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Efficient methods for one-shot quantum communication
Anurag Anshu1✉ and Rahul Jain2,3✉

We address the question of efficient implementation of quantum protocols, with small communication and entanglement, and
short depth circuit for encoding or decoding. We introduce two methods for this; the first constructs a resource-efficient convex-
split lemma and the second adapts the technique of classical correlated sampling in computer science literature. These lead to the
following consequences in one-shot quantum information theory. First concerns the task of quantum decoupling, achieved in
many previous works with the aid of a random or pseudo-random unitary. We show that given any choice of basis such as the
computational basis, decoupling can be achieved by a unitary that takes basis vectors to basis vectors. Thus, the circuit acts in a
‘classical’ manner; furthermore our unitary performs addition and multiplication modulo a prime. As the second consequence, we
construct near-optimal communication protocol for quantum channel coding that uses exponentially smaller entanglement than
the previous near-optimal protocol.
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INTRODUCTION
It is hard to overstate the power of communication in today’s
society, which enjoys the benefits of technological advances due
to telecommunication and the internet. These advances are a
result of reliable and efficient classical communication protocols,
which have been facilitated by decades of studies on data
compression, error correction and physics of data transmission. As
our technologies enter the quantum age, we have similarly started
facing the question of how to make quantum communication
reliable and efficient. Quantum communication is central to the
important tasks of quantum key distribution1,2, the transfer of
quantum states3 and the design of large scale quantum
computers4,5. While the proposals and experimental implementa-
tions of quantum communication have made great strides in
recent years6,7, the range of communication is still limited to
about a few hundred kilometers7,8 in ground-based experiments.
Some of the key challenges are the probabilistic nature (as well as
decoherence) in optics-based models8 and fast decoherence in
matter-based models8. This strongly motivates the problem of
finding quantum protocols that efficiently achieve certain tasks
with small communication or fight noise to reliably communicate
a given amount of message.
The efficiency of a quantum communication protocol is typically

captured by two quantities: the number of qubits communicated
and the amount of additional resource, such as quantum
entanglement, needed in the protocol. Since the foundational
works of Holevo, Schumacher and Westmoreland9–11, great
progress has been made in the understanding of optimal amount
of communication and additional resources needed in a large
family of quantum communication tasks. Well known results on
quantum channel coding10–16, quantum source coding9, quantum
state merging17,18 and quantum state redistribution19,20 have
discovered a powerful collection of tools for quantum information
processing. These tools have found applications in disciplines
beyond quantum communication, such as quantum thermody-
namics21,22 and black hole physics23,24. One such tool that takes a
central stage in our work is that of quantum decoupling.

Notably, aforementioned works in quantum information theory
are set in the asymptotic and i.i.d. (independent and identically
distributed) framework of Shannon25, which allows the protocol to
run over many independent instances of the input system. In
practice, however, one typically does not have an access to such
independent instances, limiting the scope of these results. The
field of one-shot information theory addresses this problem, by
constructing protocols that run on one instance of the input
system. This leads to a generalization of the asymptotic and i.i.d.
theory and brings information processing tasks to a more practical
domain.
However, unlike the asymptotic and i.i.d. theory of quantum

information, the understanding of optimal communication and
additional resources is still lacking in one-shot quantum informa-
tion theory. Even for the very basic task of entanglement-assisted
quantum channel coding14, state-of-the-art26–28 one-shot proto-
cols fail to simultaneously achieve optimal communication
capacity and optimal amount of initial entanglement. The aim of
this work is to introduce methods that make progress in this
problem and exponentially improve upon the amount of initial
entanglement needed in a family of one-shot protocols that
achieve the best known communication for above tasks. In many
cases, the resulting protocols have the additional property that
either the encoding or the decoding operation is a quantum
circuit of small depth.
In order to lay the groundwork for our results, we revisit the

existing techniques of decoupling and more recent convex-split
and position-based decoding. Decoupling (Fig. 1) refers to the
process of applying some quantum operation on one of the two
given systems (which share quantum correlation), so as to make
the two systems independent of each other. More precisely, given
a quantum state ΨRC, one adds registers T ; T 0 in the quantum state
σTT 0 , and applies a quantum operation U on registers CTT 0 such
that

TrT 0 ðUyðΨRC � σTT 0 ÞUÞ � ΨR � ωC � σ0
T :

