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Variational quantum eigensolver with reduced circuit
complexity
Yu Zhang 1✉, Lukasz Cincio1, Christian F. A. Negre1, Piotr Czarnik1, Patrick J. Coles 1, Petr M. Anisimov 2, Susan M. Mniszewski 3,
Sergei Tretiak 1,4 and Pavel A. Dub 5

The variational quantum eigensolver (VQE) is one of the most promising algorithms to find eigenstates of a given Hamiltonian on
noisy intermediate-scale quantum devices (NISQ). The practical realization is limited by the complexity of quantum circuits. Here we
present an approach to reduce quantum circuit complexity in VQE for electronic structure calculations. Our ClusterVQE algorithm
splits the initial qubit space into clusters which are further distributed on individual (shallower) quantum circuits. The clusters are
obtained based on mutual information reflecting maximal entanglement between qubits, whereas inter-cluster correlation is taken
into account via a new “dressed” Hamiltonian. ClusterVQE therefore allows exact simulation of the problem by using fewer qubits
and shallower circuit depth at the cost of additional classical resources, making it a potential leader for quantum chemistry
simulations on NISQ devices. Proof-of-principle demonstrations are presented for several molecular systems based on quantum
simulators as well as IBM quantum devices.
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INTRODUCTION
One of the major goals of computational chemistry is the
development of methods and algorithms for the calculation of
the molecular electronic ground and excited state energies and
corresponding wave functions from first-principles. Such eigen-
values and eigenvectors can be obtained from the solution of the
time-independent electronic Schrödinger equation. However,
since the invention of classical digital computers in the early
1940s, the exact numerical solution of this central quantum
mechanical equation remains infeasible for systems roughly
having more than 12 electrons distributed on 184 spin-orbitals1.
Even though modern quantum many-body methods, such as
density matrix renormalization group (DMRG)2, selected config-
uration interaction (sCI)3, and coupled-cluster (CC) theory4

methods can solve larger systems, their applications are still
limited to dozens of electrons and they are subject to truncation
or approximations. The reason is that the solution space (i.e., the
Fock space) grows factorially with the system size (e.g., the
number of electrons and basis functions). One of the most
promising and immediate applications of quantum computers is
solving classically intractable quantum chemistry problems5,6.
The direct solution to these problems on currently available

quantum computer hardware is intractable. For example, the
quantum phase estimation (QPE) algorithm7 represents the
natural translation of the full configuration interaction (FCI)
procedure to quantum computers8. However, QPE requires
millions of qubits and quantum gates even for relatively small
systems, making the algorithm unsuitable for practical applica-
tions on near-term noisy intermediate-scale quantum (NISQ)
devices9. Full quantum eigensolver (FQE), in which the complexity
of basic gate operators is polylogarithmic in the number of spin-
orbitals, represents another fully quantum algorithm to simulate
molecular systems10. However, FQE might not be suitable for
advantageous quantum chemistry demonstrations due to the

limitations of NISQ devices. Indeed, leading digital quantum
computers based on superconducting qubit technology have
limited coherence times (~100 μs) and gate error rates (~2 × 10−2

for a two-qubit gate), limiting the possible number of operations
that can be executed to evolve the quantum state. Under these
conditions, leveraging classical resources as much as possible
through a hybrid quantum-classical approach seems to be the
most promising route toward achieving quantum chemical
advantage on NISQ devices11–13.
The variational quantum eigensolver (VQE) is one of the leading

hybrid quantum-classical algorithms developed specifically to
simulate molecular systems in their ground14–17 and ultimately
excited states18–23. In a typical VQE setup, a variational para-
meterized ansatz is used to represent the trial wave function
prepared with a quantum circuit and the expectation value of the
qubit Hamiltonian is measured. Then, the parameters of the ansatz
are iteratively optimized on a classical computer using the
Rayleigh-Ritz variational principle. Although VQE simulations of
small molecules have been performed on various quantum
architectures such as photons14, superconducting qubits24,25 and
trapped ions26, major efforts are needed to scale up this approach
to larger molecular systems of chemical interest. Here, albeit not
as large as QPE circuits, VQE would also suffer from the large size
of the quantum circuits, which coupled with a classical optimiza-
tion requiring many variational parameters, can render calcula-
tions intractable. Consequently, the construction of an efficacious
ansatz and improved classical optimizer is an active area of
research12,13.
There are two main approaches for ansatz design for electronic

