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Controlled-phase gate by dynamic coupling of photons
to a two-level emitter
Stefan Krastanov 1✉, Kurt Jacobs 2,3, Gerald Gilbert4, Dirk R. Englund 1 and Mikkel Heuck1,5✉

We propose an architecture for achieving high-fidelity deterministic quantum logic gates on dual-rail encoded photonic qubits by
letting photons interact with a two-level emitter (TLE) inside an optical cavity. The photon wave packets that define the qubit are
preserved after the interaction due to a quantum control process that actively loads and unloads the photons from the cavity and
dynamically alters their effective coupling to the TLE. The controls rely on nonlinear wave mixing between cavity modes enhanced
by strong externally modulated electromagnetic fields or on AC Stark shifts of the TLE transition energy. We numerically investigate
the effect of imperfections in terms of loss and dephasing of the TLE as well as control field miscalibration. Our results suggest that
III-V quantum dots in GaAs membranes is a promising platform for photonic quantum information processing.
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INTRODUCTION
In quantum networks, optical photons are the main carrier of
quantum information. The absence of direct interaction between
photons and their high excitation energy make them immune to
the otherwise pervasive thermal noise. Conversely, the lack of
direct interaction creates significant challenges to the use of
photons as the substrate for quantum computation, where fast,
high-fidelity logic gates between the (photonic) qubits are
necessary. Effective interactions derived from measurements1

result in probabilistic gates. Instead, we focus on deterministic
gate implementations through coherent photon-photon interac-
tions based on optical nonlinearities. Bulk optical nonlinearities
are attractive due to their potential for room-temperature
operation2–6, but their strength remains too weak. At cryogenic
temperatures, stronger nonlinearities arise by coupling photons to
ancillary quantum systems. For instance, strong interactions
between photons and two-level emitters (TLEs) have been realized
in many physical systems including atoms7,8, quantum dots9,10,
molecules11, superconducting circuits12, and ions13. It is widely
accepted that passive TLE systems are insufficient to implement
high-fidelity controlled-phase gates14,15. Multi-stage approaches
including active wave packet control14,16 increase resource
overhead and optical loss. Ancillary qubits based on multi-level
atomic systems17–19 provide added flexibility but at a significant
cost in technological complexity. A dynamic cavity control scheme
was employed in Refs. 3,4 for bulk nonlinearities, but it remains an
open question whether a similar approach works for TLEs. For the
χ(2) and χ(3) interactions of refs. 3,4 both one- and two-photon
cavity states are straightforwardly coupled out once a π-phase
difference between them is achieved3,4. For TLEs, however, a state
with n photons has a Rabi frequency proportional to

ffiffiffi
n

p
so

evacuating the cavity for both n= 1 and n= 2 is nontrivial.
Here, we introduce a single-stage dynamic control scheme for

photonic qubits that exploits the strong interactions with a TLE in
a multimode cavity. Figure 1 illustrates how photons traveling in

wave packets are actively loaded into a resonator where they
interact via the TLE and are subsequently released into the same
wave packet with transformed photon-number contents. We
assume to have control over the detuning between the TLE and
cavity mode b̂ such that Ω(t)= ωe−ωb. This provides control over

the effective Rabi frequency
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ ΩðtÞ2=4

q
(see the supplemen-

tary materials) to enable both one- and two-photon input states to
be coupled out efficiently. We also assume to have control over
the coupling between cavity modes â and b̂ with a rate Λ(t). This
can be achieved by three-wave-mixing between the aforemen-
tioned two modes and a strong controlled classical pump3,20. Note
that Ref. 21 similarly used two cavity modes coupled by a time-
independent rate to improve the trade-off between indistinguish-
ability and efficiency of a quantum emitter.
Since the time-dependent cavity-TLE detuning effectively

controls the strength of the nonlinearity, the gate duration can
be shortened without reducing the fidelity, in contrast to passive
nonlinearities3,4. By numerical optimization of Ω(t) and Λ(t), we
show that high-fidelity controlled-phase gates are, in fact, possible
and further that the gate duration need only exceed the Rabi
period at zero-detuning by a factor of 2–3.
This manuscript is organized as follows: In the next section, we

derive the general form of the equations of motion for one- and
two-photon wave packets incident on the cavity-TLE system. This
serves at the basis for our control conditioned on the photon
number of the wave packets. These equations are used in the
section “Results” to derive control fields that enable a high-
fidelity controlled-phase gate as an example of the many logical
operations enabled by this design. The section “Discussion”
provides a detailed study of the performance of that gate with
respect to various hardware parameters. Lastly, we provide an
outlook on possible near-term hardware implementations and
concluding remarks.
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METHODS
Equations of motion
Before demonstrating the implementation of a controlled-phase gate,
we will describe the general form of the dynamics of capturing (and
releasing) a wave packet into our two-mode cavities in the presence of
a TLE. The TLE is crucial for the non-Gaussian quantum operations we
want to perform. We use the discrete-time formalism developed in
Ref. 3 to describe the system in Fig. 1. It involves discretizing the time
axis into N bins of width Δt and introducing discrete-time waveguide
mode operators

ŵðtkÞ ¼ ŵðkΔtÞ � ŵkffiffiffiffiffi
Δt

p with ½ŵj ; ŵ
y
k � ¼ δjk ; (1)

where ŵðtkÞ is the continuous-time annihilation operator of the waveguide
mode that couples to cavity mode â. The input state of a single photon is

ψ
ð1Þ
in

��� E
¼
Z tN

t0

dtξ inðtÞŵyðtÞ ;j i �
XN
k¼1

ffiffiffiffiffi
Δt

p
ξ ink ŵ

y
k ;j i; (2)

where
R tN
t0

jξ inðtÞj2 ¼ 1 so the state is normalized, ξ ink ¼ ξ inðtkÞ describes
the shape of the wave packet, and ;j i denotes the vacuum state of the
waveguide. To each time bin, n, there is an associated Hamiltonian