That is, the registers R and C are approximately independent after
register T 0 has been discarded. This idea has been applied in the
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aforementioned tasks of quantum state merging17,18,29–32, quan-
tum state redistribution19,20,33,34 and quantum channel cod-
ing15,26,27,35, as well as randomness extraction36–38. The central
approach in many of these works is to perform a random unitary
operation17,18 and then discard a part of the system. This
technique has been expanded upon in various works such as
refs. 39–42. Due to the importance of decoupling technique and the
limitation that random unitaries cannot be implemented with a
quantum circuit of small size, there is a great interest in finding
efficient circuits that achieve the same performance as a random
unitary.
Existing methods to make decoupling efficient involve repla-

cing random unitaries with unitary 2-designs43–47 which can be
simulated by Clifford circuits of small depth, random quantum
circuits of small depth48 and random unitaries diagonal in Pauli-X
and Pauli-Z basis49. To elaborate, suppose we are given a quantum
state ΨRC on two registers R and C, and we need to make C

independent of R by acting on C. We must further ensure that the
size of the discarded system, which is the cost of the decoupling
operation (Fig. 1), is small enough, ruling out the operation that
discards all of C. Note that the number of qubits of the discarded
system translates to the quantum communication cost of a
quantum protocol that employs decoupling. This motivates the
question of minimizing the size of discarded system. The work47

shows that a quantum circuit of size Oðlog jCj log log jCjÞ and
depth Oðlog log jCjÞ suffices for this purpose, achieving the same
cost as that of a random unitary. A similar circuit size of
Oðlog jCjlog2 log jCjÞ and depth Oðlog3 log jCjÞ is obtained in
ref. 48, using elementary gates that mimic real world quantum
processes. See Table 1 for a comparison of the methods.
While the circuit size achieved by above results is impressive,

the gates used in the circuit are highly quantum. More precisely,
for a choice of preferred basis such as the computational basis, the
gates convert any basis vector into a superposition over these
vectors. Can the construction of a decoupling operation be further
simplified, by only using the gates that are classical (taking basis
vectors to basis vectors)? While being useful for practical
implementation, such a construction would also lead to a
surprising theoretical simplification: it would leave no conceptual
difference between quantum decoupling and its classical counter-
part of randomness extraction50–52.
Random permutation is a canonical classical operation known

to perform randomness extraction and also decouple classical-
quantum systems36–38. In ref. 53 (see also ref. 40) the authors used
permutations to derive an analog of the decoupling theorem that
however only removes quantum and not classical correlations
between R and C. While the remaining classical correlation could
also be removed by random permutations, the overall cost of
decoupling would be larger than the cost of decoupling by a
random unitary. This indicates that a decoupling method, which
matches the random unitary decoupling in its cost, may involve
operations that are not classical.
This is shown not to be true by the convex-split lemma54, which

expresses a relation of the following form

ΦRCE �
X
i

piΦ
ðiÞ
RCE ; (1)

showing how to view a given quantum state ΦRCE as a convex
combination of (more desirable) quantum states Φ

ðiÞ
RCE in order to

achieve an information-theoretic task. It implies decoupling (of the
type in Fig. 1b) when the quantum state on the left hand side (that
is, ΦRCE) is a product state across R and CE. In particular, it was
shown in ref. 54 that given ΨRC, if we add the quantum state
σC1 � ¼ σCN (for some large enough N) and randomly swap the
register C with one of the registers C1,…CN, then the register R
becomes independent of all the other registers; leading to
decoupling with the classical operation of permutation of

Fig. 1 Decoupling method. Process of removing the quantum
correlation between two registers R and C, by means of quantum
operations. The cost of performing a decoupling operation is
characterized by the size of the register that must be discarded, in
order to implement the operation. In Fig. a, the discarded register is
T 0 and the operation performed on CTT 0 is a global unitary U. In Fig.
b, the register J (that is eventually discarded) is maximally mixed to
begin with and the operation performed is a controlled unitary.
Thus, J can be viewed as a classical noise61. While the operation in
Fig. b is a special kind of operation in Fig. a, the following
equivalence holds due to the duality between teleportation62 and
superdense coding63. For every operation in Fig. a with log jT 0j
qubits that are discarded, there is an operation in Fig. b with
2 log jT 0j bits of noise. Moreover, for every operation in Fig. b with
log jJj bits of noise, there is an operation in Fig. a where 1

2 log jJj
qubits that are discarded.

Table 1. Parameters of various decoupling methods (Unitary 2-
design47, Random X and Z basis49, Random gates48, Convex-split54, this
work (Method A)).