structure calculations. Hardware-efficient ansatzes24,25 are con-
structed from repeated, dense blocks of a limited set of
parameterized gates that are easy to implement on a quantum
device. While such an ansatz requires fewer resources on the
quantum processor, because of its totally chemically agnostic
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nature, it might face difficulties in the parameter optimization due
to the barren-plateau problem27–30. Consequently, simulation of
large molecular systems with hardware-efficient ansatzes might
become practically challenging and even impossible. Chemically-
inspired ansatzes, such as the Unitary Coupled-Cluster Singles and
Doubles (UCCSD)31–35, are designed by using domain knowledge
from classical quantum chemistry. The standard version of UCCSD,
however, has unfavorable scaling in the number of gates required
for larger molecular systems36. Consequently, various approaches
are being developed to improve on the UCCSD method to obtain
shorter circuits or higher than UCCSD accuracy at comparable
circuit depth17,37–41. Among them, “iterative VQE” algorithms42–47,
which instead of using a fixed ansatz, construct problem-tailored
ansatzes on-the-fly, have gained attention because of their
controllable circuit-size.
Two notable iterative VQE algorithms to reduce quantum circuit

depth are (fermionic and qubit) ADAPT-VQE42,43 and iterative
Qubit Coupled Cluster (iQCC)44–46. Fermionic-ADAPT-VQE employs
a predetermined pool of spin-adapted fermionic (generalized)
singles and doubles excitation operators from which the ansatz is
dynamically constructed42. The more measurement- and circuit-
efficient (e.g. less CNOT gates in particular) qubit-ADAPT-VQE uses
selected Pauli words (obtained from mapping fermionic operators
into Pauli operators) to form the “qubit” pool, but the algorithm
comes with a larger number of ADAPT iterations because of the
larger number of variational parameters (more gradient calcula-
tions required)43. IQCC uses arbitrarily shallow quantum circuit
depth at the expense of an iterative canonical Hamiltonian
dressing technique employing the qubit coupled cluster (QCC)
ansatz. The exponential growth of the “dressed” Hamiltonian with
the size of the QCC transformation in an anti-commuting set could
be mitigated using the involuntary linear combinations of Paulis
technique45. But the algorithm is exponential with respect to the
dressing steps.
Although circuit depth is one of the most critical metrics for

NISQ devices, the number of physical qubits on the actual
quantum chip (circuit width) is the necessary condition that limits
the problem that can be solved. Several techniques based on
symmetries presented in the Hamiltonian have been used to
reduce the number of qubits48–51. But these techniques can only
reduce a few qubits and have certain symmetry requirements.

Instead, there are recent efforts to solve larger problems with
smaller quantum computers by either using tensor network or
divide-and-conquer techniques52–55. In addition, a dressing
technique has been proposed to downfold the correlation effect
in a large space into a smaller active space by using the second-
order approximation56. However, these methods are approximate
or only applied to model systems. In this work, we present an
algorithm that reduces both quantum circuit depth and width in
VQE at the cost of additional classical resources. Our algorithm,
called ClusterVQE, uses the mutual information (a measure of the
correlation between spin-orbitals57,58) to group the qubits into
different clusters, which can be distributed to different quantum
circuits. The correlation between different clusters is minimized by
the mutual information optimization method and is taken into
account by building a “dressed” Hamiltonian. Even shallower
circuit depths can be achieved compared to the qubit-ADAPT-
VQE. Consequently, the ClusterVQE algorithm is more robust to
noise, making it particularly attractive for NISQ devices. Because
the correlations between different clusters are minimized, the
dressed Hamiltonian protocol only introduces minor additional
classical resource requirements compared to the iQCC method.
Most importantly, the ClusterVQE algorithm removes the entan-
glement between different clusters via the dressed Hamiltonian.
Consequently, ClusterVQE can solve the original problem in a
much smaller qubit space (clusters), reducing the number of
qubits significantly for simulating large molecules on NISQ
devices.

