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A scheme to create and verify scalable entanglement in optical
lattice
You Zhou 1,2,6, Bo Xiao 1,3,6, Meng-Da Li1,3, Qi Zhao4, Zhen-Sheng Yuan 1,3✉, Xiongfeng Ma 5✉ and Jian-Wei Pan 1,3

To achieve scalable quantum information processing, great efforts have been devoted to the creation of large-scale entangled
states in various physical systems. Ultracold atom in optical lattice is considered as one of the promising platforms due to its
feasible initialization and parallel manipulation. In this work, we propose an efficient scheme to generate and characterize global
entanglement in the optical lattice. With only two-layer quantum circuits, the generation utilizes two-qubit entangling gates based
on the superexchange interaction in double wells. The parallelism of these operations enables the generation to be fast and
scalable. To verify the entanglement of this non-stabilizer state, we mainly design three complementary detection protocols which
are less resource-consuming compared to the full tomography. In particular, one just needs two homogenous local measurement
settings to identify the entanglement property. Our entanglement generation and verification protocols provide the foundation for
the further quantum information processing in optical lattice.
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INTRODUCTION
Quantum information and quantum computation1, which harvest
the intrinsic quantum features, like superposition and entangle-
ment2, can show advantages against their classical counterparts.
To build a practical quantum information processor, the computa-
tion platform with high scalability is preferred and the qubits
should be coupled to each other to form a large-scale entangle-
ment. Hence, many researches have been focusing on the
generation of scalable entangled states in different physical
systems, e.g, ion trap3–5, photons6,7, Rydberg atoms8, and super-
conducting circuits9–11. Even though there are significant pro-
gresses of the qubit number in various systems12,13, the generation
of large-scale entanglement is still challenging for the Noisy
Intermediate Scale Quantum Devices14.
Ultracold atoms in optical lattice15 could be a practicable

system to overcome this challenge due to its feasible initialization
and parallel manipulation. By adiabatically increasing the lattice
depth, the phase of ultracold atom can be tuned from superfluid
(SF) to Mott insulator (MI)16,17. Under an unit filling rate, numerous
atoms can be confined in the lattice and serves as qubits. Based
on this initialization, entangled states in optical lattice have been
demonstrated experimentally, for instance, the generation of
cluster state with controlled collision gate induced by the spin-
dependent lattice18,19, which acts as the resource state for the
measurement-based quantum computing20,21. The development
of superlattice further improves the ability to control ultracold
atoms, which is formed by overlapping two different optical
lattices to generate a series of double wells. The structure of the
double well can be modified to induce different kinds of atomic
dynamics, such as superexchange coupling22 and controlled
exchange interaction23, which can be both used to realizeffiffiffiffiffiffiffiffiffiffiffiffi
SWAP

p
gate and entangle two atoms in a double well23,24.

Besides, the entangling operations in the superlattice can be

performed in a parallel way based on the periodicity of the lattice
system, which is suitable for the fast generation of large amount of
entangled pairs and even large-scale entangled states. Note that
this kind of parallel operation can also be implemented with multi-
tweezer in Rydberg atom experiments25,26.
Every coin has two sides. The periodicity property also induces

some restrictions on the quantum operation and measurement.
The small lattice spacing, required by the large tunnelling
between neighbour sites, creates a challenge for the individual
control of atoms, say, some local basis rotations. The tight-focused
optical tweezer27 created with the recently developed high-
resolution imaging28–32 could be a solution. However, it is still
challenging to perform a few of different single-qubit operations
on multiple qubits under a realistic time-scale to ensure the
system coherence. As a result, homogeneous operations and
measurements on all atoms are preferred in optical lattice
experiments.
In this work, we propose a scheme to generate scalable

entanglement of ultracold atoms which is suitable for the
implementation in the optical superlattice system. It mainly
contains two entangling steps: first, entangle the atom-pair in
each double well by the

ffiffiffiffiffiffiffiffiffiffiffiffi
SWAP

p
gate; second, shift the position of

double wells to a single site by changing the phase of superlattice,
and then entangle the the new atom-pair with

ffiffiffiffiffiffiffiffiffiffiffiffi
SWAP

p
again. In

this way, all atoms in the superlattice can be connected with
neighbours to form a global entangled state. Our theoretical
analysis shows that the final state possesses genuine multipartite
entanglement (GME). In addition, the final state is also less
sensitive to magnetic noises which can cause decoherence, since
it only owns amplitude on the computational basis whose total
spin is zero.
In actual experiments, the inevitable noise may degrade the

entanglement, which should be verified further. Compared with
quantum tomography33,34, entanglement witness is a more
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efficient way35–37 to realize this task based on the pre-knowledge
of the preparation. Current entanglement witnesses are usually
designed for some structured states, such as permutation-
invariant states38–40 and stabilizer states41–43. However, in our
protocol the state generated by the non-Clifford gate

ffiffiffiffiffiffiffiffiffiffiffiffi
SWAP

p
is

not a standard stabilizer state, which makes the entanglement
verification challenging. To overcome this challenge, we first
construct an entanglement witness based on the preparation
fidelity. By adopting the decomposition using stabilizer-like
method, we can lower bound the fidelity with a few spin-
correlation measurements. Some correlations among them are
inhomogenous and thus require the individual atom addressing
whose implementation could be challenging with current
techniques. To further ease the experiment realization, we show
another complementary protocol which only requires homoge-
nous spin-correlations and only two measurement settings. At last,
by reversely evolving the state with the conjugate quantum gates,
we provide an intuitive method to indirectly bound the
preparation fidelity and thus qualitatively verify the entanglement.

