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Variational quantum state eigensolver
M. Cerezo 1,2✉, Kunal Sharma 1,3, Andrew Arrasmith1 and Patrick J. Coles 1

Extracting eigenvalues and eigenvectors of exponentially large matrices will be an important application of near-term quantum
computers. The variational quantum eigensolver (VQE) treats the case when the matrix is a Hamiltonian. Here, we address the case
when the matrix is a density matrix ρ. We introduce the variational quantum state eigensolver (VQSE), which is analogous to VQE in
that it variationally learns the largest eigenvalues of ρ as well as a gate sequence V that prepares the corresponding eigenvectors.
VQSE exploits the connection between diagonalization and majorization to define a cost function C ¼ Trð~ρHÞ where H is a non-
degenerate Hamiltonian. Due to Schur-concavity, C is minimized when ~ρ ¼ VρVy is diagonal in the eigenbasis of H. VQSE only
requires a single copy of ρ (only n qubits) per iteration of the VQSE algorithm, making it amenable for near-term implementation.
We heuristically demonstrate two applications of VQSE: (1) Principal component analysis, and (2) Error mitigation.
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INTRODUCTION
Near-term quantum computers hold great promise but also pose
great challenges. Low qubit counts place constraints on problem
sizes that can be implemented. Decoherence and gate infidelity
place constraints on the circuit depth that can be implemented.
These constraints are captured in the (now widely used) term
noisy intermediate-scale quantum (NISQ)1.
To address the circuit depth constraint, variational quantum

algorithms (VQAs) have been proposed for many applica-
tions2–27. VQAs employ a quantum-classical optimization loop
to train the parameters θ of a quantum circuit V(θ). Leveraging
classical optimizers allows the quantum circuit depth to remain
shallow. This makes VQAs powerful tools for error mitigation on
NISQ devices.
A particularly important application of NISQ computers will be

extracting the spectra, eigenvalues, and eigenvectors, of very
large matrices. Indeed the most famous VQA, known as the
variational quantum eigensolver (VQE), aims to variationally
determining the energies and state-preparation circuits for the
ground state and low-lying excited states of a given Hamilto-
nian, i.e., a Hermitian matrix. VQE promises to revolutionize the
field of quantum chemistry28,29, and perhaps even nuclear30 and
condensed matter31,32 physics.
If one instead considers a positive-semidefinite matrix, then

extracting the spectrum has direct application as a machine-
learning primitive known as principal component analysis (PCA).
Along these lines, Lloyd et al.33 introduced a quantum algorithm
called quantum PCA (qPCA) to deterministically extract the
spectrum of an n-qubit density matrix ρ. qPCA employs quantum
phase estimation and density matrix exponentiation as subrou-
tines and hence requires a large number of quantum gates and
copies of ρ. In an effort to reduce circuit depth in the NISQ era,
LaRose et al.6 developed a VQA for this application called
variational quantum state diagonalization (VQSD). VQSD requires
two copies of ρ, hence 2n qubits, and trains the parameters θ of a
gate sequence V(θ) so that ~ρ ¼ VðθÞρVyðθÞ is approximately
diagonal. A different variational approach, called quantum
singular value decomposition (QSVD), was introduced by Bravo-
Prieto et al.27. QSVD takes a purification ψj i of ρ as its input and

hence requires however many qubits it takes to purify ρ (possibly
2n qubits).
In this work, we introduce a variational algorithm for PCA that

only requires a single copy of ρ and hence only n qubits per
iteration of the algorithm. Our approach, called the variational
quantum state eigensolver (VQSE), exploits the mathematical
connection between diagonalization and majorization. Namely, it
is well known that the eigenvalues of a density matrix ρ majorize
the diagonal elements in any basis. Hence, by choosing a cost
function C that is a Schur concave function of the diagonal
elements of ρ, one can ensure that the cost function is minimized
when ρ is diagonalized. Specifically, we write the cost as
C ¼ Trð~ρHÞ, where H is some Hamiltonian with a non-
degenerate spectrum, which ensures the Schur concavity prop-
erty. Note that evaluating C simply involves measuring the
expectation value of H on ~ρ, and hence one can see why only n
qubits are required.
To learn the optimal θ parameters, we introduce a new training

approach, not previously used in other VQAs. Specifically, we
employ a time-dependent Hamiltonian H that we adapt based on
information gained from measurements performed throughout
the optimization. The aim of this adaptive approach is: (1) to
mitigate barren plateaus in training landscapes, and (2) to get out
of local minima. With our numerics, we find that using an adaptive
Hamiltonian is better than simply fixing the Hamiltonian
throughout the optimization. Here, we further provide a rigorous
analysis of the measurement shot requirements of VQSE where
we show that the relative error induces from statistical sampling
error is, with high probability, smaller than δ, if one measures
the system response with a number of shots that scales only as
Ωðlogð1=δÞ=λ2mÞ, with λm being the smallest eigenvalue one
wishes to estimate.
Finally, we illustrate two important applications of VQSE with

our numerical implementations. First, we use VQSE for error
mitigation of the W-state preparation circuit. Namely, by project-
ing the state onto the eigenvector with the largest eigenvalue, we
re-purify the state, mitigating the effects of incoherent errors.
Second, we use VQSE to perform entanglement spectroscopy
(which is essentially PCA on the reduced state of a bipartition) on
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the ground state of an XY-model spin chain. This allows us to
identify quantum critical points in this model.

RESULTS
Theoretical basis of VQSE
Consider an n-qubit quantum state ρ with (unknown) spectral
decomposition ρ ¼P

kλk λkj i λkh j, such that the eigenvalues are
ordered in decreasing order (i.e., λk⩾ λk+1 for k= 1,…, rank(ρ),
while λk= 0 for k⩾ rank(ρ)). The goal of VQSE is to estimate the m-
largest eigenvalues of ρ, where m≪ 2n, and furthermore to return
a gate sequence V(θ) that approximately prepares their associated
eigenvectors from standard basis elements.
At first sight, this looks like a matrix diagonalization problem.