Ĥn

_
¼ Ωnσ̂ee þ i

ffiffiffiffiffi
κC
Δt

r
âyŵn � âŵy

n

� �
þ Λ�

nâ
yb̂þ Λnâb̂

y þ g b̂
y
σ̂� þ b̂σ̂þ

� �
;

(3)

which describes the interaction between the cavity and photons in the
waveguide at time tn as well as the internal dynamics of the cavity. The
propagation of the wave packet is, thus, handled implicitly (instead of
introducing an additional hopping Hamiltonian). The operators describing
the TLE in Eq. (3) are σ̂ee ¼ ej i eh j, σ̂� ¼ gj i eh j, and σ̂þ ¼ ej i gh j. The
coupling rate between cavity mode â and the waveguide is κC, the
controllable coupling between modes â and b̂ is Λn, and the coupling
rate between the emitter and photons in mode b̂ is g. Note that the
Hamiltonian in Eq. (3) corresponds to a rotating frame as described in
the supplementary materials. Photons in any time bin only interact with

the cavity once and the bins are ordered such that photons in the first bin
interact with the cavity first. At a given time step, tn, we therefore denote
all photons in bins tk > tn as input photons and write their state as 1kj i.
Similarly, photons in all bins after the cavity-interaction tk ≤ tn are denoted
output photons and their state is written in bold as 1kj i. The state of the
cavity-TLE system is nanbgj i or nanbej i when there are na photons in mode
â and nb photons in mode b̂ while the TLE is in the ground, gj i, or excited
state, ej i, respectively.
The flow diagram in Fig. 2 maps out the various paths that two input

photons may take while interacting with the system. Each arrow corresponds
to a non-zero coupling in the system. We use the diagram as a visual tool to
simplify the otherwise tedious job of writing down the dynamical equations.
The Schrödinger coefficients corresponding to states with up to two photons

remaining on the input side of the cavity at time t are denoted e.g. ψð2Þ
nanbgðtÞ,

where the superscript denotes the maximum number of input photons. As
an example, consider the state if the first photon is absorbed into mode â
and subsequently coupled to mode b̂ before the second photon reaches the

cavity. The corresponding state is ψð2Þ
01gðtÞ 01gj i 1kj i with tk > t. States with a

maximum of one photon remaining on the input side along with an output

photon in bin m have Schrödinger coefficients denoted e.g. ψð1Þ
nanbgðtm; tÞ.

States with no photons on the input side and an output photon in bin m

have coefficients ψ
ð0Þ
nanbgðtm; tÞ. Finally, coefficients corresponding to states

with both photons in the cavity-TLE system are denoted e.g. ψnanbgðtÞ
without a superscript.
We refer to Ref. 3 for details of deriving equations of motion for the

Schrödinger coefficients, input-output relations, and inclusion of loss
channels. For the coefficients mentioned above, describing the state of the
cavity in the aforementioned basis, the master equation results in

_ψ
ðLÞ
10gðtm; tÞ ¼ � κ

2
ψ
ðLÞ
10gðtm; tÞ � iΛðtÞ�ψðLÞ

01gðtm; tÞ þ
ffiffiffi
L

p ffiffiffiffiffi
κC

p
ξ inðtÞ (4a)

_ψ
ðLÞ
01gðtm; tÞ ¼ � κl

2
ψ
ðLÞ
01gðtm; tÞ � iΛðtÞψðLÞ

10gðtm; tÞ � igψðLÞ
00eðtm; tÞ (4b)

_ψ
ðLÞ
00eðtm; tÞ ¼ � iΩðtÞ þ γe

2

� �
ψ
ðLÞ
00eðtm; tÞ � igψðLÞ

01gðtm; tÞ: (4c)

The first equation describes the capture of an incoming photon in
cavity mode â and the interaction between â and b̂. The latter equations
introduce the interaction between mode b̂ and the TLE. Note that we
included a loss rate, κl, for both cavity modes and a decay rate, γe, from

Fig. 1 Schematic representation of the system and steps of the
gate protocol. a An incoming wave packet (green) in state

P
cn nj i

is coupled into a cavity mode â (also green). Mode â is coupled to a
second available mode b̂ (blue) via an external control field Λi(t) as
depicted in the spectrum diagram on the right. This coupling
enables the capture of the incoming ωa wave packet into mode b̂.
b Mode b̂ is coupled to a two-level emitter (TLE) at vacuum rate g.
We control the detuning of the TLE through an external field
described by Ω(t). As seen in the energy-level diagram, the cavity-
TLE coupling depends on the number of photons in mode b̂, which
enables the depicted photon-number-dependent transformation.
c Controlled release using a second control pulse, Λo(t). The state of
the outgoing packet has undergone phase changes conditioned on
the number of photons.

Fig. 2 All input-output paths for two incident photons. Each
photon may be absorbed (green) and re-emitted (red) or bypass the
cavity by reflecting off of the left mirror in Fig. 1a at time tm. Inside
the cavity, the photons may couple between the cavity modes
(black) or between the TLE and mode b̂ (magenta).
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the TLE to the electromagnetic environment. The total intensity decay
rate from cavity mode â is κ= κC+ κl in Eq. (4a) and L= (0, 1, 2) is the
maximum number of photons on the input side as described above.
Note that solving Eq. (4) with L= 1 and tm= 0 corresponds to a one-
photon input state.
The Schrödinger coefficients corresponding to both photons being in

the TLE-cavity system evolve according to

_ψ20gðtÞ ¼ �κψ20gðtÞ � i
ffiffiffi
2

p
ΛðtÞ�ψ11gðtÞ þ

ffiffiffiffiffiffiffiffi
2κC

p
ψ
ð2Þ
10gðtÞξ inðtÞ (5a)