RESULTS
Entangling gates in optical superlattices
The behavior of ultracold atoms in optical lattices can be described
by the Hubbard model which is characterized by the tunnel
coupling between neighbouring sites J, the on-site interaction V,
and the effective chemical potential μ. By increasing the depth of
the lattice, a phase transition from SF to MI can occur and the
atoms start to be localized in each site. To extend the ability to
manipulate atoms, a more complicated periodic potential, named
superlattice, was proposed and applied in many experiments44–47.
It is normally formed by overlapping two distinct optical lattices.
The period of the first lattice (denoted as the long lattice) is twice
as that of the second (denoted as the short lattice), which induces
an array of double wells steadily. The resulting potential shows
Vt(x, ϕ)= Vlcos2(πx/a+ ϕ)+ Vscos2(2πx/a) with a being the lattice
spacing of the long lattice. The structure of such potential is
dependent on both the relative strength of two lattices and the
relative phase ϕ. When the phase ϕ is not equal to nπ/2 (n is an
integer), all the double wells are biased with a non-zero tilt Δ
between the subsites. In addition, the center of each double well
can shift a period of short lattice via changing n by an odd number,
which is illustrated in Fig. 1 (b).
Subsites in each double well are separated by a low barrier,

while neighbour double wells are separated by a high barrier. We
denote corresponding tunneling strengths as Jinter and Jinner
respectively. As Jinter is much smaller than Jinner, the hopping event
between different double wells can be ignored and the move-
ment of atoms is restricted in each double well. In this case, for
two-level bosonic atoms, their dynamics in double wells can be

described well with a two-site mode Bose-Hubbard Hamiltonian
characterized with V, Jinner and Δ as follows.

Ĥ ¼ �Jinner
P

σ¼";#
ðâyL;σ âR;σ þ âyR;σ âL;σÞ

þ V
2

P
i¼R;L

n̂i;"ðn̂i;" � 1Þ þ V
2

P
i¼R;L

n̂i;#ðn̂i;# � 1Þ

þ V
P
i¼R;L

ðn̂i;"n̂i;# þ n̂i;#n̂i;"Þ þ Δ
2 ðn̂L;" � n̂R;" � n̂L;# þ n̂R;#Þ:

(1)

Here, R(L) denotes right(left) subsite, âyi;σ(âi;σ) is the creatio-
n(annihilation) operator for the boson on site i with the inner state
σ, and n̂i;σ is the number operator. We consider a non-biased
double-well system starting with unit filling—one atom per site.
Note that the chemical potential μ is fixed here for unit filling and
thus has no effect on the dynamics, and it is ignored in Eq. (1). In
the limit V≫ Jinner, the large V prevents multiple occupation, so
that the system would evolve in a subspace consists of four basis
states labeled by inner states of the bosons "; "j i, #; "j i, "; #j i and
#; #j i. By using perturbation theory, the above model in this
subspace is equivalent to the isotropic Heisenberg Hamiltonian48:

Ĥeff ¼ � Jex
2
ðX̂LX̂R þ ŶLŶR þ ẐLẐRÞ; (2)

where X̂ i , Ŷ i , Ẑi are Pauli operators on subsite i= R, L, and Jex �
2J2inner=V is the superexchange coupling between subsites.
In the remaining of this work, we denote spin configuration #j i

and "j i as 0j i and 1j i. Initialized at 0; 1j i and driven by this effective
Hamiltonian, the state of the system can oscillate between 0; 1j i
and 1; 0j i with a period of T= 2πℏ/Jex while global phase is also
recovered, named the superexchange process. Taking an evolution
time of T/8, the product states 0; 1j i and 1; 0j i are prepared into
two-qubit maximally entangled states 1=

ffiffiffi
2

p ð 0; 1j i þ i 1; 0j iÞ and
1=

ffiffiffi
2

p ð 0; 1j i � i 1; 0j iÞ respectively while 0; 0j i and 1; 1j i remain
unchanged due to the high energy gap of V. The effective unitary

transformation corresponds to a
ffiffiffiffiffiffiffiffiffiffiffiffi
SWAP

p y
gate operation, i.e.,

U ffiffiffiffiffiffiffiffiffi
SWAP

p y ¼

1 0 0 0

0 ð1� iÞ=2 ð1þ iÞ=2 0

0 ð1þ iÞ=2 ð1� iÞ=2 0

0 0 0 1

0
BBB@

1
CCCA: (3)

with respect to the basis 0; 0j i, 1; 0j i, 0; 1j i, 1; 1j i. Moreover, with
an evolution time of 3T/8, one can realize the correspondingffiffiffiffiffiffiffiffiffiffiffiffi
SWAP

p
gate. In particular, when Jinter/Jex ≥ 25, the infidelity of theffiffiffiffiffiffiffiffiffiffiffiffi

SWAP
p y

operation caused by the tunneling between neighbour
double wells would be smaller than 0.1%.
For the current gate generation scheme, due to the large ratio

V/Jinner, the effective Jex is far less than Jinner. In addition, such
high V/Jinner requires a deep potential in each site thus leads to a

Fig. 1 The features of superlattice. a Double-well system characterized by the parameters V, Jinner and Δ. b The shift of the double-well
center.
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small Jinner. As a result, the period of the superexchange process
would be long, e.g, tens of milliseconds for 87Rb atoms in
superlattice22,24, which would aggravate the decoherence effect.
To ease this problem, an alternative and faster gate generation
scheme can be adopted here49, which is performed with a small
V/Jinner. Instead of introducing the large energy ratio, this
scheme utilizes the coherent competition of superexchange and
atom tunneling to decrease the component with double
occupation in state. As V/Jinner is set to be a finite value 4=

ffiffiffi
3

p
,

the undesired component can be eliminated completely at
specific time intervals. In particular, with an evolution time of