Indeed, this is the perspective taken in the literature, e.g., by the
VQSD algorithm6 which employs a cost function that quantifies
how far ~ρ ¼ VðθÞρVyðθÞ is from a diagonal matrix. However, our
VQSE algorithm takes a conceptually different approach, focusing
on majorization instead of diagonalization.
We write the VQSE cost function as an energy, or the

expectation value of a Hamiltonian:

CðθÞ � Hh i ¼ Tr HVðθÞρVyðθÞ� �
: (1)

Here, H is a simple n-qubit Hamiltonian that is diagonal in the
standard basis and whose eigenenergies and associated eigen-
states are known and respectively given by {Ek} and f ekj ig (where
ek ¼ e1k � ¼ � enk for k= 1,…, 2n are bitstrings of length n).
Moreover, we henceforth assume that the eigenenergies are

non-negative and ordered in increasing order, i.e., Ek⩽ Ek+1. We
have

CðθÞ ¼
X2n
k¼1

Ekpk ¼ E � p ; pk ¼ hek j~ρjeki ; (2)

where we defined the vectors E= (E1, E2,…) and p= (p1, p2,…).
Similarly, let us define the vector of eigenvalues of ρ as
λ= (λ1, λ2,…). Then, since the eigenvalues of a positive semide-
finite matrix majorize its diagonal elements λ≻ p, and since the
dot product with an increasingly ordered vector is a Schur
concave function34,35, we have

CðθÞ ¼ E � p⩾ E � λ ¼
X
k

Ekλk ; (3)

where we have used the fact that ρ and ~ρ have the same
eigenvalues. Hence, one can see that C(θ) is minimized when V(θ)
maps the eigenbasis of ρ to the eigenbasis of H, with appropriate
ordering. Since the latter is chosen to be the standard basis, this
corresponds to diagonalizing ρ. Thus, even though it may not be
obvious at first sight, minimizing C(θ) corresponds to diagonalizing ρ.

The VQSE algorithm
Figure 1 shows a schematic diagram of the VQSE algorithm. The
three inputs to VQSE are: (1) a n-qubit quantum state ρ, (2) an
integer m, and (3) a parameterized gate sequence or ansatz V(θ).
The outputs of VQSE are: (1) estimates f~λigmi¼1 of the m-largest
eigenvalues fλigmi¼1 of ρ, and (2) a gate sequence V(θopt) that

Fig. 1 Schematic diagram of VQSE. VQSE takes as inputs an n-qubit state ρ, an integer m, and a parametrized unitary V(θ). It then outputs
estimates of the m-largest eigenvalues of ρ, and their associated eigenvectors. The first step of the algorithm is a hybrid quantum-classical
optimization loop to train the parameters θ, and minimize the cost function defined in (4) as the expectation value of a Hamiltonian H(t) over
the state ~ρ ¼ VðθÞρVyðθÞ. To facilitate this optimization, we adaptively update H(t) using information obtained via measurements on ~ρ. When
this optimization terminates, at which point we say θ= θopt, one reads off the eigenvalues. Namely, by preparing V(θopt)ρV

†(θopt) and
measuring in the standard basis, one obtains bitstrings z whose associated frequencies are estimates of the eigenvalues of ρ. Finally, one
prepares the estimated eigenvectors by preparing the states zj i and acting on them with V†(θopt).
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prepares approximate versions fj~λiigmi¼1 of the associated m
eigenvectors f λij igmi¼1. While in principle m can be as large as 2n,
we assume that one is interested in a number m of eigenvalues
and eigenvectors that grows at worse as Oðpoly ðnÞÞ.
After taking in the inputs, VQSE enters a hybrid quantum-

classical optimization loop to train the parameters θ in the ansatz
V(θ). This loop employs a quantum computer to evaluate the VQSE
cost function, denoted

Cðt; θÞ � HðtÞh i ¼ Tr HðtÞeρ½ � ; eρ ¼ VðθÞρVyðθÞ : (4)

Here, H(t) is a Hamiltonian that could, in general, depend on the
time t, where t ∈ [0, 1] is a parameter that indicates the
optimization loop run-time such that the loop starts at t= 0 and
ends at t= 1. For all t, we assume that H(t) can be efficiently
measured on a quantum computer and that it is diagonal in the
standard basis, with its lowest m eigenenergies being non-
degenerate and non-negative. We further elaborate on how to
choose H(t) in section ‘Cost functions’. Note that the quantum
circuit to evaluate the cost C(t, θ), as depicted in Fig. 1, simply
involves applying V(θ) to the state ρ and then measuring the
Hamiltonian H(t).
The quantum computer then feeds the value of the cost (or the

gradient of the cost for gradient-based optimization) to a classical
computer, which adjusts the parameters θ for the next round of
the loop. The ultimate goal is to find the global minimum of the
cost landscape at t= 1, i.e., to solve the problem:

θopt � argmin
θ

Cð1; θÞ : (5)

In reality, one will need to impose some termination condition
on the optimization loop and hence the final parameters obtained
(which we still denote as θopt) will only approximately satisfy Eq.
(5). Nevertheless, we provide a verification procedure below in
section ‘Verification of solution quality’ that allows one to quantify
the quality of the solution even when (5) is not exactly satisfied.
As shown in Fig. 1, the next step of VQSE is the eigenvalue

readout. From the parameters θopt one can estimate the
eigenvalues of ρ by acting with the gate sequence V(θopt) and
then measuring in the standard basis f zkj ig. Let Pr(zk) be the
probability of the zk outcome. Then by taking the m largest of
these probabilities we define L � feλigmi¼1 as the ordered set of
estimates of the m-largest eigenvalues of ρ, and we define Z as
the set of bitstrings fzigmi¼1 associated with the elements of L:eλi ¼ PrðziÞ ¼ hzijeρjzii ; such that eλi ⩾eλiþ1 : (6)

Note that eλi in (6) correspond to diagonal elements of eρ in the
standard basis, and not to its eigenvalues.
In practice, when estimating the eigenvalues one measures ~ρ in

the standard basis a finite number of times Nruns. Hence, if a bitstring
zi 2 Z has frequency fi for Nruns total runs, then we can estimateeλi aseλ esti ¼

f i
Nruns

: (7)

One can think of this as a Bernouilli trial. Let Λi be a random
variable that takes value 1 if we get outcome zi (with probability eλi),
and takes value 0 otherwise (with probability 1�eλi). After repeating
the experiment Nruns times we are interested in bounding the

probability that the relative error εi � jeλ esti �eλij=eλi is larger than a
certain value c⩾ 0. From Hoeffding’s inequality, we find

Prðεi ⩾ cÞ⩽ e�2Nrunsc2eλ2i ; 8c > 0 : (8)

For fixed Nruns, Eq. (8) shows that the smaller the inferred
eigenvalue eλi , the larger the probability of having a given relative
error. Equation (8) also implies that increasing Nruns reduces the
probability of large relative errors. Hence, we can always choose

Nruns such that the probability of error is smaller than a given δ for
all m eigenvalues via

8i 2 ½1;m�; Prðεi ⩾ cÞ⩽ δ ! Nruns ⩾
logð1=δÞ
2c2λ2m

; (9)

where λm is the smallest eigenvalue of interest. Analogously, from

(9) we have that all eigenvalues larger than
ffiffiffiffiffiffiffiffiffiffiffiffiffi
logð1=δÞ
2c2Nruns

q
have a

probability of error smaller than δ.
The last step of VQSE is to prepare the inferred eigenvectors of

ρ. Given a bitstring zi 2 Z, one can prepare the associated inferred
eigenvector by taking the state 0j i ¼ 0j i�n, acting on it with the
gate Xzi1 � Xzi2 � ¼ � Xzin , and then applying the gate sequence
VðθoptÞy:
jeλii ¼ VyðθoptÞ zij i ; zij i ¼ Xzi1 � ¼ � Xzin 0j i : (10)

Note that while the inferred eigenvalues can be stored
classically, the eigenvectors are prepared on a quantum computer,
and hence one needs to perform measurements to extract
information about these eigenvectors.