Decoupling method Circuit depth Circuit size Gate set

Unitary 2-design O(log n) O(n log n) quantum

Random X and Z basis O(log n) O(n2) X or Z basis

Random gates O(log3 n) O(n log2 n) quantum

Convex-split O(n) O(2n) classical

This work (Method A) O(log n) O(n log n) classical

The parameter n ¼ log jCj is the number of qubits in the register to be
decoupled. Gate set column refers to the type of gates required in the
decoupling circuit. The classical gates only act in one basis (Z basis, for
example).
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registers. Expressed mathematically in the form of Eq. (1), we
would set E= C1C2…CN, ΦRCE ¼ ΨR � σC � σC1 � ¼ σCN , Φ

ðiÞ
RCE ¼

ΨRCi � σC � σC1 � ¼ σCi�1 � σCiþ1 � ¼ σCN and pi ¼ 1
N.

In this work we will solely be interested in quantum tasks where
decoupling is the same as constructing an appropriate convex-
split, and hence we will use the two terms interchangeably.
However, we highlight that the convex-split method is more
general and can be used even in situations where no decoupling
exists: such as in classical or classical-quantum communication
tasks28,55,56 and resource theoretic tasks57–59.
Since the process of swapping two registers is a ‘classical’

operation (that is, it takes basis vectors to basis vectors), the
convex-split lemma of ref. 54 gives a classical unitary for
performing quantum decoupling. Unfortunately, the value of N
can be as large as OðjCjÞ, where ∣C∣ is the dimension of the
register C. Hence swapping the register C with a random register
Ci requires a circuit of depth OðjCjÞ, which is exponential in the
number of qubits of register C. Even an alternate implementation
of swap operation, by placing the registers on a three dimensional
grid, would require OðjCj1=3Þ operations. Thus, it has so far been
unknown if one can achieve quantum decoupling by efficient
classical operations.
Recent works have shown several applications of the convex-

split method in one-shot quantum information theory, along with
the dual method of position-based decoding28. The methods have
been used to obtain near-optimal communication for one-shot
entanglement-assisted quantum channel coding28, near-optimal
communication for one-shot quantum state splitting54 (with slight
improvement of the additive log log jCj factor over31, for commu-
nicating the register C) and smallest known communication for
one-shot quantum state redistribution60. As mentioned earlier, all
these protocols use a large amount of entanglement. Other
known protocols14,26,27, for entanglement-assisted quantum
channel coding and33,34 for quantum state redistribution, that
do not rely on these two methods use exponentially small
entanglement, but their communication is not known to be near-
optimal. This motivates the question of find a scheme that
achieves the best of both of the lines of work.

RESULTS
We show how to achieve near-optimal communication and the
size of initial entanglement at most constant factors away from
the optimal, in all the aforementioned quantum communication
tasks. We further show that, in several cases, the implementation
of either the encoding or the decoding operation in the protocol
can be made efficient. Our results are obtained by two methods
that we outline below.

Method A: Efficient decoupling procedures
As mentioned earlier, the quantity of interest in a decoupling
procedure is the number of bits or qubits that are discarded to
achieve the decoupling. There are two models under which
decoupling is performed, see Fig. 1. The first model involves
adding a quantum state, applying a global unitary (without
involving the register R) and then discarding some quantum
system.
The second model also involves adding a quantum state

followed by a unitary, but the system that is discarded is
classical and the unitary acts in a classical-quantum manner61.
The two models can be converted into each other by a Clifford
circuit of depth 1 and the number of qubits/bits discarded are
the same up to a factor of 2, due to the well known duality
between teleportation62 and superdense coding63. Additional
quantum systems that are not discarded act as a catalyst for the
decoupling process31,54,57,58,64. For example, the randomness
used in the process of decoupling via unitary 2-design acts as a

catalyst. In principle, this randomness can be fixed by standard
derandomization arguments, but it leads to a loss in efficient
implementation.
In this work, we consider the second model of decoupling. We

construct two convex-split lemmas which immediately lead to
efficient decoupling procedures for a quantum state ΨRC (recall
the discussion following Eq. (1)). One of these lemmas solves the
aforementioned problem of decoupling via an efficient classical
operation.