πℏ/V, such elimination leads to a fast
ffiffiffiffiffiffiffiffiffiffiffiffiffi
SWAP

p y
gate realization

with high fidelity.
Besides, the spin-dependent effect further improves the ability

to manipulate the atoms in optical lattices. By adding circular
polarization components into one lattice light field of super-
lattice45,50, the tilt Δ can be different for different inner states.
Therefore, the energy gap between inner states on right subsite
would be different from that on the left which induce two
applications here. One is to spin-flip atoms in one subsite of every
double well without affecting atoms in the other subsite, enabling
the state transfer between the four basis states mentioned
above45. The other is to generate a relative phase between 0; 1j i
and 1; 0j i and then transfer the states 1=

ffiffiffi
2

p ð 0; 1j i � i 1; 0j iÞ,
1=

ffiffiffi
2

p ð 1; 0j i � i 0; 1j iÞ to the standard Bell states 1=
ffiffiffi
2

p ð 1; 0j iþ
0; 1j iÞ, 1= ffiffiffi

2
p ð 1; 0j i � 0; 1j iÞ24, respectively.

Entanglement generation protocol
Our protocol is expected to be performed on one-dimensional
atomic chains along X direction with a short lattice isolating the
atoms. On each site, the filling is initialized into unit through the
SF-MI phase transition. Assuming the inner state of atoms
are prepared into 0j i and taking 10-qubit system as example,
the protocol can be divided into the following steps which are
illustrated in Fig. 2.

1. Turn on the spin-dependent superlattice50 by ramping up a
spin-dependent long lattice along X. With selective spin-flip
by coupled field, the Néel state is prepared:

Φ1j i ¼ 1010101010j i (4)

2. Turn off the spin-dependent effect and perform
ffiffiffiffiffiffiffiffiffiffiffiffi
SWAP

p y

gate on the atom pairs (1, 2), (3, 4),..., (9, 10) in each double

well,

Φ0j i ¼ N5
k¼1

ffiffiffiffiffiffiffiffiffiffiffiffi
SWAP

p y
f2k�1;2kg Φ1j i

¼ N5
k¼1

1ffiffi
2

p ð 10j i þ i 01j iÞf2k�1;2kg:
(5)

3. Turn on the spin-dependent effect again and introduce a
relative phase π/2 on 10j i. As a result, the state of the
system is the tensor product of five Bell states,

Φ2j i ¼ Uphase Φ
0j i ¼

O5

k¼1

1ffiffiffi
2

p ð 01j i þ 10j iÞf2k�1;2kg: (6)

4. Change the relative phase ϕ by π/2 to trap the atom pair
(2, 3), (4, 5),..., (8, 9) in different double wells.

5. Perform
ffiffiffiffiffiffiffiffiffiffiffiffi
SWAP

p y
gates on the atom pairs (2, 3), (4, 5),..., (8,

9) in each double well, the final state is

Ψj i ¼
O4

k¼1

ffiffiffiffiffiffiffiffiffiffiffiffi
SWAP

p y
f2k;2kþ1g Φ2j i: (7)

During the entire process atomic motions along other
directions are frozen by deep lattice potentials. Finally, one-
dimensional entangled systems are generated. The gate opera-
tions entangle every pair of neighbour atoms so that the target
state is GME by itself. As the gate operation is not present, the
depth of each site should be deep enough to avoid any
undesirable hopping events.
The target state only owns non-zero projection on a few bases

whose total spin numbers are zero, and the magnetic field
fluctuation can only introduce a global phase. Consequently, our
target can be robust to the magnetic field fluctuation, and thus
has longer coherence time, compared to for example the GHZ
state. In this basis collection, each basis can find another basis
whose spin on each qubit is anti-parallel to its own, e.g.,
0; 1; 1; 0; :::j i and 1; 0; 0; 1; :::j i, and the projections on each pair
of bases show same modules but different arguments.
According to the definition of GME2, it is inferred that a pure

state whose subsystems are all mixed states must be a GME
state. Based on this, the purity of all subsystems of the target
state in the case of 10-qubit are calculated and found to be less

Fig. 2 Illustration of the preparation protocol. a Generate Néel state with selective spin-flip. b Entangle and prepare the atom pairs into Bell

state with
ffiffiffiffiffiffiffiffiffiffiffiffi
SWAP

p y
gate. c Shift the position of double wells by changing the relative phase ϕ. d Entangle the neighbour atoms which are not

entangled in b.
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than 1, which verifies that this 10-qubit target state possesses
GME. This conclusion can be extended to the target state with a
different number of qubits.
We remark that Ref. 51 also studies the generation of

entanglement by
ffiffiffiffiffiffiffiffiffiffiffiffi
SWAP

p
in the cold atom system. The state

generated there is like a GHZ state, which needs much more gate
operations, compared to the cluster-like state here. In addition,
there is no valid method given there to verify the entanglement.
In the following sections, we exhibit theoretical methods to

detect the multipartite entanglement in the cold atom system.
The prepared state shown in the Section 2.2 is generated by
parallel

ffiffiffiffiffiffiffiffiffiffiffiffi
SWAP

p y
gates and thus not a stabilizer state, such as the

GHZ state and the cluster state. This fact makes the entanglement
detection task challenging and the methods proposed in literature
are not suitable in this scenario.
To overcome this challenge, we propose three complemen-

tary methods. The first one is based on the fidelity estimation to
the target state to detect the strongest form of entanglement—
genuine multipartite entanglement. By evaluating the non-Pauli
stabilizer after the entangling gate evolution, the method only
needs constant number of measurement setting with respect to
the system size to lower bound the fidelity. To further release
the experiment efforts, the second method adopts homoge-
neous measurements, with only two measurement settings.
Thus it is very efficient to realize and can tell whether the
prepared state is separable or not considering any bipartition of
the whole system. The third one is more intuitional but can
reveal GME with less experiment requirements. In particular, we
indirectly estimate the fidelity between the prepared state and
the target state by evolving the entangling process forward
and backward.
All these methods need the spin measurement on single atom,

however, the fluorescence imaging used in high-resolution
experiments can not resolve different spins. As the state we
consider here only has one atom on each site, it could be done by
measuring the atom distribution after removing one spin
component in which the occupied site and unoccupied site
represent different spins52 or splitting different spin components
with gradient along perpendicular direction53.
Before showing these three methods, we give some related

definitions about multipartite entanglement.
A pure state is (bi-)separable if it is in a tensor product form