Cost functions
Consider the Hamiltonian H(t) that defines the VQSE cost function
in (4). Recall that we choose H(t) so that: (1) it is diagonal in the
standard basis, (2) its lowest m eigenvalues are non-negative and
non-degenerate, and (3) it can be efficiently measured on a
quantum computer. Let us now discuss possible choices for H(t).

Fixed Hamiltonians. When the Hamiltonian is fixed (i.e., time-
independent), we write H(t)≡ H, and C(t, θ)≡ C(θ). In this case, a
simple, intuitive cost function is given by

CGðθÞ ¼ Tr½HGeρ�; HG ¼ 1�
Xm
i¼1

qi eij i eih j ; (11)

with qi > 0 (such that qi > qi+1), and where the eij i are orthogonal
states in the standard basis. The spectrum of HG is composed of m
non-degenerate eigenenergies, and a (2n−m)-fold degenerate
eigenenergy.
On the one hand, this large degeneracy makes it easier to find a

global minimum as the solution space is large. That is, denoting as
Vopt an optimal unitary that minimizes (11), then there is a large set of
such optimal unitaries Sopt ¼ fVoptg, which are not related by
global phases. This is due to the fact that one is only interested in the
m rows and them columns of V(θ) that diagonalize eρ in the subspace
spanned by f eij igmi¼1. Specifically, any optimal unitary must satisfy
hzijVoptjλii ¼ hλijVoptjzii ¼ δziei for i= 1,…,m (and with zi 2 Z),
while the (2n−m) × (2n−m) unitary principal submatrix of Vopt with
matrix elements hzijVoptjzi0 i, where zi ; zi0 ∉Z, remains completely
arbitrary.
On the other hand, it has been shown that when employing

hardware-efficient ansatzes36 for V(θ), global cost functions like CG(θ)
are untrainable for large problem sizes as they exhibit exponentially
vanishing gradients (i.e., barren plateaus37) even when the ansatz is
short depth38. Such barren plateaus can be avoided by employing a
different type of cost function known as a local cost38,39, where C is
defined such that one compares states or operators with respect to
each individual qubit rather than comparing them in a global sense.
One can construct a local cost where the Hamiltonian is a

weighted sum of local z-Pauli operators:

CL � hHLi ; HL ¼ 1�
Xn
j¼1

rjZj ; (12)

where rj 2 R and Zj is the z-Pauli operator acting on qubit j. Care
must be taken when choosing the coefficients frjgnj¼1 to ensure
that the lowest m-eigenenergies of HL are non-degenerate.

M. Cerezo et al.

3

Published in partnership with The University of New South Wales npj Quantum Information (2022)   113 



For instance, when targeting the largest eigenvalue of ρ (m= 1),
the simple choice rj= 1, ∀ j achieves this goal. On the other hand,
if one is interested in m= n+ 1 eigenvalues, then one can choose
rj= r1+ (j− 1)δ with r1≫ δ, which will ensure that the m-lowest
energy levels, {E1, E1+ r1, E1+ r1+ δ, . . . , E1+ r1+ (m− 1)δ}, are
non-degenerate. Henceforth, we will assume that one has chosen
frjgnj¼1 such that the m-lowest energy levels are non-degenerate.
While fixed local cost functions do not exhibit barren plateaus for

shallow depth, they still have several trainability issues. First, having
less degeneracy in HL leads to a more difficult optimization problem.
Since degeneracy allows for additional freedom in the solution space,
non-degeneracy constrains the possible solutions. Therefore, there is a
tradeoff between engineering non-degeneracy (which allows one to
distinguish more eigenvalues of ρ) versus keeping degeneracy (which
allows for more solutions). Second, we expect both CL and CG to have
a high density of local minima, especially for large m. This is because
there will be partial solutions to the problem where one correctly
assigns some eigenvalues of ρ to the right energy levels of the
Hamiltonian, while incorrectly assigning other eigenvalues. This local
minima issue is what motivates the following adaptive approach.

Adaptive Hamiltonian. Let us now we introduce an approach to
adaptively update the VQSE Hamiltonian (and hence the cost
function) based on information obtained via measurements during
the optimization loop. This method allows us to mitigate the issues
discussed in the previous section that arise for cost functions with
fixed local or global Hamiltonians. Namely, the adaptive cost function
solves the following three problems: (1) barren plateaus for shallow
depth38, (2) high density of local minima, (3) smaller solution space
arising from non-degenerancies.

Consider a time-dependent Hamiltonian of the form

HðtÞ � ð1� f ðtÞÞHL þ f ðtÞHGðtÞ ; (13)

where f(t) is a real-valued function such that f(0)= 0, f(1)= 1, and
HL is a local Hamiltonian as in (12). We recall here that t ∈ [0, 1] is a
parameter that indicates the optimization loop run time. More-
over, we define the time-dependent global Hamiltonian

HGðtÞ � 1�
Xm
i¼1

qi ziðtÞj i ziðtÞh j ; (14)

where the coefficients qi are real and positive, and chosen in the
same way as in (11). In addition, the states ziðtÞj i are adaptively
chosen throughout the optimization loop by preparing eρ,
measuring in the standard basis to obtain the sets L and Z,
and updating HG(t) so that ziðtÞ 2 Z.
As schematically shown in Fig. 2a, in order to mitigate the

barren plateau phenomena it is important to choose a function f(t)
which is not rapidly growing with t. Hence, for small t, H(t) ~ HL

and the cost function will be trainable as it will not present a
barren plateau. Then, as t increases, one can deal with the issue of
local minima by updating HG(t). As depicted in the insets of Fig. 2a,
adaptively changing HG(t) transforms local minima in the cost
landscape into global minima. Then, by the end of the algorithm,
we have H(1)= HG(1), and as shown in panel (b) of Fig. 2, the
spectrum of H becomes highly degenerate and the dimension of
the solution space increases. In section ‘Algorithm for the adaptive
cost function’ of the “Methods”, we present an algorithm to
illustrate how one can update H(t).
We remark that ref. 40 proposed a method called adiabatically

assisted VQE (AAVQE), which dynamically updates the VQE cost
function by driving between a simple Hamiltonian to the non-
trivial problem Hamiltonian. Note that the goals of AAVQE and our
adaptive training method are different. Furthermore, in our
method, one adaptively updates the cost function based on
information obtained through measurements, while AAVQE does
not use information gained during the optimization.