● Method A. 1: A set of unitaries fVℓgjCj
2

ℓ¼1 on a register C forms a
1-design if

1
N

X
ℓ

VℓρCV
y
ℓ ¼

IC
jCj ; 8 quantum state ρC :

A canonical example of unitary 1-design is the set of the
tensor products of Pauli-X and Z operators if the register C
admits a qubit decomposition. Our first procedure shows how
to achieve decoupling using a mixture of small number of
� log jCj � Hmin CjRð ÞΨ unitaries from any 1-design. Here ΨRC

is the quantum state on registers R and C and Hmin CjRð Þ is the
conditional min-entropy. The additional randomness used to
choose the unitaries is 4 log jCj bits. We highlight that this is in
stark contrast with many of the previous constructions for
decoupling, which required unitaries from a 2-design. Details
appear in Supplementary Discussion. This method is related to
the explicit schemes presented in refs. 65,66 for quantum
encryption. These works show how to achieve decoupling
with a mixture of Pauli operators chosen from an explicit set.
But the size of the set can be large, and hence does not
directly compare with our work. The classical-quantum version
of this method previously appeared in the work67.

● Method A. 2: The second decoupling procedure enlarges the
Hilbert space HC �HC in a manner that the resulting Hilbert
space HG has prime dimension ∣G∣ ≤ 2∣C∣2. This is possible due
to Bertrand’s postulate68, which says that there is a prime
between any natural number and its twice. It also introduces a

register L of size ~N ¼def log jCj � Hmin CjRð ÞΨ. A preferred basis
on HC (such as the computational basis in the qubit
representation of the registers) is chosen, which gives a basis
f ij iGgjGj�1

i¼0 on HG. Similarly, a preferred basis f ℓj igNℓ¼1 is
chosen on HL. Following this, a unitary operation U ¼PN

ℓ¼1 Uℓ � ℓj i ℓh jL is applied, where Uℓ acts on two registers
G;G0 � G as

Uℓ ij iG jj iG0 ¼ i þ ðj � iÞℓðmodjGjÞj iG j þ ðj � iÞℓðmodjGjÞj iG0 :

(2)

Upon tracing out register L, register R becomes independent of
GG0. Furthermore, the final state on registers GG0 is maximally
mixed and the register G0 is returned in the original state. As can
be seen, the unitaries Uℓ are ‘classical’ as they take basis vectors to
basis vectors and perform addition and multiplication modulo ∣G∣.
This makes the construction of U efficient, with circuit depth
Oðlog log jCjÞ and size Oðlog jCj log log jCjÞ due to well known
results in modular arithmetic69. Details appear in Supplementary
Discussion.
In the other direction, our result shows that the reversible

or quantum circuit complexity (such as depth or size) of
integer multiplication modulo a prime is lower bounded by
the reversible or quantum circuit complexity of the ‘best’
decoupling method. This holds since integer multiplication is
the most expensive step in Eq. (2). We highlight that a super-
linear lower bound on the circuit complexity of integer
multiplication is an outstanding open question in the area of
complexity theory70,71. The aforementioned connection to
decoupling may suggest attacking this problem using an
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entirely different avenue connected to decoupling24: scram-
bling of quantum information in black holes72.

Method B: Exponential improvement in entanglement
A procedure, that realizes any classical distribution as a marginal
of a uniform distribution in a larger space, has been used in the
context of classical correlated sampling in several works73–79. A
counterpart of this procedure for quantum states was considered
in ref. 80. Since this procedure makes the distribution uniform or
‘flat’ in its support, we will call it a flattening procedure. Let the
eigendecomposition of σC be σC ¼Pipi ij i ih jC . Append a register E
through the transformation

ij i ih jC ! ij i ih jC �
1
Kpi

XKpi
j¼1

jj i jh jE
 !

;

where K is a large enough real such that fKpigi are all integers. The
existence of such a K can be ensured, for example, by an arbitrarily
small perturbation in fpigi , so that they all are rationals. As a result,
the quantum state σC transforms to

σC ! 1
K

X
i;j:j�Kpi

ij i ih jC � jj i jh jE ; (3)

which is uniform in a subspace. However, ref. 80 did not provide a
unitary operation to realize the above extension of σC. We show
that this extension can be constructed in a unitary manner using
embezzling states81. If the basis f ij igi can be efficiently prepared
from computational basis and the eigenvalues fpigi are easy to
compute, then the flattening procedure is also computationally
efficient. Details appear in Supplementary Discussion. The

consequences of this method are as follows, with all the tasks
appearing below summarized in Fig. 2.