Ψbj i ¼ ΦAj i � ΦA

�� �
, where P2 ¼ fA;Ag is a bipartition of the

qubits in the system. A mixed state is separable if it can be written
as a mixing of pure separable states, ρb ¼ P

ipi Ψ
i
b

�� �
Ψi
b

� ��. Note
that each separable state Ψi

b

�� �
in the summation can have

different bipartitions. The separable state set is denoted as Sb.
There is another restricted way for the extension to mixed states.
A state is P2-separable, if it is a mixing of pure separable states
with a same partition P2, and we denote the state set as SP2

b . It is
clear that SP2

b � Sb, and Sb can be generated by the convex
mixture of all possible SP2

b .

Definition 1. An N-qubit quantum state ρ is fully entangled, if it is
outside of the separable state set SP2

b for any bipartition,

ρ∉SP2
b ; 8P2 ¼ fA;Ag: (8)

Definition 2. An N-qubit quantum state ρ possesses genuine
multipartite entanglement, if it is outside of the separable
state set Sb,

ρ∉Sb: (9)

Since SP2
b � Sb, GME is a stronger claim than full entanglement.

We also remark that the recently demonstrated entanglement in

the IBM cloud quantum computing54 is actually the full
entanglement defined here. By Def. 1, for a state with full
entanglement, it is possible to prepare it by mixing bi-separable
states with different bipartitions55. On the other hand, GME
describes the strongest form of quantum entanglement, that is, all
the qubits in the system are indeed entangled with each other.
GME is essential in various multipartite quantum information
tasks, such as quantum cryptography56, quantum nonlocality57,
quantum networks58,59, quantum metrology60, and measurement-
based quantum computing61.

Entanglement detection based on fidelity estimation
In this section, we show an entanglement detection protocol
based on the fidelity value between the prepared state and the
target state.

Proposition 1. The operator WΨ can witness genuine multipartite
entanglement near Ψj i,
WΨ ¼ 5

8
I� Ψj i Ψh j; (10)

with hWΨi � 0 for any separable state in Sb.

According to Proposition 1, if the fidelity of the prepared state
ρpre with the target state Ψj i, i.e., Trðρpre Ψj i Ψh jÞ, exceeds 5

8, ρpre
possesses GME. However, it is generally difficult to evaluate the
quantity Trðρpre Ψj i Ψh jÞ by the direct projection on Ψj i, as it is an
entangled state.
Alternatively, one needs to decompose the density operator Ψ

into the summation of many local measurements in the form
�N

i¼1Oi , which is easier to implement in experiments. Here Oi is
Hermitian operator of the ith qubit. The number of local
measurements characterizes the experiment effort to estimate
the fidelity.
Here, in order to reduce the measurement effort, instead of

direct decomposing Ψ, we give a lower bound of the fidelity by
using the stabilizer-like operator for the non-stabilizer state Ψ.

Proposition 2. For the target state Ψj i Ψh j and its N independent
stabilizers S0, the following inequality holds:

Ψj i Ψh j � 1
2

XN
i¼1

S0 � N
2
� 1

� �
I; (11)

where A≥B indicates that (A−B) is positive semidefinite. The
stabilizer is determined by the evolution of

ffiffiffiffiffiffiffiffiffiffiffiffi
SWAP

p
gates

S0 ¼ USiUy with U¼ NN
2�1
k¼1

ffiffiffiffiffiffiffiffiffiffiffiffi
SWAP

p y
f2k;2kþ1g, where

S2k�1 ¼ XkXkþ1; S2k ¼ �ZkZkþ1; (12)

for k= 1,..., N/2, are the stabilizers for the Bell pairs.

Due to
ffiffiffiffiffiffiffiffiffiffiffiffi
SWAP

p y
is not a Clifford gate, the corresponding

stabilizer S0 is not in a tensor product of Pauli operators, but the
summation of them. One can directly get S0 by the evolution of
the parallel

ffiffiffiffiffiffiffiffiffiffiffiffi
SWAP

p y
on Si. Due to the locality of the evolution, Si

can only be transformed by the gate with overlapping support.
For example,

S0 ¼ U2;3X1X2U
y
2;3 ¼ 1

2 X1ðX2I3 þ I2X3 � Y2Z3 þ Z2Y3Þ;
S0 ¼ �U2;3Z1Z2U

y
2;3 ¼ � 1

2 Z1ðZ2I3 þ I2Z3 þ Y2X3 � X2Y3Þ
(13)

where each new stabilizer is the summation of four Pauli
operator. For the stabilizers in the bulk of the 1-D chain, there

are two
ffiffiffiffiffiffiffiffiffiffiffiffiffi
SWAP

p y
on them. Take X3X4 and −Z3Z4 as example, U2,3

and U4,5 are performed on them. As a result, the coresponding

Y. Zhou et al.
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stabilizers are:

ðU2;3 � U4;5ÞX3X4ðU2;3 � U4;5Þy
¼ ðX2I3 þ I2X3 þ Y2Z3 � Z2Y3Þ
�ðX4I5 þ I4X5 � Y4Z5 þ Z4Y5Þ;
�ðU2;3 � U4;5ÞZ3Z4ðU2;3 � U4;5Þy
¼ � ðZ2I3 þ I2Z3 þ Y2X3 � X2Y3Þ
�ðZ4I5 þ I4Z5 � Y4X5 þ X4Y5Þ:

(14)

Both are the linear combinations of 16 Pauli tensors. For other
stabilizers, similar forms could be obtained in this way.
In total, the number of these Pauli tensors is almost 32N which

scales linearly with the qubit number. In fact, the measurement
effort can be further reduced, as several Pauli tensors can be
grouped and measured in one local measurement setting (LMS)
simultaneously. For the Pauli tensors from S0 ¼ UX2k�1X2kUy, we
introduce the following expression for the example case N= 10,

X1 � ðX2X3; Y2Z3; Z2Y3Þ � ðX4X5; Y4Z5; Z4Y5Þ
�ðX6X7; Y6Z7; Z567Þ � ðX8X9; Y8Z9; Z8Y9Þ � X10;

(15)

where one can periodically select one of the three Pauli tensors in
every brace to construct one LMS, such that these LMSs cover all
the possible Pauli operators from S0. That is, select same tensor in
(2,3) and (6,7) and the same Pauli operator in (4,5) and (8,9). Thus,
only 9 LMSs are needed here. Following the same way, we can also
find another 9 LMSs for the Pauli operators from S0 ¼ UZ2k�1Z2kUy.
As a result, totally only a constant number of 18 LMSs is needed to
obtain all the expectation values of the stabilizers.
To evaluate the robustness of our witness, we apply the white

noise model ρpre ¼ pI=2N þ ð1� pÞ Ψj i Ψh j, and it shows that the
noise tolerance is p ¼ 3

4N. As N= 10, it equals 7.5%. In fact, by
utilizing the trade-off between the robustness and the measure
budget62,63, one can enhance the noise tolerance of the witness
further. In Ref. 64, some of us further generalize the witness here
by utilizing more local measurement settings, and the witnesses
constructed there would be more suitable to realize in other
quantum systems, such as superconducting-qubit. In particular, a
numerical algorithm is developed in Ref. 64 to search for the
witness with the optimal noise tolerance under given measure-
ment settings. For instance, one can reach the noise tolerance
p ¼ 3

16ð1�2�N=2Þ with about 2⋅3(N/2−1) settings.

Entanglement detection with homogeneous measurements
The entanglement witness shown in Section 2.3 based on the
fidelity estimation can detect GME, with a few number of LMSs.
However, in each of the LMS, the Pauli operators may be not the
same, such as X1Y2Z3,.... This kind of inhomogeoneus measure-
ment needs additional local basis rotation, which is challenging
for the current cold atom system.
In this section, we reduce the measurement efforts further by only

considering the homogenous measurement, say O⊗N. In particular,
we only need two LMSs, X⊗N and Z⊗N. Note that X⊗N and Y⊗N are
symmetric for our generation, thus we only need to measure one of
them. Detailed illustration on this point is given in Method.
Instead of detecting GME, the protocol here aims to detect the

full entanglement property defined in Eq. (8), i.e., not separable
with respective to any bipartition. First, let us show the following
Lemma which plays an important role of the detection.

Lemma 1. For a k-qubit quantum state ρ with k being even, if it is
P2-separable, with P2 ¼ fA;Ag and the number of qubits
contained in A and A being odd, the following inequality holds,

jhX�kij þ jhY�kij þ jhZ�kij � 1; (16)

where hOi ¼ TrðρOÞ is the expectation value.

The proof of Lemma is based on the anticommutative
relation65,66 on subsystems A and A respectively. As k= 2, it
becomes to the common criterion for the Bell state. As a result,
the violation of the bound in Eq. (16) indicates that the
underlying even-qubit state is non-separable regarding any
odd-odd bipartitions.
Second, we give the following observation which shows the

relation of the entanglement property of the state and its reduced
density matrix (RDM).

Observation 1
Suppose a quantum state ρ0

B;B
is created from ρA;A by local

operation and classical communications(LOCC) Λ with respective
to the bipartiton fA;Ag, i.e.,
ρ0
B;B

¼ ΛA!B;A!BðρA;AÞ; (17)

If ρA;A is separable for the bipartition fA;Ag, ρ0
B;B

is also separable

for the bipartition fB; Bg; in other words, if ρ0
B;B

is entangled for

fB; Bg, ρA;A is also entangled for fA;Ag.
The observation holds as LOCC can not create entanglement.

Specifically, the partial trace operation is an example of LOCC,
where B; B are subsystems of A;A respectively.
By Definition 1, an N-qubit quantum state is fully entangled, if it

cannot been written in the following form:

ρ≠
X
i

piρ
i
A � ρi

A
; (18)

for all possible bipartitions fA;Ag of the whole system. In the
following, we employ Lemma 1 and Observation 1 time and
time again on RDMs of the 1-D prepared state, and finally
certify its full entanglement. The RDM of the prepared state
ρpre, for example, on the first two qubits, is denoted by ρ12.
Note that the given expectation values are from the perfect
target state. The practical value in the experiment may deviate
from it, but can still reveal the entanglement property
if the deviation is not too large. Detailed noise analysis are
shown in Method.
To certify the full entanglement, we prove it by contradiction.

Specifically, we first assume that the state can be written as right
hand side of Eq. (18) for some fA;Ag, and then show that all the
qubit are either in A or in A, which is actually not separable and
leads to the contradiction.
Here we take N= 6 for simplicity, and it can be directly

generalized to any even qubit number N. The procedure is listed
as follows:

1. For the RDM ρ12, one has

jhX1X2ij þ jhY1Y2ij þ jhZ1Z2ij ¼ γ2>1; (19)

with γ2= 1.5 for the target state. It indicates that ρ12 is non-
separable on account of Lemma 1. Thus qubits 1, 2 should both be
contained in A or A, otherwise it violates Observation 1. Without
loss of generality, we assume 1, 2 are in A. Similarly, ρ13 also
satisfies the inequality in Eq. (19), and thus 1, 2, 3 are all in A.