Operational meaning of the cost function. Here we discuss the
operational meaning of the VQSE cost function, showing that small
cost values imply small eigenvalue and eigenvector errors. Let

fjeλiigmi¼1 be the set of the inferred eigenvector associated with everyeλi in L, and let δij i ¼ ρjeλii �eλi jeλii. We then define eigenvalue and
eigenvector errors as follows:

ελ �
Xm
i¼1
ðλi �eλiÞ2; εv �

Xm
i¼1
hδijδii: (15)

Here 〈δi∣δi〉 quantifies the component of ρjeλii that is orthogonal to
jeλii, which follows from the following identity: δij i ¼ ð1� jeλii
heλijÞρjeλii.
Then by using the Cauchy–Schwarz inequality, majorization

conditions, and Schur convexity, we establish the following upper
bound on eigenvalue and eigenvector errors (see section ‘Opera-
tional meaning of the cost function’ for more details):

ελ; εv ⩽ Tr½ρ2� � ðEmþ1 � CðθÞÞ2Pm
i¼1 ðEmþ1 � EiÞ2

; (16)

where (E1,…, Em) are them-smallest eigeneneries of H, and where for
simplicity we have omitted the t dependence. Thus Eq. (16) provides
an operational meaning to our cost function, as small values of the
cost function lead to small eigenvalue and eigenvector errors.

Verification of solution quality
Let us show how to verify the results obtained from the VQSE
algorithm. We remark that this verification step is optional,

Fig. 2 Adaptive cost function. a Schematic representation of the
function f(t) and the cost landscape of C(t, θ) versus t. We choose f(t)
as a slowly growing function with t. When the optimization starts at
t= 0, the cost function does not exhibit a barren plateau as the
Hamiltonian is local H(0)= HL. As t increases H(t) becomes a linear
combination of HL and a global Hamiltonian HG(t) which is
adaptively updated using information gained from measurements
on V(θ)ρV†(θ). As shown in the insets, this procedure allows for local
minima to become global minima. Finally, when the algorithm ends
at t= 1 the Hamiltonian is global H(t)= HG(t). b Schematic repre-
sentation of the eigenenergies of H(t) versus t. For small t the
Hamiltonian is local and hence its spectrum contains non-
degenerancies that reduce the space of solutions. At t= 1, H(t)
becomes a global Hamiltonian and the spectrum has m non-
degenerate levels and a (2n−m)-degenerate level.
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particularly because it requires 2n qubits, whereas the rest of VQSE
only requires n qubits.
In section ‘Verification of solution quality’ of “Methods”, we

prove the following useful bound on eigenvalue and eigenvector
error:

ελ; εv ⩽ Tr½ρ2� �
Xbm
i¼1

eλ2i þ ð1�Pbm
i¼1eλiÞ2

2n � bm
0@ 1A ; (17)

where one can take bm as any integer between m and 2n. One
can efficiently estimate the right-hand-side of (17) as follows.
Given two copies of ρ, Tr½ρ2� can be estimated by a depth-two
quantum circuit with classical post-processing that scales
linearly with n41. Moreover, since Tr½ρ2� is independent of V(θ),
one only needs to compute it once (outside of the optimization
loop). Estimating the eλi for i ¼ 1; :::; bm essentially comes for
free as part of the eigenvalue readout step of VQSE, where we
note that taking bm>m simply involves keeping track of the
frequencies of more bitstrings (more than the m-largest) during
this readout step. Finally, we remark that while Eq. (16) can also
be used for verification, in section ‘Verification of solution
quality’ we show that (17) provides a tighter bound, particularly
as one increases bm.

Ansatz
While there are many possible choices for the ansatz V(θ), we
are here restricted to state-agnostic ansatzes which do not
require any a prior information about ρ. One such ansatz is the
Layered Hardware Efficient Ansatz36 shown in Fig. 3a. Here, V(θ)
consists of a fixed number L of layers of two-qubit gates Bμ(θμ)
acting on alternating pairs of neighboring qubits. Figure 3b
illustrates possible choices for Bμ(θμ). Note that with this
structure, the number of parameters in θ grows linearly with
the n and L.
Let us remark that the Layered Hardware Efficient Ansatz can

lead to trainability issues as the system size increases37,38. Hence,
different strategies have been proposed to mitigate such
difficulties, such as learning to initialize parameters42, layer-by-
layer training43, and correlating the parameters44. In addition,
these methods can be combined with more sophisticated
ansatzes, such as a variable-structure ansatz6,41 where the
structure of the ansatz is not fixed, and where the gate placement
becomes an optimizable hyper-parameter. This variable-structure
approach has already been shown to improve performance in the
context of extracting the eigensystem of a quantum state6.
Finally, since VQSE optimization corresponds to an energy

minimization problem, a natural ansatz that can also be used to
mitigate trainability issues is the quantum alternating operator
ansatz (QAOA)3,45. Specifically, one could employ H(t) as the

problem Hamiltonian in the QAOA and use a standard mixing
Hamiltonian. While we do not employ this ansatz in our heuristics,
it is nevertheless of interest for future work.

Optimization
Regarding the optimization of the parameters θ, while gradient-
free methods are an option46,47, there has been recent evidence
that gradient-based methods can perform better48–51. Moreover,
as shown in refs. 52,53, for cost functions like (1), gradients can be
analytically determined (see section ‘Gradient of the cost function’
in the “Methods” for an explicit derivation of the gradient
formula). Therefore, in our heuristics, we employ gradient-based
optimization.

Numerical Implementations
Here we present the numerical results obtained from implement-
ing VQSE. We first employ VQSE to estimate the spectrum of
quantum states of different dimensions and compare the
performance of cost functions based on the global, local, and
adaptive Hamiltonians discussed in section ‘Cost functions’. Then
we use VQSE for error mitigation of theW-state preparation circuit.
Finally, we implement VQSE for entanglement spectroscopy on
the ground-state of an XY-spin chain, which allows us to detect
the presence of quantum critical points.

