ln
R1
4R

� �
;

Gb!a � max 0; 12 ln
R2
4R

� �
:

(15)
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Stability conditions of system
In general, the solution of the system will reach a steady state after a
transient state relating to the initial conditions. If all the eigenvalues of the
drift matrix A possess negative real parts, the system is stable and reaches
a steady state. The stability conditions can be explicitly derived, e.g., by
means of the Routh-Hurwitz criteria53. Therefore, we start our analysis by
determining the eigenvalues of the matrixA, i.e., jA � λIj ¼ 0, which yields
the characteristic equation:

a0λ
4 þ a1λ

3 þ a2λ
2 þ a3λ

1 þ a4λ
0 ¼ 0; (16)

where

a0 ¼ 1; (17)

a1 ¼ 2ðγ þ κÞ; (18)

a2 ¼ 2J2 þ γ2 � 2Γ2 þ Δ2
m þ 4γκ þ κ2; (19)

a3 ¼ 2 �γΓ2 þ 2JΓΔm þ κðγ2 � Γ2 þ Δ2
mÞ

�
þ γκ2 þ J2ðγ þ κÞ

�
;

(20)

a4 ¼ ðJ2 þ Γ2Þ2 þ 2κðJ2γ � γΓ2 þ 2JΓΔmÞ
þ κ2ðγ2 þ Δ2

mÞ:
(21)

We can obtain a 4 × 4 matrix M using the coefficients ai, as below

M ¼

a1 a0 0 0

a3 a2 a1 a0
0 a4 a3 a2
0 0 0 a4

2
6664

3
7775: (22)

Now we define Tk to be the determinant of the first k rows and k
columns of the matrix M with k= 0, 1,…, 4. If all Tk > 0, then our system is
stable53. The specific forms of Tk are expressed as follows:

T0 ¼ a0 > 0; (23)

T1 ¼ a1 > 0; (24)

T2 ¼ a1a2 � a3a0 > 0; (25)

T3 ¼ a1a2a3 � a0a
2
3 � a21a4 > 0; (26)

T4 ¼ a1a2a3a4 � a0a
2
3a4 � a21a

2
4 > 0: (27)

Hence, the numerical simulations in the scheme satisfy all the stability
conditions mentioned above.
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