2. In fact, one can not proceed along the chain, since the RDMs
ρ23, ρ34,... are not entangled. Thus we consider correlations
involving more qubits. For the RDM ρ1234, one has

O4

i¼1

Xi

* +�����
�����þ

O4

i¼1

Yi

* +�����
�����þ

O4

i¼1

Zi

* +�����
����� ¼ γ4 > 1; (20)

with γ4= 1.5 for the target state. It indicates that ρ1234 is non-
separable for the bipartition {123,4} due to Lemma 1. Thus qubits
1, 2, 3, 4 should all be contained in A, due to Observation 1 and
Step 1.

3. Same as Step 1, by applying Eq. (19) for ρ46 and ρ56, one can
proceed to conclude that qubits 4, 5, 6 should all be
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contained in A or A. Due to the result {1, 2, 3, 4}⊂ A got in
Step 2, we can arrive at the result that all the qubits are
contained in A. This is contradict to the separable state on
the right-hand side of Eq. (18). Thus the prepared state owns
full entanglement.

Entanglement detection with reverse evolution
Compared with the previous two entanglement detection
protocols, the third one is more intuitional and aims to reveal
GME. As shown in Section 2.3, it is not easy to obtain the fidelity to
the target non-stabilizer state. The first method should use several
non-homogenous LMSs to lower bound the fidelity.
In this section, we indirectly estimate the fidelity between the

prepared state and the target state by evolving the entangling
process backwards. Since the fidelity to both the Bell state and
product state can be measured in the experiment, we can
indirectly estimate the fidelity to Ψj i and certify GME according to
Lemma 1. The reverse evolution follows the state preparation
process shown in Section 2.2.

● Operate
ffiffiffiffiffiffiffiffiffiffiffiffi
SWAP

p
gates parallelly on the qubit pairs (2, 3),

(4, 5),..., (8, 9).

Φ4j i ¼ N4
k¼1

ffiffiffiffiffiffiffiffiffiffiffiffi
SWAP

p
f2k;2kþ1g Ψj i

¼ N5
k¼1

1ffiffi
2

p ð 01j i þ 10j iÞf2k�1;2kg:
(21)

● Adjust the relative phase between 01j i and 10j i in each of the
Bell pairs in Φ4j i.

Φ0j i ¼ Uy
phase Φ4j i ¼

O5

k¼1

1ffiffiffi
2

p ð 10j i þ i 01j iÞf2k�1;2kg: (22)

● Operate
ffiffiffiffiffiffiffiffiffiffiffiffi
SWAP

p
gates parallelly on the qubit pairs (1, 2), (3,

4),..., (9, 10).

Φ5j i ¼ N5
k¼1

ffiffiffiffiffiffiffiffiffiffiffiffi
SWAP

p
f2k�1;2kg Φ

0j i
¼ 1010101010j i:

(23)

In the above reverse protocol, the state is evolved backwards
finally to the initial product state. Note that here we list the perfect
reverse evolution, that is, Φ4j i ¼ Φ2j i and Φ5j i ¼ Φ1j i shown in
the generation protocol in Section 2.2. The practical states actually
deviate from them due to noises, denoted by ρϕi

for i= 1, 2,..., 5,
and the fidelity decreases due to the imperfection of the
underlying gates.
One can estimate the fidelity to product states Φ1j i; Φ5j i with

the Z⊗10 measurement setting, entangled-pair states Φ0j i; Φ0j i
with XYXY...XY and Z⊗10, and Bell-pair states Φ2j i; Φ4j i with X⊗10

and Z⊗10. In Fig. 3, we show an illustration. By fitting the fidelity
values from the experiment, one can indirectly estimate the
fidelity of the prepared state ρpre to the target state Ψj i, which
can be compared with the theoretical bound for GME, say 5

8,
denoted by the dotted horizon line in the figure. Note thatffiffiffiffiffiffiffiffiffiffiffiffiffi
SWAP

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
SWAP

p y3
, i.e., it takes three times of evolution time,

and one may needs to consider this point in the fitting. We
remark that this entanglement detection method is intuitive,
and one could make it more rigorous by assuming more specific
noise models.

DISCUSSION
In this work, we propose an experimental scheme to generate and
characterize large-scale entanglement of cold atoms confined in
the optical superlattice. The generation scheme utilizes the
entangling gate induced by the superexchange interaction, and
is robust to decoherence. To characterize the entanglement, we
propose several complementary methods considering the experi-
mental implementation feasibility. Moreover, it is straightforward
to generate our scheme to the high dimension scenarios, and it is
also interesting to construct some efficient entanglement
verification tools for them. In summary, our entanglement
generation and verification protocols are well tailored for the
cold atom system, and lay the foundation for the further
applications, such as measurement-based quantum computing.

METHODS
Proof of Proposition 1

Proof. To prove that Eq. (10) is a legal GME witness, we need to show that
the maximal fidelity between the separable state and our target state is
upper bounded by 5/8, that is

Fmax :¼ max
ρs2Sb

TrðρsΨÞ � 5=8: (24)

By the convexity of Sb, we can reduce the maximization to the pure
separable state

Fmax ¼ max
P2

max
Φs2SP2b

TrðΦsΨÞ

¼ max
P2

λ1ðΨ;P2Þ;
(25)

where we maximize over Φs from a given bipartition P2 and also all
possible bipartitions. The second line is due to the fact that the
maximization result over Φs is just the square of the largest Schmidt
coefficient of Ψ with respective to P2

67, where the Schmidt decomposition

shows Ψj i ¼ Pd¼minfdA ;dAg
i¼1

ffiffiffiffi
λi

p
ϕij iA ϕ0

i

�� �
A and λ1 ≥ λ2 ≥ ... ≥ λd.