VQSE for quantum principal component analysis. Figure 4
presents the results of implementing VQSE to estimate the six
largest eigenvalues (m= 6) of quantum states with n= 6, 8, and
10 qubits. In all cases, we have rank(ρ)= 16, as the states were
prepared by randomly entangling the system qubits with four
ancillary qubits, which were later traced out. Moreover, we chose
ρ to be real and not sparse in the standard basis.
In our heuristics, we used the layered hardware efficient ansatz

of Fig. 3(b, top), and we employed the fixed-local, fixed-global,
and adaptive cost functions of section ‘Cost functions’. The
termination condition was stated in terms of the maximum
number of iterations in the optimization loop. Hardware noise and
finite sampling were not included in these heuristics. (The next
subsection shows heuristics with noise.) For the fixed local cost
function, we chose the frjgnj¼1 in (12) so that the first six energy
eigenvalues of HL were non-degenerate. Moreover, we defined the
fixed global Hamiltonian such that the first six energy levels (i.e.,
associated eigenvectors and spectral gaps) coincided with those
of HL. Finally, the adaptive Hamiltonian was constructed according
to the procedure described above, and more specifically, in
Algorithm 1 in the “Methods” section.
Since for these examples, we can calculate the exact

eigenvalues λi, we compute and plot the following quantities
which we use as figures of merit for the performance of the VQSE

=

=

Fig. 3 Ansatz diagram. a Layered hardware-efficient ansatz for V(θ). A single layer of the ansatz is composed of two-qubit gates Bμ(θμ) acting
on neighboring qubits. Shown is the case of two layers. b While there are many choices for each block Bμ(θμ), in our numerics we employed
two different parameterizations. Top: Each gate is composed of a controlled-Z gate preceded and followed by single-qubit rotations about the
y-axis RyðθÞ ¼ eiθσy . Bottom: Each gate is composed of a CNOT gate preceded and followed by a single-qubit rotation
Gðθ1; θ2; θ3Þ ¼ eiθ3σz=2eiθ2σy=2eiθ1σz=2 . The number of parameters in θ increases linearly with the number of layers and the number of qubits n.
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algorithm:

ελ �
X6
i¼1
ðλi �eλiÞ2 ; εr �

X6
i¼1
ðλi �eλiÞ2=λ2i : (18)

Here ελ and εr respectively quantify absolute error and
relative error in estimating the exact eigenvalues. We remark
that these two quantities provide different information: The
absolute error is biased towards the error in estimating
the large eigenvalues of ρ, while on the other hand, the
relative error is more sensitive to errors in estimating the small
eigenvalues of ρ.
Figure 4 plots the relative and absolute errors versus number

of iterations (with the total number of iterations fixed). While
we performed many runs, these plots show only the run that
achieved the lowest absolute error. For all system sizes
considered (n= 6, 8 and 10), VQSE achieves smaller relative
and absolute errors when employing the adaptive Hamiltonian
approach than using a fixed Hamiltonian. For n= 6, the errors
obtained by adaptively updating H(t) are two orders of
magnitude smaller than those obtained with fixed Hamilto-
nians, while for n= 8 they are one order of magnitude smaller.
As shown in Fig. 4c for n= 10, the adaptive Hamiltonian
approach achieves error of the order: ~10−5 for the relative
error, and ~10−7 for the absolute error, and again outperforms
the fixed local Hamiltonian approaches. We here finally remark
that we can use Eq. (9) to determine the number of shots
needed to guarantee that with a probability larger than 99% the
relative error induced by finite sampling is smaller than 0.001.
Namely, we find that one needs a number of shots larger than
50.2K, which is well within the order of magnitude of shots
regularly used.
It is natural to ask whether the runs shown in Fig. 4 are

representative of the algorithm performance. To provide an
analysis of the average VQSE performance, we plot in Fig. 5 the
runs-per-success versus 1/ελ for each of the aforementioned
examples. Here, runs-per-success is defined as the total number
of runs divided by the number of runs with an absolute error
smaller than a target ελ.
From all three panels in Fig. 5 we see that for large 1/ελ, the

adaptive Hamiltonian always has the best performance as it
requires less runs-per-success to achieve smaller errors.

Finally, it is interesting to note from the insets of Fig. 5 that
there is a regime where the run time has a linear dependence on
logð1=ελÞ when employing an adaptive approach. This suggests
that VQSE may perform quite efficiently for large ελ. However, the
linear dependence breaks down for small ελ, where the number
of runs-per-success seems to grow exponential with 1/ελ. Despite,
such growth, for up to 8 qubits we only need 100 repetitions to
achieve an error of order 10−6. We leave for future work a more
detailed study of the dependence of runs-per-success for small
error. Finally, the results presented in Figs. 4 and 5 suggest that
for a sufficiently large value of number of iterations, the adaptive
Hamiltonian approach outperforms the fixed Hamiltonian
approaches as it requires the least number of iterations to
converge to very small values of ελ.

Error mitigation. Here we discuss an important application of
the VQSE algorithm for error mitigation. Quantum state
preparation circuits (gate sequences U which prepare a target
state ψj i) are used as subroutines in many quantum algorithms.
However, since current quantum computers are noisy, all state
preparation circuits produce mixed states ρ. If there is little
enough incoherent noise, we can expect that the largest
eigenvalue of ρ is associated with ψj i. Here we show that VQSE
can be implemented to re-purify ρ and estimate ψj i. Naturally,
when running the VQSE eigenvector preparation circuit, noise
will also produce a mixed state σ. However, if the depth of V(θ)
is shorter than the depth of U, one can obtain a higher fidelity
between σ and ψj i in comparison to the fidelity between ρ and
ψj i. In this case one can mitigate errors by replacing the state
preparation circuit by the VQSE eigenvector preparation circuit.
Let us now consider the three qubit W-state preparation circuit

from ref. 54, section 2.2 (see also ref. 55). By employing a noisy
quantum computer simulator with the noise profile of IBM’s
Melbourne processor56, we find that the fidelity between ρ and
the exact W state ψj i is Fðρ; ψj iÞ � 0:785. We then train 10
instances of VQSE with two layers of the ansatz in Fig. 3(b,
bottom) and with a termination condition of 50 iterations.
Moreover, we employ the adaptive Hamiltonian, where we
update H(t) every 10 iterations according to Algorithm 1. Figure 6
shows the average cost function value and average fidelity
between ψj i and the state σ obtained by running the VQSE
eigenvector preparation circuit. As the number of iterations

Fig. 4 Relative and absolute error versus the number of iterations. We implemented VQSE for states of: a n= 6, b n= 8, and c n= 10 qubits.
In all cases, the ansatz for V(θ) was given by three layers of the Layered Hardware Efficient Ansatz of Fig. 3(b, top). Each curve represents the
absolute or relative error (denoted Abs error or Rel error, respectively) of (18) obtained by training V(θ) when employing an adaptive, fixed-
local, or fixed-global Hamiltonian. The number of iterations was 330 for (a) and 360 for (b) and (c). For the adaptive runs, we employed
Algorithm 1, with the Hamiltonian being updated every 30 iterations. In each case, the adaptive approach performs the best as it achieves the
smallest errors.
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increases, the cost value tends to decrease, showing that we are
able to train in the presence of noise. Moreover, we also see that
Fðσ; ψj iÞ increases and saturates at a value larger than Fðρ; ψj iÞ,
namely at 0.853, hence showing that we are in fact mitigating
the effect of noise. This can be explained by the fact that we
reduced the circuit depth, as our ansatz contains two CNOTs,
while the textbook circuit contains three CNOTs.