RESULTS AND DISCUSSION
Simulation details
To demonstrate the validity of the ClusterVQE algorithm, we have
simulated several molecules on both a quantum simulator and
IBM quantum devices. In order to perform the simulations, an in-
house modified Qiskit code59 has been developed. The Jordan-
Wigner operator transformation60 and the Limited-memory BFGS
Bound (L-BFGS-B) optimizer61 were used in this work. The
obtained results are compared with that of exact diagonalization.
In order to make the comparison over different methods (VQE,
qubit-ADAPT-VQE, iQCC) meaningful, the same ansatz, QUCCSD
(details in Supplementary Section II), is used for all simulations

Fig. 1 Simulation of LiH molecule. a, c GS Energy errors and (b, d) number of Pauli words per each iteration for the LiH molecule obtained
from the qubit-ADAPT-VQE, iQCC, and ClusterVQE algorithms. The Li-H bond lengths are 1.547 Å (a, b) and 2.4 Å (c, d), respectively.
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below unless specified otherwise. The convergence criteria of
ϵ= 10−4 and the minimal STO-3G basis set are used for all the
molecules. The minimal basis set is chosen in the test because the
NISQ devices suffer from noise due to the limitations of NISQ
devices. Using a larger basis set directly will significantly increase
the number of qubits and circuit depth, further amplifying the
noise effect. To address the basis set problem, we recently
proposed a trans-correlated Hamiltonian approach which could
significantly improve the accuracy by using only the minimal basis
set, and consequently, is more NISQ friendly62.

LiH molecule
We start with simulating the ground state of the LiH molecule at
equilibrium (bond distance is 1.547 Å). LiH requires 10 qubits with
the minimal STO-3G basis set and frozen core orbitals. The graph
representation of the qubit clustering within the ClusterVQE is
shown in Supplementary Fig. 2. Qubits [0, 1, 4, 5, 6, 9] and
[2, 3, 7, 8] are in the same cluster, respectively. Figure 1(a) and
(c) compares the energy convergence of the qubit-ADAPT-VQE,
ClusterVQE, and iQCC approaches for different Li-H bond lengths
(1.547 Å and 2.4 Å). Because iQCC only implements one entangler
on the quantum circuit, the number of parameters to be
optimized is also smaller compared to that of qubit-ADAPT-VQE
and ClusterVQE. Consequently, a smaller number of optimization
cycles is required per iteration. For the iQCC method, once the
entanglers in the previous iteration are used to dress the
Hamiltonian, these parameters are fixed. In contrast, the
parameterized ansatz in the qubit-ADAPT-VQE and ClusterVQE
approaches are re-optimized at each iteration, making them more
flexible to achieve better convergence. As a result, the conver-
gence of iQCC is slightly worse than that of qubit-ADAPT-VQE for a
given number of iterations, as shown in Fig. 1(a) and (c). For
ClusterVQE, because only a few operators are used to dress the
Hamiltonian, the performance is almost the same as that of qubit-
ADAPT-VQE. Because the Hamiltonian of the iQCC and ClusterVQE
methods is dressed by the entanglers, the number of Pauli words

in the dressed Hamiltonian is increased. However, compared to
iQCC, only two operators are used to dress the Hamiltonian in
ClusterVQE as shown in Fig. 1(b). The number of Pauli words of the
dressed Hamiltonian does not increase significantly. In contrast,
the number of Pauli words in iQCC increases exponentially with
the number of iterations before saturation, see Fig. 1(b) and (d).
But it should be noted that the performance of ClusterVQE
depends on the quality of qubit clustering. If a less optimal qubit
clustering is used, more entanglers will be used to dress the
Hamiltonian. Consequently, the size of the dressed Hamiltonian
increases significantly as shown in Supplementary Fig. 3 even
though it is still smaller than that of iQCC.
We then compared the performance of the qubit-ADAPT-VQE,

iQCC, and ClusterVQE approaches on the ground-state potential
energy surface (PES) of LiH as shown in Fig. 2. Overall, ClusterVQE
can achieve the same energy error as that of qubit-ADAPT-VQE
but with smaller quantum circuits. And also uses fewer Pauli words
compared to iQCC, as shown in Fig. 2.
We also compared the performance of the different clustering

methods used (Supplementary Section I). For most geometries of
the LiH molecule, these three methods produce the same
clustering. However, at the bond length of 2.4 Å, the Metis graph
partitioning method results in less optimal clustering. Conse-
quently, more entanglers are needed to dress the Hamiltonian,
resulting in 808 Pauli words. This comparison suggests that the
QCD and MI-based clustering methods provide better and more
stable performance in clustering and help improve the ClusterVQE
performance.