_ψ11gðtÞ ¼ �κC þ 2κl
2

ψ11gðtÞ � i
ffiffiffi
2

p
ΛðtÞψ20gðtÞ þ ΛðtÞ�ψ02gðtÞ
� �

�igψ10eðtÞ þ
ffiffiffiffiffi
κC

p
ψ
ð2Þ
01gðtÞξ inðtÞ

(5b)

_ψ02gðtÞ ¼ �κlψ02gðtÞ � i
ffiffiffi
2

p
ΛðtÞψ11gðtÞ � i

ffiffiffi
2

p
gψ01eðtÞ (5c)

_ψ10eðtÞ ¼ � iΩðtÞ þ γe þ κ

2

� �
ψ10eðtÞ � iΛðtÞ�ψ01eðtÞ � igψ11gðtÞ

þ ffiffiffiffiffi
κC

p
ψ
ð2Þ
00eðtÞξ inðtÞ

(5d)

_ψ01eðtÞ ¼ � iΩðtÞ þ γe
2
þ κl

2

� �
ψ01eðtÞ � iΛðtÞψ10eðtÞ � i

ffiffiffi
2

p
gψ02gðtÞ: (5e)

The initial condition for Eq. (5) is that all coefficients are zero at t= t0.
Note that all driving terms in Eqs. (4) and (5) correspond to green arrows in
Fig. 2 while all terms proportional to Λ and g correspond to black and
magenta arrows, respectively. As such, Fig. 2 provides a convenient tool for
verifying that all interactions are included in the dynamical equations.
For L= 2 in Eq. (4), the only required initial condition is ψ

ð2Þ
10gð0Þ ¼

ψ
ð2Þ
01gð0Þ ¼ ψ

ð2Þ
00eð0Þ ¼ 0. Those coefficients are therefore only functions of a

single variable, t. For L= 1 and L= 0, the equations must be solved for N
different initial conditions since tm corresponds to any bin and the
coefficients are functions of both tm and t ≥ tm.
For L= 1, the dynamics is initiated by either an emission into the

waveguide or simply a bypass (the traveling photon passing by the cavity)

10gj i 1kj i ! 00gj i 1k1mj i (6a)

00gj i 1j1k
�� �! 00gj i 1k1mj i: (6b)

In either case, the initial conditions are: ψð1Þ
10gðtm; tmÞ ¼ ψ

ð1Þ
01gðtm; tmÞ ¼

ψ
ð1Þ
00eðtm; tmÞ ¼ 0.
For L= 0, the dynamics is initiated by one of three different emission

paths or three different bypass paths

10ej i ;j i ! 00ej i 1mj i (7a)

11gj i ;j i ! 01gj i 1mj i (7b)

20gj i ;j i ! 10gj i 1mj i (7c)

00ej i 1kj i ! 00ej i 1mj i (7d)

01gj i 1kj i ! 01gj i 1mj i (7e)

10gj i 1kj i ! 10gj i 1mj i: (7f)

To understand how to set the initial conditions of Eq. (4) with L= 0
based on the events listed in Eq. (7), we consider the entire paths through
the map in Fig. 2. As an example, we consider the top path, which Eq. (7a)
is a part of

00gj i 1j1k
�� �! 10gj i 1kj i ! 10ej i ;j i !

� ffiffiffiffiffiffiffiffiffiffi
κCΔt

p
ψ10eðtmÞ 00ej i 1mj i ! � ffiffiffiffiffiffiffiffiffiffi

κCΔt
p

ψ
ð0Þ
10gðtm; tnÞ 00gj i 1m1nj i:

(8)

At each emission or bypass event, we explicitly write out the coefficient
of the relevant state and the initial condition of Eq. (4) is therefore

ψ
ð0Þ
00eðtm; tmÞ ¼ � ffiffiffiffiffiffiffiffiffiffi

κCΔt
p

ψ10eðtmÞ, while the other coefficients are initialized
with the value zero. However, since Eq. (4) is linear, we may use the initial
value 1 and multiply the contributions to the output state in the end, such

that the contribution from the path in Eq. (8) is κCψ10eðtmÞψð0Þ
10gðtm; tnÞ. To

distinguish between which of the three coefficients ψð0Þ
00e , ψ

ð0Þ
01g , or ψ

ð0Þ
10g that

is initialized to 1, we define functions {A00e, A01g, A10g}, {B00e, B01g, B10g},

and {C00e, C01g, C10g}, where A corresponds to ψ
ð0Þ
10gðtm; tmÞ ¼ 1, B to

ψ
ð0Þ
01gðtm; tmÞ ¼ 1, and C to ψ

ð0Þ
00eðtm; tmÞ ¼ 1. Following all the paths in

Fig. 2, the output state is found to consist of the following ten terms

ξ
ð2Þ
outðtm; tnÞ ¼ κCffiffi

2
p
h
ψ10eðtmÞC10ðtm; tnÞ þ ψ11gðtmÞB10ðtm; tnÞ þ

ffiffiffi
2

p
ψ20gðtmÞA10ðtm; tnÞ

� ξ inðtmÞffiffiffiffi
κC

p ψ
ð2Þ
00eðtmÞC10ðtm; tnÞ þ ψ

ð2Þ
01gðtmÞB10ðtm; tnÞ þ ψ

ð2Þ
10 ðtmÞA10ðtm; tnÞ

� �
� ψ

ð2Þ
10gðtmÞffiffiffiffi

κC
p ξ inðtnÞ � ffiffiffiffiffi

κC
p

ψ
ð1Þ
10gðtm; tnÞ

� �
þ ffiffiffi

2
p

ξ inðtmÞ ξ inðtnÞ � ffiffiffiffiffi
κC

p
ψ
ð1Þ
10gðtm; tnÞ

� �i
;