Entanglement spectroscopy. We now discuss the possibility of
employing VQSE to compute the entanglement spectrum of a state
ρ which is obtained as the reduced state of a bipartite quantum
system ψABj i, i.e., ρ ¼ TrB ψABj i ψABh j. Let d denote the dimension of
ρ. The entanglement spectrum57 refers to the collection fλkgdk¼1 of
eigenvalues of ρ, and as discussed in ref. 58, entanglement
spectroscopy is a useful tool to analyze states ψABj i prepared by
simulating many-body systems on a quantum computer. Specifi-
cally, the entanglement spectrum is useful to study the bipartite
entanglement, as it contains more universal signatures than the
von Neumann entropy alone57, and it can detect the presence of
quantum critical points59,60.

Let us now consider an N= 8 spin-1/2 cyclic chain interacting
trough uniform XY first-neighbor Heisenberg coupling in the
presence of a non-transverse magnetic field. The Hamiltonian of
the system is

H ¼ �
X
j

ðhxSxj þ hzS
z
j þ JxS

x
j S

x
jþ1 þ JyS

y
j S

y
jþ1Þ ; (19)

where j labels the site in the chain, Sμj the spin operator (with
μ= x, y, z), Jμ the coupling strength, and hμ the magnetic fields.
Here, Jμ > 0 leads to ferromagnetic (FM) coupling, while Jμ < 0 to
antiferromagnetic (AFM) coupling. As shown in refs. 60,61, for
specific values of the fields hμ (known as factorizing fields) the
Hamiltonian in (19) presents quantum critical points known as
"factorization” points. At the non-transverse factorizing field,
the ground-state of H becomes a separable non-degenerate
state such that one of its eigenvalues is exactly equal to one,
while the rest are exactly zero.
In Fig. 7a, c, we show results of implementing VQSE with an

adaptive Hamiltonian to compute the three largest eigenvalues
of the state ρ defined as the reduced state of 4 neighboring
spins obtained from the ground state of (19). For simplicity,
we have parametrized the fields as ðhz; hxÞ ¼ hðcosðγÞ; sinðγÞÞ
with γ fixed. Specifically, in Fig. 7a, c we plot the estimated
eigenvalues versus the field magnitude h for a system with FM
and AFM couplings, respectively. Moreover, dashed lines
indicate the exact eigenvalues. For each field value, we run 8
instances of VQSE, and even for such a small number of runs,
the estimated eigenvalues give good approximations as we get
relative errors which in general are of the order of ~10−2.
In Fig. 7b, d, we show the same data as in (a) and (c) but

the y axis is plotted on a logarithmic scale, and where
instead of plotting the largest eigenvalue λ1, we plot 1− λ1.
For the FM (AFM) case, there is a factorization points at h/
Jx ≈ 0.76 (h/Jx ≈ 1.43). As depicted in these panels, around
critical points we correctly find eλ1 � 1, and eλ2;eλ3 � 0. These
results show that VQSE can detect quantum critical factorization
points.

DISCUSSION
In the NISQ era, every qubit and every gate counts. Wasteful
usage of qubits or gates will ultimately limit the problem
size that an algorithm can solve. In this work, we presented an
algorithm for extracting the eigensystem of a quantum state
ρ that is as frugal as we could imagine, with respect to
qubit count.

Fig. 5 Runs-per-success versus inverse absolute error 1/ελ. We implemented VQSE for the states of: a n= 6, b n= 8, and c n= 10 qubits
corresponding to Fig. 4. The insets depict the same data in the small 1/ελ regime. Runs-per-success is defined as the total number of runs
divided by the number of runs with a relative error smaller than a target ελ. For all three cases, we can see that as 1/ελ increases, the adaptive
Hamiltonian has the lowest number of runs-per-success, and hence the best performance. In all cases, the x-axis is plotted on a log scale.

Fig. 6 Cost function value and fidelity versus number of
iterations. We implement VQSE for error mitigation of the three
qubit W-state preparation circuit. The input state ρ corresponds to
the mixed state obtained by running the W-state preparation circuit
on a noisy simulator. The dashed line corresponds to the fidelity
Fðρ; ψj iÞ between ρ and the the exact W state ψj i. For each iteration
step, we compute the fidelity Fðσ; ψj iÞ, where the mixed state σ is
obtained by running the VQSE eigenvector preparation circuit on
the noisy simulator. Curves depict the average of 10 instances of the
algorithm. As the number of iterations increases the cost function
value decreases, which implies that we are able to train V(θ) in the
presence of noise. After a few iterations of the VQSE optimization
loop, we find Fðσ; ψj iÞ> Fðρ; ψj iÞ.
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We introduced the VQSE, which estimates the m-largest
eigenvalues and associated eigenvectors of ρ, using only a
single copy of ρ, and hence only n qubits per iteration of the
VQSE. VQSE exploits the mathematical connection between
diagonalization and majorization to define an efficiently
computable cost function as the expectation value of a
Hamiltonian. We derived an operational meaning of this cost
function as a bound on eigensystem error. Furthermore, we
introduced a training method that involved adaptively updating
the VQSE cost function based on the information gained from
measurements performed throughout the optimization. This was
aimed at addressing both barren plateaus and local minima in
the cost landscape.
We have numerically implemented VQSE for several applica-

tions. We showed that VQSE can be employed for PCA by
implementing the VQSE algorithm on states of n= 6, 8, and 10
qubits to estimate the six largest eigenvalues. Our numerical
results (Figs. 4 and 5) indicate that our adaptive cost function
approach leads to smaller errors than the ones obtained by
training a fixed cost function. We also showed (Fig. 7) that one can
detect quantum critical points by performing entanglement
spectroscopy with the eigenvalues obtained via VQSE. Finally,
we employed VQSE to mitigate errors that occur during the W-
state preparation circuit. This involved running VQSE on a noisy
simulator to re-purify the state, i.e., find the circuit that prepares
the eigenvector with the largest eigenvalue. We found (Fig. 6) that
the re-purified state obtained by VQSE improved the fidelity with
the target W state, and hence reduced the effects of noise.