● Entanglement-assisted classical communication over
quantum channel: Consider a quantum channel N A!B, over
which we wish to communicate a message from the set
{1, 2,…2R}, with small error. The work14 considered the
asymptotic and i.i.d. setting for this task, involving the channel
N�n

A!B for large enough n. It was shown that the rate of
communication R

n converges to

max
Ψj iAA0

I A0 : Bð ÞN A!BðΨAA0 Þ;

where I A0 : Bð Þ is the quantum mutual information. The
number of qubits of entanglement in the protocol from14 was
~nS(ΨA) (the von-Neumann entropy) and the rate of commu-
nication was shown to be optimal. The work27 obtained a one-
shot version of their protocol, with log jAj qubits of pre-shared
entanglement. Their communication was characterized by the
quantum hypothesis testing relative entropy between the
quantum state N A!BðΨAA0 Þ and a separable state derived
from ΨAA0 , which may not be optimal. The work28 introduced
the position-based decoding method, showing how to
achieve a communication characterized by the quantum
hypothesis testing relative entropy between N A!BðΨAA0 Þ and
N A!BðΨAÞ � ΨA0 . The achievable communication is near-
optimal, due to the converse given in ref. 82. But the protocol
in ref. 28 required OðjAjÞ qubits of entanglement. Using our
flattening procedure on the quantum state Ψj iAA0 , we show
how to achieve the same near-optimal communication with
Oðlog jAjÞ qubits of entanglement. If the flattening procedure
is efficient, then the encoding by Alice is efficient as well.

Fig. 2 Quantum communication tasks. Figure a depicts the task of entanglement-assisted quantum channel coding, where the register M
holds a message m∈ {1, 2,…2R}. The goal is to maximize the value of R, while keeping the error in decoding small. Figure b shows the task of
quantum state redistribution with entanglement assistance. The goal is to ensure that the register C is obtained by Bob using as less
communication log jMj as possible and ensuring that Ψ0 � Ψj i Ψh j.
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Details appear in Supplementary Discussion.
The work28 also studied entanglement-assisted classical

communication through various quantum networks, shown to
be near optimal in ref. 83. Our technique also exponentially
improves upon the amount of entanglement in these
protocols, while maintaining the achievable communication.

● Quantum state splitting and quantum state redistribution:
The task of quantum state redistribution19,20 considers a
quantum state Ψj iRABC , where the register R is inaccessible,
registers A, C are with Alice and register B is with Bob. It is
required that after communication from Alice to Bob, the
register C should be held by Bob. Its special cases of quantum
state splitting29 and quantum state merging17 are equivalent
(up to reversal of the protocol) and quantum state splitting
considers the case where register B is trivial. The work31

obtained a one-shot protocol for quantum state splitting
achieving near-optimal communication up to an additive
factor of Oðlog log jCjÞ. This was improved in ref. 54 through a
near-optimal protocol with communication tight up to an
additive factor of Oð1Þ. While the protocol in ref. 31 required
Oðlog jCjÞ qubits of pe-shared entanglement, the protocol in
ref. 54 required much larger OðjCjÞ qubits. Here, we show how
to improve the number of qubits of pre-shared entanglement
to Oðlog jCjÞ, retaining the communication cost in ref. 54.
Again, we use the flattening procedure, efficiency of which
ensures the efficiency of decoding operation by Bob.
The work60 gave a protocol for quantum state redistribution

with smallest known quantum communication, improving
upon the prior work34. But the number of qubits of pre-shared
entanglement required was exponentially larger than that in
ref. 34. Similar to aforementioned results, here we give a
protocol that has similar quantum communication to ref. 60

and similar number of qubits of entanglement to34. Details
appear in Supplementary Discussion. We highlight that an
upcoming work84 uses our flattening procedure to further
improve upon60, and provides a connection between one-shot
quantum state redistribution and quantum Markov chains.

DISCUSSION
Method A. 1 is reminiscent of the derandomizing unitaries
constructed in ref. 85, which also uses unitary 1-design for
quantum encryption. But there is a difference between our setting
and that in ref. 85, since the number of unitaries that we use is
dependent on the conditional min-entropy of the quantum state.
On the other hand, the authors of ref. 85 only aim to decouple the
maximally entangled state. We may also compare Method A. 1
with the unitaries in ref. 49, which shows how to perform
decoupling with random unitaries diagonal in either X or Z bases.
Our construction also yields a unitary diagonal in either X or Z
bases, but it is explicit (that is, not a random unitary) and uses
some additional catalytic randomness.
As mentioned earlier, the construction in Method A. 2 is

efficient, with circuit depth Oðlog log jCjÞ and size
Oðlog jCj log log jCjÞ. This already achieves the performance of
circuits based on unitary 2-designs47 (Table 1), by employing very
simple operations of integer addition and multiplication. Thus, the
method also improves upon the performance of ref. 48. Further-
more, the integer addition and multiplication operations (Eq. (2))
are very similar to the pair-wise independent hash functions
employed in randomness extraction against classical50 and
quantum side-information36,37. This provides a unified perspective
on decoupling in the classical, classical-quantum and fully-
quantum settings. The unitaries fUℓgℓ, as defined in Eq. (2) have
an interesting property that they act as a representation of the
cyclic group, reflecting the property of permutation operations in
the convex-split method.