(9a)

where tm ≤ tn. The output state for two-photon inputs is

ψ
ð2Þ
out

��� E
¼
Z tN

t0

Z tN

t0

dtmdtnξ
ð2Þ
outðtm; tnÞŵyðtmÞŵyðtnÞ ;j i: (10)

The input-output relation for one-photon inputs is found by considering
the two paths starting from the state 00gj i 1k1mj i, which may be considered
the single-photon branch of the map in Fig. 2. The result is

ξ
ð1Þ
outðtÞ ¼ ξ inðtÞ �

ffiffiffiffiffi
κC

p
ψ
ð1Þ
10gðtÞ; (11)

with a single-photon output state given by

ψ
ð1Þ
out

��� E
¼
Z tN

t0

dtξð1ÞoutðtÞŵyðtÞ ;j i: (12)

Controlled-phase gate
Having presented the equations governing the general time-evolution
of an input state in product form, we turn to the specific example of
implementing a controlled-phase gate on two dual-rail encoded
photonic qubits. Other quantum logic operations are in principle
possible as well, but the controlled-phase gate is a prototypical example
of a low-level two-qubit operation. Together with the available
continuous single-qubit gates it completes the requirements for
universal quantum circuits. Figure 3 sketches the envisioned photonic
integrated circuit implementation. The basic idea is that we arrange our
TLE-cavity systems to act as an identity operation on incoming single-

Fig. 3 Photonic integrated circuit implementation of a controlled-
phase gate. The gate acts on two dual-rail qubits encoded in four
waveguides. The top two waveguides serve to encode one qubit.
The logical state of that qubit depends on which of the waveguides
contains a photon, as labeled on their left end. All four waveguides
are terminated by identical one-sided cavities depicted in Fig. 1a.
The “0”-arm cavities preserve the relative timing of the photon
pulses and need not contain TLEs. The “1”-arm cavities perform the
nonlinear phase shift and must contain identical TLEs. A 50/50
beamsplitter between the “1”-arms cause the transformation
1w1wj i ! 1=

ffiffiffi
2

p ð 2w0wj i þ 0w2wj iÞ resulting in two photons arriving
at one of the TLE cavities if the logical state of the qubits is 11j i (i.e.,
a photon in each of the middle two waveguides.). The cavity control
is such that they map 1wj i7! 1wj i, but 2wj i7! � 2wj i. This extra phase
is the crucial component enabling our controlled-phase gate. We
use the w subscript to denote physical photon in a waveguide, to
avoid confusion with the notation used for the logical states of the
dual-rail qubits.
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photon wave packets (or the vacuum), while at the same time they
impart a nontrivial phase to a two-photon wave packet. The dual rail
encoding and the beamsplitter ensure that the cavities encounter two-
photon wave packets only for the logical 11j i state, leading to our
controlled-phase operation.
The input state (two arbitrary dual-rail encoded qubits) is15

ψscj i ¼ α 0sj i þ β 1sj ið Þ � ζ 0cj i þ ϑ 1cj ið Þ � αζ 00j i þ αϑ 01j i þ βζ 10j i þ βϑ 11j i;
(13)

with ∣α∣2+ ∣β∣2= 1 and ∣ζ∣2+ ∣ϑ∣2= 1. The ideal controlled-phase gate
operation is defined by the transformation

Ĉ ψscj i � αζ 00j i þ αϑ 01j i þ βζ 10j i � βϑ 11j i: (14)

We use the “worst-case” gate fidelity as defined in22

F gate � min
ψscj i

F sð Þ; (15)

where the state fidelity, F s, is defined as

F s � ψsch jĈy ψoutj i
��� ���2 ¼ αj j2 þ βζj j2	 
h1w jψð1Þ

outi
2 � βϑj j2h2w jψð2Þ

outi
��� ���2; (16)

where 1wj i and 2wj i denote, respectively, one or two photons in the

waveguide and ψ
ð1Þ
out

��� E
and ψ

ð2Þ
out

��� E
denote the emitted state after the

absorption of, respectively, one or two incident photons. We use the w
subscript to avoid confusion with the dual-rail logical states, like 1j i ¼
0w1wj i and 0j i ¼ 1w0wj i. The steps in the derivation of Eq. (16) are
included in the supplementary materials. Notice the minus sign in the
second term, corresponding to the fact that the logical 11j i state has
changed its phase, i.e., that when two photons are absorbed the state
gains an additional π phase, unlike when one or zero photons are
absorbed. The complex-valued overlap factors in Eq. (16) are given by4

h1w jψð1Þ
outi ¼

Z
ξ
ð1Þ
outðtÞξ�inðt � TÞdt (17a)

h2w jψð2Þ
outi ¼

Z Z
ξ
ð2Þ
outðtm; tnÞξ�inðtn � TÞξ�inðtm � TÞdtndtm; (17b)

where T is the gate duration. Note that the output wave packet of the ideal
gate operation is a simple time translation of the input wave packet. This is
a critical requirement for enabling quantum circuits with many identical
gates, as any subsequent gate would work only if the wave packets
carrying the encoded photons are not distorted by the previous gate. The

output wave packets described by ξð1Þout and ξ
ð2Þ
out are not normalized due to

loss and ∣ψ00e(tN)∣2≥0. The overlap integrals in Eq. (17) therefore describes
gate errors in both amplitude and phase.
For the system considered here, the task is to determine the control

fields Λ(t) (the interaction between the cavity modes) and Ω(t) (the
detuning between the TLE and cavity mode b̂) that maximize the gate

fidelity. Unity fidelity is achieved if h1w jψð1Þ
outi ¼ 1 and h2w jψð2Þ

outi ¼ �1 as
seen from Eq. (16). This means that a two-photon wave packet captured
and then released by the cavity must acquire a different phase than that

of a single photon to fulfill the condition arg½ξð2Þout� � 2 arg½ξð1Þout� ¼ π. The
photon-number dependent TLE-cavity coupling illustrated in Fig. 1
causes an an-harmonic energy-ladder that enables this difference in
phase-accumulation. However, in Refs. 3,4 we found that the gate fidelity
is limited due to interactions between the photons while the wave
packet is absorbed and released from the cavity. This fidelity reduction
would be particularly detrimental with the large nonlinearity considered
here without a method to modify the effective size of the nonlinear
coupling rate. Instead of changing g itself, we consider modifying the
TLE-cavity detuning, Ω(t). When Ω≫ g, the effective nonlinearity is small
and it is maximized when Ω= 0. The gate protocol therefore consists of
three stages:

Absorption: Λ(t) is adjusted to couple photons from an incident wave
packet into mode b̂ while the detuning is held fixed at a large value
Ω(t)=Ω0≫ g.
Interaction: Ω(t) is adjusted to increase the effective nonlinear coupling
rate such that the required phase shift is achieved while the TLE returns
to its ground state at the end of the stage for both one- and two-
photon inputs.
Emission: Λ(t) is turned on again to release the photons into a wave
packet with the same shape as the input while Ω(t)=Ω0.

When the TLE and cavity are completely decoupled, the optimum
control function that loads a single photon into mode b̂ is 3

jΛiðtÞj ¼
jf i j exp � κl t

2

� �
jξ inj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
R t
t0
f iðsÞds

q (18a)

arg½ΛiðtÞ� ¼ �δbt � argðξ inÞ; (18b)

f iðtÞ ¼ κC
2
ξ in � _ξ in

� �
ξ�ine

κl t ; (18c)

where δb= 0 and we assumed Λi(t) arises due to three-wave mixing
between modes â, b̂, and a third mode [not shown in Fig. 1(a)] occupied by
a strong classical laser field. In the limit Ω0≫ g, we can adiabatically
eliminate ψ

ðLÞ
00e from Eq. (4b) by setting _ψ

ðLÞ
00e � 0 in Eq. (4c), leading to

_ψ
ðLÞ
01gðtm; tÞ � � κl

2
þ i

g2

Ω0

� �
ψ
ðLÞ
01gðtm; tÞ � iΛðtÞψðLÞ

10gðtm; tÞ (19a)

_ψ
ðLÞ
00eðtm; tÞ � � g

Ω0
ψ
ðLÞ
01gðtm; tÞ: (19b)

The term g2/Ω0 therefore corresponds to adding an effective detuning in
Eq. (4b) so we add g2/Ω0t to the phase of Λi(t) when solving for the full
dynamics described by Eq. (4). An alternative derivation of this additional
phase term is found in the supplementary materials.
The control function that optimally releases a single photon into the

wave packet ξout, is3

jΛoðtÞj ¼ jf oje�
κl t
2

jξoutj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κC jψð1Þ

01 ðt0Þj2 � 2
R t
t0
f oðsÞds

q (20a)

arg ΛoðtÞ½ � ¼ �δbt � argðξoutÞ � π

2
(20b)

f oðtÞ ¼ κC
2
ξout þ _ξout

� �
ξ�oute

κl t: (20c)

Note there is some additional optimization involved when ψ
ð1Þ
01gð0; tÞ has

not reached a steady-state value at the onset of the release process since it
is not obvious how to chose ψ

ð1Þ
01gðt0Þ in Eq. (20a). Since both Λi and Λo are

approximately zero during the interaction stage, we have Λ= Λi+ Λo.

RESULTS
Gate performance
To quantify the gate performance that is possible with the system
in Figs. 1, 3, we consider Gaussian-envelope wave packets

ξ inðtÞ ¼
ffiffiffiffiffi
2
τG

s
lnð2Þ
π

� �1
4

exp �2 lnð2Þ ðt � T inÞ2
τ2G

 !
; (21)

where ∣ξin(t)∣2 has a full temporal width at half maximum (FWHM)
of τG and a spectral width of ΩG ¼ 4 lnð2Þ=τG . We numerically
solved the equations in the section “Equations of motion” using
Julia23. The temporal shape of the control field Ω(t) was
determined by minimizing the gate error 1� F gate using a
standard gradient-free optimization method (Nelder-Mead24).
Figure 4 shows an example of the gate dynamics for a duration
of T= 7/g, Tin= 4.3/g, and g ¼ 0:4ΩG. It is expected that the TLE-
cavity detuning becomes small during the interaction stage,
t∈ [Tin; Tin+ T], since it leads to a larger occupation probability of
the TLE and thereby a larger effective nonlinearity . The blue curve
in Fig. 4a confirms this expectation and Fig. 4b plots the
probability of the TLE being in the excited state for both one-
(blue) and two-photon (red) input states. Note that both
populations decrease towards zero at the end of the gate
sequence as is required for a large gate fidelity. While the TLE-
cavity detuning is low, the one- and two-photon states acquire
phase at different rates, which is discussed in more detail in the
supplementary materials. Figure 4c plots the phase difference

ΔϕðtÞ � arg ψ02gðtÞ
� �� 2 arg ψ

ð1Þ
01gð0; tÞ

h i
; (22)
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which approximates the phase difference between the output
wave packets, arg½ξð2Þout� � 2 arg½ξð1Þout�. The reason is that the

populations ∣ψ02g(t)∣2 and jψð1Þ
01gð0; tÞj2 approach one immediately

before the emission stage as seen from Fig. 4c.
The limitation on gate fidelity imposed by a finite value of Ω0/g

is observed in Fig. 4b as a finite absorption probability (black
lines). In Fig. 5, we investigate this further by plotting the
probability of not absorbing a one- or two-photon input state as a

function of Ω0/g. The probabilities are given by

Pð1Þ
loadðtÞ ¼ ψ

ð1Þ
01g 0; tð Þ

��� ���2 þ ψ
ð1Þ
00e 0; tð Þ

��� ���2 (23a)