Comparison to literature
Since VQSE only requires n qubits, it is as qubit frugal as it can
possible be when compared to other algorithms for the same
task, such as quantum PCA (qPCA)33, VQSD6, and quantum
state singular value decomposition (QSVD)27. The quantum
phase estimation and density matrix exponentiation primitives
in qPCA make it difficult to implement in the near term62, and
this is supported an by attempted implementation in ref. 6 that
resulted in poor performance. On the other hand, VQSD and
QSVD are variational algorithms and hence have the possibility
of lower-depth requirements. But they still need to employ a
larger number of qubits than VQSE. Specifically, VQSD needs to
perform the so-called Diagonalized Inner Product Test6 which
requires two copies of ρ, i.e., requires twice as many qubits as
VQSE. In addition, it is also worth noting that VQSD is vulnerable
to noise, since any asymmetry between the noise acting of each
copy of ρ will affect the result of the algorithm. Finally, in QSVD,
one needs to either compute or have access to a purification ψj i
of ρ. Hence QSVD requires a number of qubits between n and
2n. Moreover, we expect that noise will be a bigger issue for
QSVD than for VQSE, since in practice the assumption that one
has a pure state in QSVD can often be violated due to
incoherent noise during state preparation.
Quantum-inspired classical algorithms63 for PCA can perform

well in practice, provided that the matrix has a very large
dimension, low rank, and low condition number64. We note that
VQSE does not have such limitations, except the fact that VQSE
yields results with high accuracy for low-rank states. Here is also

Fig. 7 Exact and estimated eigenvalues versus field value, for the VQSE entanglement spectroscopy implementations. The input state ρ is
given as the reduced state of 4 neighboring qubits from the ground state of (19). Top and bottom rows correspond to ferromagnetic and
antiferromagnetic couplings, respectively. Dashed curves represent the exact three largest eigenvalues of ρ, while plot markers indicate the
VQSE estimated eigenvalues. In a and c we see that VQSE can accurately estimate the eigenvalues. In b and d we plot 1− λ1, and the y axis is
on a log scale. Here we see that the quantum critical factorization points are detected at h/Jx ≈ 0.76 and h/Jx ≈ 1.43 in (b) and (d), respectively,
since at those points we have eλ1 � 1, and eλ2;eλ3 � 0.
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paramount to recall that recent results have show that an
exponential advantage is still possible for PCA65,66, even for
near-term algorithms, as the quantum-inspired classical algo-
rithms are artificially given too much power via access to
quantum state amplitudes. Thus, in view of these recent result,
VQSE can be useful in the quest for achieving a quantum
speedup with quantum PCA, particularly for analysis of
quantum data. For the case of classical data, the success of
VQSE for PCA relies on the efficiency of preparing a quantum
state corresponding to the covariance matrix of the classical
data67. In addition, VQSE has applications not only for PCA but
also for other tasks such as entanglement spectroscopy and
error mitigation on NISQ devices. For error mitigation, we leave
for future work combining our approach with other error
mitigation techniques such as Virtual Distillation68,69, which also
seeks to re-purify noisy quantum states.

Future directions
Due to the rapid rise of VQE2, much research has gone into how to
prepare ground and excited states on NISQ devices. However, more
research is needed on how to characterize these states, once
prepared. This is where VQSE comes in, as VQSE can extract
the entanglement spectra of these states and hence characterize
important properties like topological order57. Hence it is worth
exploring in the future the idea of pairing up the VQE and VQSE
algorithms, where VQSE is implemented immediately after VQE.
Furthermore, VQSE has immediate application for estimating the

fidelity of two quantum states with reduced resource requirements.
This is because an algorithm was previously introduced8 to estimate
fidelity by using state diagonlization as a subroutine, and hence
VQSE can provide a more efficient version of this subroutine.
A crucial technical idea in this work was our adaptively-updated

cost function, which improved optimization performance. It is
worth investigating whether this adaptive method can improve
the performance of other VQAs2–27.
Another direction to explore is whether VQSE exhibits noise

resilience17. We suspect this to be true given the similar structure
of VQSE and the variational quantum compiling algorithms
investigated in ref. 17.
This is important as we are proposing that VQSE will be a useful

tool for error mitigation. Namely, we envision that VQSE could be
used as a subroutine to improve the accuracy of several quantum
algorithms. For example, one could use VQSE to re-purify the noisy
quantum state obtained as the outcome of the VQE algorithm.
Alternatively, one could periodically perform VQSE whilst running a
dynamical quantum simulation on a NISQ device, which would re-
purify the state as it is evolving in time. This could allow one to
simulate long-time dynamics, i.e., times significantly beyond the
coherence time of a NISQ device.

METHODS
Operational meaning of the cost function
In this section, we provide a derivation for Eq. (16). First, we rewrite the
eigenvalue error in Eq. (15) as follows:

ελ ¼ λm � λm þ eλm � eλm � 2λm � eλm ; (20)

where λm≡ (λ1,…, λm) and eλm � ðeλ1; ¼ ;eλmÞ. Since the eigenvalues of a
positive semidefinite operator majorize its diagonal elements, we have that

λm � eλm. Moreover, from the Schur convexity property of the dot product

with an ordered vector, it follows that λm � eλm ⩾eλm � eλm, which further
implies the following inequality:

ελ ⩽ λm � λm � eλm � eλm : (21)

Similarly, from Eq. (15) we get

εv ⩽ λm � λm � eλm � eλm ; (22)

where we again used the fact that the eigenvalues of a positive
semidefinite operator majorize its diagonal elements, and hence
λm � λm ⩾

Pm
i¼1heλi jρ2jeλii.

We recall from Eq. (3) that the VQSE cost function can be expressed as
C ¼Pd

i¼1 Eipi , where we omit the θ, and t dependence of C. Therefore, the
following chain of inequalities hold:

C⩾
Pm
i¼1

Eipi þ Emþ1
P
i>m

pi

¼ Emþ1 �
Pm
i¼1

piðEmþ1 � EiÞ
� �

⩾ Emþ1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

i¼1
p2i

� � Pm
i¼1
ðEmþ1 � EiÞ2

� �s
;

(23)

where d= 2n. The first inequality follows the fact that Ei⩾ Em+1, ∀ i⩾m+ 1
and

P
i >mpi ¼ 1�Pm

i¼1 pi . The second inequality follows from the
Cauchy–Schwarz inequality for the dot product of two vectors ∣u ⋅ v∣⩽ ∣
u∣∣v∣. By combining Eq. (23) with the fact that

Pm
i¼1eλ2i ⩾Pm

i¼1 p
2
i (sinceeλi 2 L are the largest diagonal elements of eρ), we find thatffiffiffiffiffiffiffiffiffiffiffiffiXm

i¼1
~λ
2
i

s
⩾ Emþ1 � CffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

i¼1 ðEmþ1 � EiÞ2
q : (24)

Using the fact that λm � λm ⩽ λ � λ ¼ Tr½ρ2�, we obtain the following
equality from (24)

λm � λm � eλm � eλm ⩽ Tr½ρ2� � ðEmþ1 � CÞ2Pm
i¼1 ðEmþ1 � EiÞ2

:

Combining this with (21) and (22) leads to (16).