In the language of resource theory of coherence, both the
decoupling procedures in Method A belong to the class of
Physically Incoherent Operations86. Thus, an immediate implica-
tion of our results is that quantum decoupling can be performed
by incoherent unitaries. These decoupling procedures perform the
same as decoupling via random unitary37,39,42, when we consider
the size of discarded system. None of these results (those in
Method A and the decoupling via random unitary) are optimal due
to the additional effort put in making the decoupled register C
uniform. Indeed, it is known that the optimum cost of decoupling
is characterized by the max-mutual information, rather than the
conditional min-entropy31,54,64. Method B leads to a decoupling
procedure achieving this, as it reduces the task to the case of
uniform (or flat) marginal.
As shown in Eq. (3), the central idea behind Method B is to

flatten a non-uniform quantum state, and use resource-efficient
protocols for the flattened state. The work31 used a different
technique for flattening the eigenvalues of a quantum state. Their
technique was to distribute the eigenvalues into bins [2−i: 2−i−1]
and run a protocol within each bin. While this method can be used
for quantum state splitting (with a loss of communication of �
log log jCj required in transmitting the information about the bin),
it is not clear how it can be used to construct a near-optimal
entanglement-assisted protocol for quantum channel coding. In
fact, the quantum channel coding protocol in ref. 27 also can be
viewed in the light of this ‘binning’ technique. But, as mentioned,
the one-shot optimality of their protocols is unknown. Our
flattening method does not face this limitation and can be
uniformly applied to all the quantum communication scenarios. It
achieves near-optimal one-shot quantum communication for
entanglement-assisted quantum channel coding. Further, our
use of embezzling states in both quantum state splitting and
entanglement-assisted quantum channel coding further high-
lights the duality between the two tasks31,87.
We end this section with some open questions. Our first

question is if there exists an analog of Method B that does not
require embezzling states to achieve near-optimal decoupling. An
efficient scheme could lead to protocols with even smaller
number of qubits of pre-shared entanglement in quantum
communication tasks. Another important question is to see if
the number of bits of additional randomness used in Method A
can further be reduced. It is known that seed size in randomness
extraction in the presence of quantum side information can be
very small88 (based on Trevisan’s construction52). Since our
construction treats classical side information and quantum side
information in similar manner, we can hope to have similar results
even in the case of quantum decoupling.

METHODS
Techniques for Method A
The proofs of results presented in Method A crucially rely on the following
simple identity, which was first shown in ref. 54. Below, D :k:ð Þ is the
quantum relative entropy89.

D
X
i

piρikθ
 !

¼
X
i

pi D ρikθð Þ � D ρikρð Þð Þ:

This relation allows us to decompose the convex combination in Eq. (1)
into individual components. In addition, the proof of the decoupling result
in Method A. 1 also uses the notion of pairwise independent random
variables to reduce the size of additional randomness, inspired by55. The
proof of decoupling result in Method A. 2 is more subtle, as it requires us to
find a collection of unitaries that form an appropriate representation of the
cyclic group. Our construction, that is based on modular arithmetic, is
inspired by explicit constructions of pairwise independent random
variables90,91.
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Techniques for Method B
To implement the flattening procedure in Method B, we show the following

relationships for quantum embezzlement. Let ξD ¼def 1S
Pn

j¼1
1
j jj i jh jD be the

marginal of the embezzling state from81, for some integer n and S being the

normalization factor. Let ρE ¼def 1b
Pb

e¼1 ej i eh jE be uniform in a support of size
b. We show the existence of a unitary Ub such that

Dmax Ub ξD � 1j i 1h jE
� �

Uy
bkξD � ρE

� �
� δ;

whenever n> b
1
δ . Here Dmax :k:ð Þ is the quantum max-relative entropy92,93.

Thus, it is possible to embezzle certain states with error guarantee in max-
relative entropy, improving upon the earlier error guarantee in fidelity81.
We crucially use this in our proofs, as small max-relative entropy allows us
to bound other one-shot information theoretic terms.
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