Pð2Þ
loadðtÞ ¼ ψ02g tð Þ�� ��2 þ ψ01e tð Þj j2: (23b)

The solution for the phase of the control function, Λ(t), uses
the term g2/Ω0t derived in Eq. (19) based on the approximation
Ω0≫ g. Figure 5 shows how the error probability increases as
this approximation becomes worse for decreasing Ω0/g. Remark-
ably, the error for both one- and two-photon input states
decreases rapidly with increasing Ω0/g and drops to about 10−5

for Ω0= 15g.
Our model includes a finite lifetime of cavity modes â and b̂ as

well as a decay rate from the TLE into the electromagnetic
environment. Figure 6(a) plots the gate error as a function of
gate duration for different values of the loss rate, κl. Note that
we assumed γe= κl in Fig. 6(a). The control function, Ω(t), was
optimized for each parameter configuration. The black line in
Fig. 6(a) sets a lower limit on the gate error due to a finite
excitation probability of the TLE at tN as well as a finite
absorption error, 1� P load. Compared to Ref. 3, our analysis
here studies all three stages of the gate sequence and the gate
duration is more than three times shorter (when comparing
Fig. 6a here to Fig. 9 in Ref. 3). The dashed lines in Fig. 6a
correspond to the conditional fidelity3,4, which is calculated
using normalized output states

ψ
ðnÞ
out

��� E
�

ψ
ðnÞ
out

��� E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hψðnÞ

outjψðnÞ
outi

q ; n ¼ f1; 2g: (24)

It therefore corresponds to a post-selected gate fidelity condi-
tioned on both photons being detected by a perfect detector. As
expected, the conditional fidelity coincides with the fidelity in the
absence of loss as in the case of χ(2) and χ(3) nonlinearities4.
Introducing control of the TLE-cavity detuning, Ω(t), removes

the requirement observed in Ref. 4 to increase the gate duration, T,
relative to the wave packet width, τG, in order to decrease the gate
error due to wave packet distortions. Instead, Ω(t) controls the
effective nonlinear coupling and the gate error (in the absence of
loss) is only limited by the off-state detuning, Ω0/g, and the
efficiency of depopulating the TLE for both one- and two-photon
inputs despite the difference in Rabi frequency.
Working with solid state quantum emitters introduces other

types of error mechanisms in addition to loss. Energy-conserving
interactions between the emitter and its environment may lead to
dephasing, which means the coherence between the ground and
excited state is lost25. Superposition states, α gj i þ β ej i, turn into
mixed states when the relative phase between α and β is not
conserved. Here, we study this effect by introducing a dephasing
rate, γdp, and perform Monte-Carlo simulations to calculate the
fidelity as described in the supplementary materials following26,27.
Figure 6b plots the gate error as a function of gate duration for
different values of γdp while keeping κl= γe= 0.
The result is very similar to that in Fig. 6a, except the dashed

and solid lines coincide in Fig. 6(b). Dephasing errors can therefore
be considered more severe than loss errors because the post-
selected gate fidelity is also affected by dephasing.

Noise in the control fields
In this section, we consider a particular experimental approach
to synthesizing the control fields and investigate the effect of
noise in the settings of control parameters for Ω(t). A detuning
between the emitter and cavity mode b̂ could be controlled via
the emitter transition energy, ωe, through AC-Stark shifts. An
alternative scheme would be to modulate the cavity resonance,

Fig. 4 Example of gate dynamics. a Control functions, Λ(t) and Ω(t)
as a function of time along with the input wave packet and ideal
one-photon output wave packet, ξð1Þout. b Probability amplitude of the
TLE being excited for a one-photon input, ψ

ð1Þ
00eð0; tÞ, and the

probability amplitude of a photon in mode b̂ and an excited TLE for
a two-photon input, ψ01e(t). The black curves plot the probability of
having absorbed all the input photons [defined in Eq. (23)] for a one-
(solid) and two-photon input state (dashed). c Probability that all
input photons are in mode b̂ for a one- (blue) and two-photon input
state (red) along with the phase difference between the amplitudes
of the corresponding Scrödinger coefficients [defined in Eq. (22)]
(black). Simulation parameters: κC ¼ 6ΩG, κl= γe= 0, g ¼ 0:4ΩG,
Ω0= 15g, Tin= 4.3/g, and T= 7/g.

Fig. 5 Probability of failing at photon absorption. Probability not
absorbing one- (solid lines) and two-photon (dashed lines) input
states as a function the TLE-cavity detuning for different values of
g=ΩG. Simulation parameters: κC ¼ 6ΩG, κl= γe= 0, Tin= 4.3/g, and
T= 7/g.
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ωb, via e.g. cross-phase modulation. For experimentally demon-
strated nonlinear coupling rates of g ~ 40 GHz28, the entire gate
duration in Fig. 4 is T ~ 175 ps, which would require very fast
electronics. On the other hand, femtosecond-scale resolution in
shaping of optical pulses was demonstrated29. Typically, optical
pulse shaping is achieved by modifying a finite number of
Fourier components of pulses using gratings and spatial light
modulators30. To emulate this process, we write the control field
as a sum of super-Gaussians with complex amplitudes in the
Fourier domain

~ΩðωÞ ¼ Ω0δðωÞ � e�iωTΩ
XN

m¼�N
~Ω
ðmÞ

e
� ω�mΩch

Ωch

� �6

; (25)

where δ(ω) is the Dirac-delta distribution, N ¼ ðNch � 1Þ=2, and
TΩ shifts Ω(t) on the time axis. The number of Fourier
components is Nch each having a bandwidth of Ωch. Since Ω(t)
is real-valued, the optimization consists of determining TΩ
along with ~Ω