Verification of solution quality
Here we provide a proof of Eq. (17), and we show that this bound is tighter
than the bound in (16). From the definition of the eigenvalue and
eigenvector error in (15), it is straightforward to see that

ελ ⩽
Pd

i¼1 ðλi �eλiÞ2, and εv ⩽
Pd

i¼1hδi jδii, where d= 2n. By following a
procedure similar to the one employed in deriving (22), we find

ελ ⩽ λ � λ� eλ � eλ ; (25)

where we recall that λ and eλ denote d-dimensional vectors of ordered
exact and estimated eigenvalues of ρ, respectively. Moreover, from
δij i ¼ ð1� jeλiiheλi jÞρjeλii, it is straightforward to get

εv ⩽
Xd
i¼1
heλi jρ2jeλii � eλ � eλ ¼ λ � λ� eλ � eλ ; (26)

where we used the fact that
Pd

i¼1heλi jρ2jeλii ¼ Tr½ρ2�, which follows from the
invariance of trace under a basis transformation.

Let bλ ¼ ðeλ1; ¼ ;eλbm; 1�Pbm
i¼1
eλi

2n�bm ; ¼ ;
1�
Pbm

i¼1
eλi

2n�bm Þ, with bm>m, be a vector major-
ized by eλ, i.e., eλ � bλ. Since the dot product with an ordered vector is a
Schur convex function, we have bλ � bλ⩽bλ � eλ⩽eλ � eλ, which further implies
the following inequality:

λ � λ� eλ � eλ⩽ λ � λ�
Xbm
i¼1

eλ2i þ ð1�Pbm
i¼1 eλiÞ2

2n � bm
0@ 1A: (27)

This inequality can be combined with (25) and (26) to obtain the bound
in (17).
We now show that (17) is tighter than (16). Specifically, we prove that

the negative term in the right-hand side of (17) is larger than the one in
(16). Consider the following chain of inequalities:

Pbm
i¼1

eλ2i þ ð1�Pbm
i¼1
eλiÞ2

2n�bm
0@ 1A⩾

Pm
i¼1

eλ2i
⩾ ðEmþ1�CÞ2Pm

i¼1 ðEmþ1�EiÞ
2 ;

where we used bm>m, and where the last inequality follows from (24).
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Gradient of the cost function
Here we show that the partial derivative of (4) with respect to an angle
θν is given by
∂Cðt;θÞ
∂θν

¼ 1
2

Tr HðtÞVðθþÞρVyðθþÞ
� ��

�Tr HðtÞVðθ�ÞρVyðθ�Þ
� ��

:

(28)

Writing θ= (θ1,…, θν,…), then θ± are simply given by θ±= (θ1,…, θν± π/
2,…), which shows that the gradient values are efficiently accessible by
shifting the parameters in θ and measuring the expectation value 〈H(t)〉.
Let us consider the layered hardware efficient ansatz of Fig. 3a. Here V(θ)

consists of a fixed number L of layers of 2-qubit gates Bμ(θμ) acting on
alternating pairs of neighboring qubits. Moreover, Bμ(θμ) can always be
expressed as a product of ημ gates from a given alphabet A ¼ fUkðθkÞg as
BμðθμÞ ¼ Uημ ðθ

ημ
μ Þ¼UνðθνμÞ¼U1ðθη1μ Þ : (29)

Here θ
ημ
μ are continous parameters, and we can always write without loss

of generality Uk(θ)= Rk(θ)Tk, where RkðθÞ ¼ eiθσk=2 is a single qubit rotation
and Tk is an unparametrized gate.
We can then compute ∂νBμðθμÞ � ∂BμðθμÞ=∂θνμ as

∂νBμðθμÞ ¼ i
2
Uημ ðθ

ημ
μ Þ¼ σνUνðθνμÞ¼U1ðθη1μ Þ : (30)

Then, without loss of generality let us write V(θ)= VL(θL)Bμ(θμ)VR(θR),
where VL(θL), and VR(θR) contain all gates in V(θ) except for Bμ(θμ). By
noting that ∂νV(θ)= VL(θL)∂νBμ(θμ)VR(θR), we have

∂νC ¼ Tr HVL∂νBμVRρV
y
RB
y
μV
y
L

h i
þ Tr HVLBμVRρV

y
R∂νB

y
μV
y
L

h i
;

where we omitted the parameter dependence for simplicity. Then, from
Eq. (30) and using the following identity (which is valid for any matrix A)

i½σνA� ¼ Rν � π

2

	 

ARyν �

π

2

	 

� Rν

π

2

	 

ARyν

π

2

	 

; (31)

where RkðθÞ ¼ eiθσk=2, we obtain

∂Cðt;θÞ
∂θν

¼ 1
2

Tr HðtÞVðθþÞρVyðθþÞ
� ��

� Tr HðtÞVðθ�ÞρVyðθ�Þ
� ��

:

(32)

Algorithm for the adaptive cost function
Algorithm 1 shows a simple adaptive strategy that illustrates how one can
update H(t). Specifically, we consider the case when f(t) is a stepwise
function. In addition, we define the VQSE optimization loop termination
condition in terms of the maximum number of iterations allowed Nmax. We
also define an updating parameter s (with Nmax/s being an integer) such
that we update HG(t) every s steps. Finally, here we use the term optimizer,
denoted as opt, as a function that takes as inputs a set of parameters θ
and a cost function C(t, θ) (or the gradient of the cost for gradient-based
optimization) and returns an updated set of parameters that attempts to
solve the minimization problem of Eq. (5).

Algorithm 1. Adaptive cost function with stepwise schedule f(t)
Input: state ρ; trainable unitary V(θ); integerm; timestep δt ¼ 1=Nmax;
adapting stepsize ts= 1/s; local time-independent Hamiltonian HL; a set
of constant parameters qif gmi¼1; classical optimizer opt.

Output: parameters θopt which minimize the cost function, i.e.,
θopt ¼ argminθ CðθÞ:
Init: randomly choose a set of initial parameters θ; H(t)← HL; t← δt

1: while t⩽ 1 do
2: if t if divisible by ts then
3: measure V(θ)ρV†(θ) in the standard basis.

define the sets L and Z
4: HGðtÞ  1�Pm

i¼1 qi zij i zih j with zi 2 Z
5: H(t)← (1− t)HL+ tHG(t)
6: run opt with C and θ as input, and θmin as output
7: θ θmin
8: t← t+ δt
9: if t= 1 then

10: θopt← θ
Return: θopt
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