Non-covalently-bound (van der Waals) complex (H2)2
Since ClusterVQE intends to minimize the intercluster correlations,
it is intuitively expected that it is ideal for molecular aggregate
systems where the intermolecular coupling is usually smaller than
the intramolecular correlation. Here, we employ the non-
covalently-bond (van der Waals) complex ðH2Þ241 to demonstrate
the application of ClusterVQE on molecular aggregates. The spin
orbitals of each molecule of the complex are grouped in a cluster.
The intramolecular correlation of H2 is 0.04 au. By tuning the
distance between the two H2 molecules, the intermolecular
correlations can be changed. The intermolecular correlations of
the ðH2Þ2 complex with distances 2 Å and 5 Å are 0.59 and 0.35 au,
respectively. To demonstrate the complexity of the ClusterVQE
method, the qubit-clustering is molecule-wise, i.e., the spin
orbitals of the same molecule are grouped together. The ground
state energies of the ðH2Þ2 complex with different intermolecular
distances (2 Å and 5 Å, respectively) are calculated, which are
shown in Fig. 3. For the shorter distance, the intermolecular
correlations are much stronger. Consequently, more inter-cluster
entanglers are used to dress the Hamiltonian, making the
complexity of ClusterVQE almost the same as iQCC. In contrast,
the intermolecular correlations become smaller when the inter-
molecular distance is 5 Å. In this case, only 2 entanglers are used
to dress the Hamiltonian. Moreover, increasing the intermolecular
distance further reduces the intermolecular correlations and
results in less dressing. This comparison indicates that ClusterVQE
is ideal for the molecular aggregates where the intermolecular
correlation is weak and the complexity increases with increasing
inter-cluster correlations.

N2 molecule
We next demonstrated the validity of ClusterVQE in the strongly
correlated regime. The N2 molecule is a prototype system for
testing multi-reference methods in quantum chemistry due to its
strong electronic correlations, particularly when the bond is
stretched. Here N2 at equilibrium (1.09 Å) and stretched
configurations (1.6 Å) are used as examples. The 12-qubit

Fig. 2 Potential energy surface of LiH molecule. a GS energy, (b)
energy error, and (c) number of Pauli words in the qubit Hamiltonian
of LiH for different bond lengths obtained from different methods.
For VQE, one layer of the QUCCSD ansatz is used. One layer of the
QUCCSD ansatz is also used as the operator pool for the other
methods.
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N2/STO-3G system is simulated after freezing the lowest two spin-
orbitals.
Since the N2 molecule has a stronger correlation, the QUCCSD

ansatz (i.e., choosing only one Pauli word from each UCCSD
excitation) could result in slow convergence43. Instead, adding
one more adjoint Pauli word for each excitation (known as the
QUCCSD2 ansatz with more details found in the SI) could
significantly improve the accuracy. The results obtained from
the QUCCSD and the QUCCSD2 ansatz are shown in Supplemen-
tary Fig. 4 and Fig. 4, respectively. Comparison of these figures
reveals that QUCCSD2 significantly improves the convergence but
at the same time increases the circuit depth and the Hamiltonian

size in the ClusterVQE and iQCC methods. The development of a
more efficient ansatz that balances accuracy and efficiency for
ClusterVQE could be a subject of separate investigations. As
shown in Fig. 4(a) and (c), the energy convergence of ClusterVQE is
almost the same as that of qubit-ADAPT-VQE and is better than
that of iQCC. In contrast, the VQE optimization may lead to a small
improvement after certain iterations due to the limited correlation
that could be further introduced by one entangler. The
convergence can be further improved by using more Pauli words
for each UCCSD excitation43. Nevertheless, for a given ansatz, the
size of the dressed Hamiltonian in ClusterVQE is much smaller
than that of iQCC. It should be noted that the stretched N2

Fig. 4 N2 simulation. a, c GS Energy errors and (b, d) number of Pauli words per each iteration for the N2 molecule obtained from the qubit-
ADAPT-VQE (blue), iQCC (purple) and ClusterVQE (green) methods. The N-N bond lengths are 1.09 Å (a, b) and 1.6 Å (c, d), respectively. The
numbers of Pauli words in the qubit-ADAPT-VQE are 539 and 383 for 1.09 Å and 1.6 Å, respectively, which are not shown in (b) and (d).

Fig. 3 Simulation of the ðH2Þ2 complex molecule. a, c GS Energy errors and (b, d) number of Pauli words per each iteration for the ðH2Þ2
complex molecule obtained from the qubit-ADAPT-VQE (blue), iQCC (purple) and ClusterVQE (green) methods. The intermolecular distances
are 2 Å (a, b) and 5 Å (c, d), respectively.
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molecule has stronger correlations (0.274 au) compared to the
equilibrium one (0.113 au). However, accompanied by a better
separation between clusters. Consequently, less dressing is
required for the stretched N2 to obtain an even larger amount
of correlation and achieve better accuracy. Hence, ClusterVQE only
slightly increases the size of the dressed Hamiltonian. In contrast,
the size of the Hamiltonian exceeds 100,000 Pauli words in iQCC
after 25 iterations. These results suggest that, even for strongly

correlated systems, our ClusterVQE reduces circuit complexity
without a significant increase in Hamiltonian size.