ðmÞ
R ¼ Ref~ΩðmÞg and ~Ω

ðmÞ
I ¼ Imf~ΩðmÞg under the

constraints ~Ω
ðmÞ
R ¼ ~Ω

ð�mÞ
R and ~Ω

ðmÞ
I ¼ �~Ω

ð�mÞ
I . Figure 7 shows an

example of an optimized control pulse that results in a gate
performance similar to the control pulse in Fig. 4a. To see how
the gate performance is affected by the number of Fourier
components and the channel bandwidth, we plot the minimized
gate error as a function of Nch and Ωch in Fig. 8a.
Experimentally, there is only a finite precision available to

determine the shape of the control fields. The Fourier domain
implementation enables a direct quantification of the effect on
the gate error from noise in the complex amplitudes, ~Ω

ðmÞ
, of a

programmable filter. The noise is included by modifying the
optimized real and imaginary control variables as

~Ω
ðmÞ
R=I ! ~Ω

ðmÞ
R=I þ XðmÞ

R=I ´ σ ´ max
m

~Ω
ðmÞ
R ; ~Ω

ðmÞ
I

� �
: (26)

The size of the noise is represented by σ, XðmÞ
R=I is a random

number between −1 and 1, and the last factor in Eq. (26) is the
maximum of all the optimized variables. Using the maximum in
Eq. (26) is motivated by a finite filter setting precision and
represents an absolute error rather than a relative error. Adding
noise degrades the gate fidelity and Fig. 8b plots the gate error as
a function of σ using the same optimized parameters as in Fig. 7. It
is observed that errors below 10−4 are required to have a
negligible influence on the gate error.

Comparison of nonlinearities
The nonlinearity required to facilitate photon-photon interactions
for deterministic quantum logic gates can have different origins.
In Refs. 3,4, we proposed protocols based on bulk nonlinearities
such as second-harmonic generation (SHG) or self-phase modula-
tion (SPM) in χ(2) and χ(3) materials. By introducing a generalized
nonlinear coupling rate, ΓNL, we may write the Hamiltonian
describing three different nonlinear effects as3,4

ĤSHG ¼ _ΓNL ĉb̂
y
b̂
y þ ĉyb̂b̂

� �
(27a)

ĤSPM ¼ _ΓNL b̂
y
b̂� 1

� �
b̂
y
b̂ (27b)

ĤTLE ¼ _ΓNL b̂
y
σ̂� þ b̂σ̂þ

� �
: (27c)

In Eq. (27a), ΓNL∝ χ(2), in Eq. (27b), ΓNL∝ χ(3), and in Eq. (27c),
ΓNL= g as seen from Eq. (3). Note that we absorbed a factor of 1/4
into the definition of ΓNL in Eq. (27b) compared to the definition of
the χ3-parameter in equation 2b of Ref. 3 to avoid any numerical
pre-factors in Eq. (27). Finding the minimum gate error for each
value of κl in Fig. 6a and plotting it as a function of ΓNL/κl shows
that the error is approximately inversely proportional to ΓNL/κl, see
Fig. 9. We also show the results from Ref. 3 in the same plot for
reference [note a rescaling of the red curve to match the definition
of ΓNL in Eq. (27b)]. A lower bound on the gate duration (in units of
Γ�1
NL ) follows from the physical origin of the phase difference
between one- and two-photon inputs. For SHG, a full Rabi
oscillation between two photons in mode b̂ and one photon in
mode ĉ is required, and this Rabi period is given by ðπ= ffiffiffi

2
p ÞΓ�1

NL
(this can be seen from equations 57c and 57d in Ref. 4). For SPM,
the phase difference is simply acquired at a rate given by 2ΓNLt so

Fig. 6 Dependence of the gate error on decoherence. a 1�F gate
as a function of gate duration, T, for different cavity loss rates
(legend corresponds to κl/g). b 1�F gate as a function of gate
duration, T, for different dephasing rates (legend corresponds to γdp/
g). In both (a) and (b), the dashed lines plot the error in conditional
fidelity. Simulation parameters: κC ¼ 6ΩG, g ¼ 0:4ΩG, Ω0= 15g, and
Tin= 4.3/g. In (a) we used γdp= 0 and γe= κl ≠ 0 and in (b) we used
γe= κl= 0 and γdp ≠ 0.

Fig. 7 Example of Fourier domain control function. This particular
example leads to a gate error of 1�F gate ¼ 4:7 ´ 10�5 . Parameters:
κC ¼ 6ΩG, γe= κl= 0, g ¼ 0:4ΩG, Ω0= 15g, T= 7/g, Tin= 4.3/g, Nch=
9, and Ωch/g= 0.14.

Fig. 8 Gate error as a function of control and hardware
parameters. a Optimized gate error, 1�F gate, as a function of the
number of Fourier components, Nch, and their bandwidth, Ωch.
b Gate error as a function of the noise parameter, σ, using 100
different combinations of random numbers, XðmÞ

R=I , (black crosses).
The red line shows the worst case scenario. Parameters: κC ¼ 6ΩG,
γe= κl= 0, g ¼ 0:4ΩG, Ω0= 15g, and Tin= 4.3/g.
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the minimum required gate duration is ðπ=2ÞΓ�1
NL (this can be seen

from equation 54c in Ref. 4 when accounting for the definition:
ΓNL= χ3/4). For TLEs, a bound is not as straightforwardly obtained
due to the necessity of a control field to ensure the simultaneous
achievement of a π phase difference and depopulating the TLE for
both one- and two-photon inputs. However, Fig. 6a shows that a
duration of �5Γ�1