In fact, we only need to consider the bipartitions where A contains the
first nA and A contains the last nA ¼ N � nA qubits on the 1-D chain. That is,
there is only one boundary between A and A. Other choices with more
boundaries can lead to a smaller λ1. Consider the one boundary scenario,
there are two types of bipartations depending on that the boundary is
between {2k−1, 2k} or {2k, 2k+ 1}, as shown in Fig. 4.
Based on the causality of the quantum gate and the fact that quantum

gates inside the subsystem A and A do not change the Schmidt number,
we can determine λ1 for both of cases. For the {2k− 1, 2k} case, λ1 ¼ 1

2,

Fig. 3 Illustration of reverse revolution. At point 3, the state
preparation is accomplished; At point 4 and point 5, the system is
under reverse evolution. In the perfect case, the state can return
back to Bell pairs and Néel state. Here, due to the noise and
decoherence, we denote the corresponding mixed state as ρϕi

, and
the fidelity is Trðρϕi

ΦiÞ to the perfect case. Note that one can
estimate the fidelity to Φ1, Φ5 with one measurement settings Z⊗10,
and the one to Φ2, Φ4 with two settings X⊗10, Z⊗10.
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since we can ignore the latter
ffiffiffiffiffiffiffiffiffiffiffiffi
SWAP

p y
and the entanglement spectrum is

just the same with that of the Bell state.
For the {2k, 2k+ 1} case, we just need to focus on the four-qubit state

after the ignorance of the other distant
ffiffiffiffiffiffiffiffiffiffiffiffi
SWAP

p y
gates, that is,ffiffiffiffiffiffiffiffiffiffiffiffi

SWAP
p y

f2;3g ϕBellj if1;2g � ϕBellj if3;4g: (26)

Here for denotation simplicity we take k= 1 without loss of generality, and
ϕBellj i ¼ 1ffiffi

2
p 01j i þ 10j i. By calculation one finds that the reduced density

matrix of the first two-qubit is

ρ12 ¼
1
2
ϕBell þ

1
2
I�2=4; (27)

i.e., the mixture of the Bell state and the maximal mixed state. As a result,
ρ12 is a Bell-diagonal state and thus its four eigenvalues on the Bell basis is
f58 ; 18 ; 18 ; 18g with λ1 ¼ 5

8. In summary, we prove that Fmax ¼ 5
8.

Proof of Proposition 2

Proof. We first show that S0 stabilizes the target Ψj i by definition. Before the
final layer of

ffiffiffiffiffiffiffiffiffiffiffiffi
SWAP

p y
gates, the state is the product of a few of Bell pairs,

denoted by ΨBellj i, which is stabilized by Si defined in Eq. (12). That is,
Si ΨBellj i ¼ ΨBellj i. Thus, one has S0 Ψj i ¼ USiUyU ΨBellj i ¼ U ΨBellj i ¼ Ψj i.
Then we prove the inequality in Eq. (11). We remark that Eq. (11) holds

for any generalized stabilizer state. The N independent stabilizers Si
commute with each other and their common eigenstates together

determine an orthogonal basis denoted by Ψ x!
��� E

. Here x!¼ x1x2 � � � xN
with each xi taking 1 or− 1 and S0 Ψ x!

��� E
¼ xi Ψ x!

��� E
. It is clear our target

state Ψj i ¼ Ψ11���1j i. It is clear that both operators on the left and right of
Eq. (11) are diagonal in this basis, thus we can prove it by checking for the
matrix elements for every Ψ x!. For x!¼ 11 � � � 1, one has

1 � 1
2N � ðN=2� 1Þ ¼ 1. For x! which contains only one zero, such as

x!¼ 01 � � � 1, one has 0 � 1
2 ðN � 1� 1Þ � ðN=2� 1Þ ¼ 0. For the x!

containing more zeros, one can prove the inequality similarly.

Symmetry of the target state
Remember that in principle we should apply three measurement settings
{X⊗N, Y⊗N, Z⊗N} to detect the full entanglement in Section 2.4. Here we
show rigorously as follows that one does not need to worry about the
direction on the X−Y plane in every measurement. In fact, one only needs
to measure 〈X⊗N〉 by the symmetry of the target state.
In the experiment, actually there is no reference pulse to decide the

direction of the measurement, that is, one chooses a random angle Xθ ¼
cosðθÞX þ sinðθÞY for the measurement. Note that there is a correspond-
ing unitary (rotation around Z),

Uθ ¼ e�iZ2θ (28)

such that Xθ ¼ UθXU
y
θ .

As a result, suppose there is a standard X direction, the actual
measurement shows,Z 2π

θ¼0
TrðX�N

θ ρÞdθ ¼ R 2π
θ¼0 TrðU�N

θ X�NUy�N
θ ρÞdθ

¼ R 2π
θ¼0 TrðX�NUy�N

θ ρU�N
θ Þdθ

¼ Tr X�Nρsym

� 	
:

(29)

where ρ is the prepared state in the experiment, and
ρsym 	 R 2π

θ¼0 U
y�N
θ ρU�N

θ dθ. In other words, measuring the state ρ in random
direction is equivalent to “twirling” the state, and the resulting state is
symmetric with respective to the measurement direction.

TrðX�N
θ ρsymÞ ¼ TrðX�N

θ0 ρsymÞ: (30)

Specifically, X= Xθ=0 and Y ¼ Xθ¼π
2
, and one also has

TrðZ�NρsymÞ ¼ TrðZ�NρÞ; (31)

since Z commutes with Uθ defined in Eq. (28).
It is not hard to see that the entanglement of ρsym is not stronger than ρ,

since ρsym is obtained from ρ using LOCC, that is, the twirling can not
increase the entanglement. Thus if one can detect the entanglement
property of ρsym, this property should also holds for ρ.
On the other hand, the target state is a symmetric state on X−Y plane,

i.e., U�N
θ ΨUy�N

θ ¼ Ψ;8θ. In fact, one can write the rotation unitary as

U�N
θ ¼ e�iθ2

PN

i¼1
Zi


 �
: (32)

Since our target state Ψj i only has non-zero projection on the
computational bases whose total spin is zero, i.e., half number of 0 and
1, the rotation unitary introduce the same phase for these bases, and the
state is unchanged.