Noisy simulation and clustering on-the-fly
We next examine the dissociation curve of the LiH molecule in the
presence of noise to demonstrate ClusterVQE’s resilience to this
common feature of all NISQ architectures. Figure 5 shows the
dissociation curve of the LiH molecule calculated with different
algorithms. The energy values are averaged over 5 runs. As shown
by the curves, in the presence of noise, the dissociation curves
obtained from the VQE, qubit-ADAPT-VQE, iQCC, and ClusterVQE
methods are different from the exact solution. Since the VQE
algorithm requires more parameters and the deepest circuit, the
noise influence is the largest across the set, showing the strongest
deviation from the reference. For example, one layer of the
QUCCSD ansatz for the LiH (N2) molecule requires 15 (92)
parameters/entanglers. The qubit-ADAPT-VQE method, in con-
trast, is able to grow a compact ansatz with fewer parameters (the
number of parameters in qubit-ADAPT-VQE, ClusterVQE, and iQCC
is equal to the iteration number) and lower circuit depth as shown
in Table 1. Consequently, the influence of noise on qubit-ADAPT-
VQE is suppressed compared to VQE. On the other hand, the iQCC
algorithm uses a much shallower circuit depth. As a result, iQCC is
most immune to noise, and the corresponding dissociation curve
is the closest to the reference. Next is ClusterVQE which partially
dresses the Hamiltonian and grows the ansatz. The circuit depth of
ClusterVQE lies between that of iQCC and qubit-ADAPT-VQE as
shown by the comparison in Table 1. Consequently, the energy
error in the presence of noise is also in between that of the iQCC
and qubit-ADAPT-VQE methods.
We also compare the performance of the four algorithms with

different error rates. Supplementary Fig. 1(a) and (b) compare the
energy errors with respect to different single- and two-qubit error
rates, respectively. The single-qubit gates usually have much lower
error rates on real quantum devices. For example, the single- and
two-qubit gate error rates of the IBM-Yorktown63 device are
around ~10−3 and ~10−2, respectively. Consequently, the error of
single-qubit gates has a much smaller influence on the results. In
contrast, the results are significantly affected by the error of two-
qubit gates. In general, the error of ClusterVQE lies between that
of the qubit-ADAPT-VQE and iQCC methods on the noisy
simulator, as expected.
In the previous examples, the MI is calculated based on the

exact wavefunction (WF) for proof-of-principle. But, the exact WF
is not known before the VQE calculation. However, an approx-
imate calculation of MI provides a sufficient estimate of the
correlation between different qubits, as shown in the previous
DMRG-type selection of active space64 and our recent develop-
ment of the PermVQE algorithm41. The approximate MI can be
estimated on classical computers by using either MP2 or DMRG
(with small bond-dimension) methods. Here, we also demonstrate
that ClusterVQE even works with MI calculated on-the-fly. At each
iteration, the MI is updated and used for re-clustering the qubits.
As shown by the red dots in Fig. 1(a) and (c), the performance of
ClusterVQE on-the-fly is almost the same as that using the exact
MI. The clustering is suboptimal only for the first three iterations
and the dressed Hamiltonian has a slightly larger size as a result.
The composition of each cluster continues to change until a stable
clustering is found. These results illustrate that ClusterVQE also
works when clustering on-the-fly.

Simulation on a quantum computer and error mitigation
Finally, we implement ClusterVQE on an actual quantum backend.
The IBMQ-Bogota device with 5 qubits was chosen to simulate the
LiH molecule described by 10 qubits (orbital with the lowest
energy is assumed to be frozen). In order to run on IBMQ-Bogota,
we set the size of each cluster to be 5. Figure 6 shows the energies

Fig. 5 PES of LiH molecule in the presence of noise. a Dissociation
curves of LiH and (b) corresponding errors with exact diagonaliza-
tion (black), VQE (red), qubit-ADAPT-VQE (blue), iQCC (purple), and
ClusterVQE (green) methods on a noisy simulator. The custom noise
in Qiskit59 was used, where the error rates of single-qubit and two-
qubit gates are 0.001 and 0.005, respectively. The means and error
bars are calculated from 5 independent simulations.