NL is sufficient for an error below 1%. These
bounds are consistent with the relative positions of the curves in
Fig. 9 and shows that using TLEs as the optical nonlinearity comes
with a relative small penalty in the required loss rate of a factor of
2–3 compared to χ(2) or χ(3) effects.
To evaluate the potential of practical implementations, one must

calculate the value of ΓNL/κl. Table 1 lists numbers from the literature
including each type of nonlinearity (see the supplementary materials
for details on how the relevant metrics were extracted). It shows that
interaction volumes achieved for SHG in χ(2)-materials are orders of
magnitude larger than those for both SPM in χ(3)-materials and dipole
interaction volumes2,31–33. The dielectric confinement mechanism
employed in refs. 2,31–33 was applied to SHG in ref. 34, but more work
is necessary to understand its potential for reducing the SHG
interaction volume. Using ΓNL/κl as a figure of merit is not generally
applicable for SHG since two optical cavity modes are involved (note
that we assumed identical loss rates for all modes in ref. 4). In the
SHG literature, the conversion efficiency (ηSHG / Q2

bQc
35–37) is often

used as a figure of merit, but it appears that minðQb;QcÞ is the

limiting factor in the quantum regime studied here. This difference in
scaling of the figure of merit should be considered when designing
cavities for few-photon interactions.
High confinement cavities have been realized in Si32,33, but

measurements of the SPM coupling rate are required to verify
their potential. Table 1 clearly illustrates the advantage of two-
level emitters compared to bulk nonlinearities in terms of the
much larger nonlinear coupling rate.

DISCUSSION
In the introduction, we mentioned a few examples of two-level
emitter implementations where strong coupling to an optical mode
was already demonstrated. However, there has been a lot of work
in recent years on other promising platforms like 1D-38 and 2D
materials39,40. Very strong coupling between excitons in 2D
materials and plasmonic modes was also experimentally
observed41–43 and theoretical work suggested how such systems
may be described by an effective Jaynes–Cummings model44–46.
Our focus on InAs quantum dots in GaAs membranes in the
previous section and Table 1 is, however, based on our assessment
that they represent state-of-the-art owing to their scalability
potential and excellent properties resulting from a long history of
developing them as single-photon sources. Moving beyond state-
of-the-art and into a parameter regime corresponding to ~1% gate
error would require the nonlinear coupling rate in Ref. 28 and the
linear loss rate in Ref. 47 to be achieved in the same device
(illustrated with a green dot in Fig. 9). Surface passivation
techniques are being used to address the challenge of achieving
large Qs in GaAs cavities both with-48 and without QDs47. Cavities
with ultra-small dipole interaction volumes2,31–34 also represent an
interesting approach to increase g. We note, however, that with the
parameters used in Fig. 6 and g= 40 GHz and ωa= 2πc/940 nm28,
the coupling-Q of mode â is QC=ωa/κC= 530. At the same time, κl/
g ~ 10−3⇒Ql/QC= 1.5 × 104 meaning that cavity mode â must be
extremely over-coupled to reach the ~ 1% gate error regime.
Further increases to g corresponds to an even smaller QC that could
pose experimental challenges although nanobeam cavities are well-
suited to reach very over-coupled regimes even at large Qs49.
The scheme for dynamic cavity coupling originating from

nonlinear mode interactions used here and in recent work3,50–52 is
compatible with a very small dipole interaction volume of the
cavity mode interacting with the TLE. The control pump power
may be increased to achieve the required strength of Λ(t) as long
as the overlap between the participating modes is large enough
to ensure a reasonable nonlinear interaction volume. However,
interference-based dynamic cavity coupling53,54 requires the

Fig. 9 Gate error as a function of the ratio between nonlinear
coupling rate and linear loss rate. Calculated for the three types of
nonlinearity we have studied here and in previous work. The
generalized nonlinear coupling rate, ΓNL, corresponds to g here and
to χ2 or χ3/4 from equation 3 in Ref. 4. The vertical dotted lines show
state of the art28 and the expected performance by combining g
from Ref. 28 and κl from Ref. 47 (green dot). Note that the figure of
merit, ΓNL/κl, for bulk nonlinearities are orders of magnitude smaller
than for the TLE and therefore not included in this plot.

Table 1. Comparison of nonlinear coupling rates and linear loss rates.

Ref. Mat. Type ΓNL
GHz V int

λ3

n3

h i
QL

ΓNL
κl

Design proposal

Lin201630 LiNbO3 χ(2) 0.01 1.1 × 103 2.4 × 103 1.2 × 10−4

Minkov201931 GaN χ(2) 0.00021 6.7 × 104 1 × 104 9.1 × 10−6

Choi20172 Si χ(3) 0.002 0.17 2 × 106 0.02

Experimental demonstration

Lu202055 LiNbO3 χ(2) 0.0012 7.4 × 104 5.8 × 105 0.0036

Ota201826 InAs TLE 40 – 5.2 × 104 6.5

Kuruma202033 InAs TLE 4.8 – 1.6 × 105 0.8

Guha201729 GaAs – – – 6.0 × 106 –

The comparison is made in terms of quality factors. For each material, we specify the type of the observed nonlinearity, the absolute value of the nonlinear
interaction rate, the corresponding multimode interaction volume, resonator quality factor, and the ratio between the interaction rate and resonator decay
rate. Definitions of interaction volume for χ(2) and χ(3) nonlinearity and their relation to other parameters listed in the literature56–61 are given in the
supplementary materials.
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mode to spread out across the interference paths and thereby
limits how small the dipole interaction volume can be.
In conclusion, we have shown that a two-level emitter is

sufficient to implement high-fidelity logical gates between
photonic qubits when time-dependent control of the coupling
between cavity modes and the emitter/cavity detuning is possible.
Our approach represents a promising alternative to multi-level
systems17–19 by shifting complexity from the atom-like emitter to
the photonic system.
Based on the demonstrated performance and potential for

improvement, we consider semiconductor quantum dots to be a
very promising hardware platform to implement deterministic
quantum logic on photonic quantum states.

DATA AVAILABILITY
All code used to solve and optimize the control master equations is available upon
request, as well as the raw output of the simulation routines.
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