Proof of Lemma 1

Proof. Without loss of generality, we assume that the subsystem A contains
the first k1 qubits, and ∣A∣= k1, jAj ¼ k � k1 ¼ k2 are both odd numbers.
Since the left hand of Eq. (16) is a convex function of the state, thus we
only need to consider the pure separable state in the form
Ψsj i ¼ Ψk1j i � Ψk2j i, and the expectation value can be written apart as,

jhX�k1 ijjhX�k2 ij þ jhY�k1 ijjhY�k2 ij þ jhZ�k1 ijjhZ�k2 ij
≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jhX�k1 ij2 þ jhY�k1 ij2 þ jhZ�k1 ij2

q
´

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jhX�k2 ij2 þ jhY�k2 ij2 þ jhZ�k2 ij2

q
;

(33)

where the second line is due to Cauchy-Schwarz inequality. Since k1 is an
odd number, one can check that X�k1 ; Y�k1 and Z�k1 anticommute with
each other, and thus jhX�k1 ij2 þ jhY�k1 ij2 þ jhZ�k1 ij2 � 165,66. Similarly
one has jhX�k2 ij2 þ jhY�k2 ij2 þ jhZ�k2 ij2 � 1. As a result, we finish
the proof.

Proof of Observation 1

Proof. The Observation is right by the definition of LOCC. Here we show the
case for the partial trace operation by contradiction. Suppose ρA;A ¼P

ipiρ
i
A � ρi

A
is separable. The partial trace TrA!BðρiAÞ ¼ ρiB and

TrA!BðρiAÞ ¼ ρi
B
, such that ρB;B ¼

P
ipiρ

i
B � ρi

B
is still separable, which

contradicts with the assumption that it is entangled.

Influence from operation errors
The fidelity of the state creation is affected by the error of each operation,
caused by the decoherence effect and noises. For the large-scale
entangled state, the degradation of fidelity and also the entanglement
detection is more apparent compared to few-body states. In the meantime,
the read-out error also affects the entanglement detection. As a result, it is
meaningful to analyze the influence of various errors in the experimental
implementation.
Here we consider the errors in the following operations: the initial

preparation of Néel state; the final projective measurement of spins; and
the fidelity of the intermediate quantum gates. We show their influences
on the entanglement detection of a ten-qubit system, i.e., N= 10, by using
the witness method in Section 2.4, which is more practical for experiments.
As shown in the procedure of entanglement detection in Section 2.4, we
should measure the witness value in Eq. (16) for a few of reduced density
matrices of subsystems and also the whole system. Here we take the
subsystem as

f1; 2g; f1; 3g; f1; 2; 3; 4g; f1; 2; 3; 5g;
f1� 6g; f1� 5; 7g; f1� 8g; f1� 7; 9g (34)

which contain n= 2, 4, 6, 8 qubits.

Fig. 4 Bipartitions with different choices of boundary. Atom pairs
connected with black line are Bell pairs. The dotted lines denote the
boundary between A and A.
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In the first step of Section 2.2, starting from the all-zero state 00 � � � 0j i,
one should flip the spins on the odd sites to prepare the Néel state in
Eq. (4). There is the probability of a non-flip for the odd site, and also the
probability of a wrong flip for the even site. For simplicity, we assume both
error probabilities are equal, and denote the probability of the correct flip
as PSF for each site. In this case, the system is initially prepared into a
mixture of different product states weighted with corresponding
probabilities. In Fig. 5a, we plot the witness values of Eq. (16) for different
subsystem size n with respective to PSF. Similarly, in the final measurement,
the probability to measure the spin of single atom correctly is denoted as
PMS. That is, there is probability 1−PMS to recognize 0j i as 1j i or vice versa.
The witness value with respective to PMS is shown in Fig. 5b. From these
two figures, we found that the witness values are the same for the
subsystem with the same qubit number, for example, n= 2 case with ρ1,2

and ρ1,3. When there is no error, say PSF= 1 and PMS= 1, all the witness
values return 1.5 for all the subsystems, except the whole system with the
value 3. One can see that even though there is some error, the witness can
detect the entanglement as the value is larger than 1. For larger
subsystems, the values decay faster with PSF and PMS.
Similar as the six-qubit case discussed in Section 2.4, here for total

system size N= 10, one only needs to measure the witness for {ρ1,2, ρ1,3,
ρ1,2,3,4, ρ1,2,3,5, ρ1,2,3,4,5,6, ρ1,2,3,4,5,7, ρ7,8,9,10, ρ8,10, ρ9,10} to verify the full
entanglement. As a result, the result of the subsystems with at most
n= 6 qubits decides the lower bound of the operation fidelity.
According to Fig. 5a and b, the bounds are 0.95 and 0.97 for PSF and
PMS, respectively.
At last, in Fig. 5c, we study the influence of the fidelity of the entangling

step between the above two steps by taking PSF= 0.98 and PMS= 0.985.
Here we assume that this operation has a probability PES to be performed
perfectly while it contributes zero to the witness with probability 1−PES,
that is, essentially outputs a maximal mixed state. As shown in Fig. 5c, the
full entanglement could be verified when the fidelity of entangling step
exceeds 0.85.

CODE AVAILABILITY
The code that supports the findings of this study are available from the
corresponding author upon reasonable request.
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