Table 1. Circuit depth of each method with the QUCCSD ansatz. The
LiH and N2 molecules used in this table are in equilibrium
configurations. The intermolecular distance of ðH2Þ2 is 2 Å. The circuit
depths of VQE with 1 layer QUCCSD ansatz are 352, 1535, and 331 for
LiH, N2, and ðH2Þ2 , respectively.

Molecule Iteration Circuit depth

ADAPT-VQE iQCC ClusterVQE

LiH 2 41 18 41

4 73 16 58

6 103 12 69

8 117 8 83

10 152 18 118

N2 10 163 16 47

20 349 22 134

30 525 20 214

40 701 16 246

50 826 24 296

(H2)2 5 72 14 30

10 144 14 45
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as a function of ClusterVQE iteration without error mitigation. Due
to the large CNOT error rate, the energies go up in the first few
ClusterVQE iterations without error mitigation. The number of
entanglers encoded on the quantum circuits increases with the
number of iterations and introduces more errors.
The ClusterVQE performance on real quantum devices can be

further improved with recently developed error mitigation
techniques65,66. For proof-of-principle, we first perform ClusterVQE
on the noiseless simulator to generate 8 circuits of the first 8
iterations and run the circuits on the IBM quantum device (IBMQ-
Bogota). We perform the mitigation using Clifford data regression
(CDR)67 on the IBMQ-Bogota device as well. The CDR training set is
constructed using near-Clifford circuits with at most 1 non-Clifford
gate in each of 2 clusters. The training set contains 3–4 near-
Clifford circuits depending on the circuit of interest. The training
circuits are chosen by replacing non-Clifford gates with the closest
Clifford gates. The results are shown in Fig. 6 in which the blue
and red lines plot the raw results obtained from the IBM-Bogota
and mitigated results, respectively. We do not show mitigated
results for the first three iterations as CDR gives a perfect
correction for these circuits since they contain at most one non-
Clifford gate. Figure 6 shows that error mitigation reduces the
error by several orders of magnitude. Such simulations demon-
strate that the ClusterVQE method, combined with error mitiga-
tion, can readily achieve “chemical accuracy” on real quantum
devices. It should be noted that the term “chemical accuracy” used
throughout this manuscript refers to the relative accuracy
compared to the exact (FCI) solution of the given basis set, which
is not the true chemical accuracy. The rigorous chemical accuracy
can only be achieved by improving the theoretical complexity (HF,
CCSD, CCSDT, … , FCI, etc) and basis set size. However, increasing
the basis set size in quantum algorithms is not NISQ friendly,
significantly increasing the needed quantum resources. Alterna-
tively, by using a trans-correlated Hamiltonian, one can achieve
the accuracy at the cc-pVTZ basis even with a minimal basis set62.

Complexity and scalability
Even though ClusterVQE reduces the circuit complexity (circuit
depth and number of qubits), the computational complexity is
increased due to the dressing. As shown in the previous section,
ClusterVQE has almost the same performance as qubit-ADAPT-
VQE in terms of energy errors. But, more Pauli words are measured
due to the dressing. The computational scaling of ClusterVQE is
dependent on the number of dressing operators. That being said,
the scaling is determined by the amount of inter-cluster
correlation. Even though the scaling of computing the dressed
Hamiltonian is exponential against the number of dressing

operators68, the scaling of ClusterVQE against iterations is not
exponential in general since not every entangler is used to dress
the Hamiltonian. For the best cases, only a limited number of
entanglers is used to dress the Hamiltonian (LiH and ðH2Þ2
complex with a large intermolecular distance in section “The
ClusterVQE algorithm” for example). Such a situation can be
intuitively expected in molecular aggregate systems, where the
intermolecular coupling is usually smaller than the intramolecular
correlation. For the worse cases (usually in strongly correlated
systems in which qubit clustering is not optimal), the scaling of
ClusterVQE may be exponential if a larger number of entanglers
are used to dress the Hamiltonian (ðH2Þ2 complex with large
intermolecular distance 2 Å for example). However, even in
strongly correlated molecules, the scaling of different geometries
can be different. For example, ClusterVQE simulation of N2 at
equilibrium with 12-qubits ends up with a large number of Pauli
words (Fig. 4(b)). However, the simulation of N2 with a stretched
bond has much better scaling (Fig. 4(d)) even though the
stretched configuration has a stronger correlation. That being
said, the bottleneck of our approach relies on whether the inter-
cluster MI can be efficiently minimized. In summary, ClusterVQE
does not introduce exponential scaling for general cases and the
complexity of ClusterVQE increases with increasing inter-cluster
correlations.

Discussion
We have developed a ClusterVQE algorithm to reduce quantum
circuit complexity, including both the number of qubits and circuit
depth. Our algorithm groups qubits into clusters based on the
maximal correlation between them and further takes into account
the residual entanglement between clusters in a “dressed”
Hamiltonian. ClusterVQE naturally implements the benefits of
the previously developed PermVQE algorithm, which significantly
reduces the number of controlled-NOT gates to connect strongly
correlated qubits41. The entanglers that couple different clusters
are further used to dress the Hamiltonian and remove the
entanglement between different clusters. Consequently, the
Hamiltonian can be decomposed as a tensor product of each
cluster. Each cluster can then be measured separately with a
smaller number of qubits and shallower circuit depth. Therefore,
ClusterVQE is a particularly promising algorithmic development
for quantum chemistry applications, where it is able to reduce the
quantum hardware requirements significantly. Moreover, our
algorithm has the flexibility of reducing qubits to any number at
the expense of additional computational costs on classical
computers. Since fewer entanglers are encoded on quantum
circuits, ClusterVQE is more robust to noise than qubit-ADAPT-VQE,

Fig. 6 Simulation of the LiH molecule (10 qubits) on the IBMQ-Bogota quantum device (5 qubits) with (red) and without (blue) error
mitigation and their comparison to the exact solution (black). We do not show mitigated results for the first three iterations as Clifford data
regression (CDR) gives perfect correction for these circuits since they contain at most one non-Clifford gate. The error rate of the CNOT gate is
between 1.06 × 10−2 ~ 2.02 × 10−2 and 1.62 × 10−2 on average at runtime.
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being one of the most circuit-efficient VQE algorithms, which is
verified by our numerical experiments on both the noisy simulator
and real quantum platforms. Since the correlation between
different clusters is minimized, only a few operators are used to
dress the Hamiltonian. Consequently, the Hamiltonian size does
not increase significantly compared to that of the iQCC method.
Finally, it should be noted that cluster VQE uses a newly

proposed gradient measurement method for VQE without using
an ancillary qubit. The analytical gradient can significantly improve
the performance of ClusterVQE in noisy environments. Simulation
of the LiH molecule on a noisy quantum simulator showed that
the energy error is smaller than that of the qubit-ADAPT-VQE
method due to the shallower circuit depth. A groundbreaking
example of the exact error-corrected LiH molecule simulation
described by 10 qubits on the 5-qubits IBMQ-Bogota quantum
computer with ClusterVQE is demonstrated. Results further
demonstrate the validity and advantage of the ClusterVQE
algorithm. We believe the algorithm developed in this work can
pave the way toward the adaptation of molecular quantum
chemistry simulation on NISQ devices. It should be mentioned
that since the size of the qubit Hamiltonian increases with the
number of operators used to dress the Hamiltonian, it increases
both computational costs on classical computers and measure-
ments on quantum computers. Recently developed measurement
reduction techniques69–75 are likely a path forward to further
reduce the simulation cost on quantum devices.

METHODS
Mutual information based clustering of qubits
The first essential step of ClusterVQE is to split the qubits into different
clusters and minimize the correlations between different clusters. With this
aim, an entanglement map based on the mutual information (MI) that
reflects the electronic correlations among all pairs of qubits is calculated41.
Previous results obtained for the orbital ordering problem in the Density
Matrix Renormalization Group (DMRG) method in classical quantum
chemistry calculations57 showed that the MI is a reliable parameter to
quantify the correlation between two quantum particles. Our previous
work also demonstrated that an approximate MI is sufficient for the qubit
re-arrangement41 for the reduction of circuit depth. The MI has also been
used to construct a compact entangler pool for ADAPT-VQE76. According
to quantum information theory, the MI between qubits i and j is defined as
follows57:

Iij ¼ 1
2
ðSi þ Sj � SijÞð1� δijÞ; (1)

where Si and Sij are the single- and two-qubit Von Neumann entropies,
respectively, and δij is the Kronecker delta. Si and Sij are obtained from the
corresponding one- and two-body density matrix41.
Once the MI is obtained, it can be used to cluster the qubits into

different groups by minimizing the MI between different clusters which
is defined as the summation of MIs between inter-cluster qubits. The
qubit clustering can be achieved by using a classical graph partitioning
method, such as the graph partition function of the Metis library77

(Supplementary Section I(A)). Alternatively, this can be mapped into a
quadratic unconstrained binary optimization (QUBO) problem and
solved on a quantum annealer by either the MI-based clustering
method (details are given in Supplementary Section I(B)) or the quantum
community detection method (QCD)78 (details are given in Supplemen-
tary Section I(C)). Problems with up to 64 variables or nodes can be
solved directly on the D-Wave 2000Q quantum annealer. Larger sizes
require a quantum-classical approach using qbsolv79 or alternative
solvers80 + D-Wave. We have chosen to use quantum graph partition-
ing/clustering methods since they produce comparable results to
classical methods81,82. Classical partitioning/clustering methods could
also be used as an alternative.

VQE, qubit-ADAPT-VQE, and iQCC algorithms
Within the VQE algorithm, a parameterized ansatz Φj i ¼ ÛðθÞ Φrj i is
suggested and encoded on the quantum circuit, where Φrj i is the

reference state. In this work, the mean-field Hartree-Fock (HF) state is used
as a reference. The unitary operator ÛðθÞ introduces the correlations
between qubits. Since current quantum gates can only operate on a few
qubits at a time, ÛðθÞ is decomposed as a tensor product of many unitary
operators, denoted as entanglers, with each entangler acting on a few
qubits, i.e., ÛðθÞ ¼ QD

j Ûj where Ûj ¼ eiθj Âj are the entanglers and D is the
number of entanglers in the ansatz. In the widely used UCCSD ansatz, the
fÂjg can be readily obtained by mapping the single/double Fermionic
excitation operators into qubit-space as shown in Supplementary Section
II. With the ansatz, the ground-state (GS) energy of a given Hamiltonian can
be obtained by imposing the variational principle within the VQE
algorithm,

EGS ¼ min
θ

Φrh jÛyðθÞĤÛðθÞ Φrj i � min
θ

f ðθÞ; (2)

where Ĥ ¼ P
kαk P̂k qubit form of the electronic Hamiltonian, which is

obtained by one of the fermion-to-qubit transformations. αk are the
coefficients and P̂k are the Pauli words. Hence, the expectation value (or
cost function) in Eq. (2) is further decomposed as

f ðθÞ ¼
X
k

αk Φrh jÛyðθÞP̂K ÛðθÞ Φrj i �
X
k

αk f kðθÞ (3)

and each term (fk(θ)) is measured on a quantum circuit.
However, the contribution of each entangler to the GS energy is

different. Thus, the UCCSD ansatz can be made even more compact by the
adaptive construction42,43 in the qubit-ADAPT-VQE, at the cost of more
VQE calculations. At the n-th iteration of qubit-ADAPT-VQE, the ADAPT
ansatz is

ΦADAPT
n ðθÞ�� � ¼

Yn
j¼1

eiθj P̂j Φrj i: (4)

Where the operators (P̂j) are selected from an operator pool fÂjg. Within
the qubit-ADAPT-VQE algorithm, the sequence of operators is selected
based on their contributions to the energy weighted by the gradients with
respect to the corresponding parameters42,

∂E
∂θj

¼ ΦADAPTðθÞ� �� Ĥ; P̂j
� �

ΦADAPTðθÞ�� �
: (5)

The gradients can be readily measured on quantum computers. Once the
gradients of all operators are measured, the operator with the largest
gradient (∂E

∂θj
) is selected into the ansatz and the ansatz keeps growing with

each iteration until convergence.
Because Φrh jÛyðθÞĤÛðθÞ Φrj i ¼ Φrh jĤd Φrj i where Ĥd ¼ Û

yðθÞĤÛðθÞ, the
operator can be folded into a dressed Hamiltonian. Thus, instead of
growing the ansatz, the iQCC algorithm grows the Hamiltonian68. After
each iteration, the operators and corresponding parameters are used to
dress the Hamiltonian,

Ĥj ¼ e�iθj P̂j Ĥj�1e
iθj P̂j : (6)

where Ĥj is the dressed Hamiltonian of the j-th iteration.

The ClusterVQE algorithm
According to the qubit clustering introduced in Sec. 3.1, the entanglers
used in the ansatz can be grouped into different sets of intracluster and
intercluster entanglers,

ÛðθÞ ¼ fÛc1 ; � � � ; ÛcM ; Ûc12 ; � � � ; ÛcM�1;Mg (7)

where M is the number of clusters. In this way, the ordering of entanglers
in ÛðθÞ is changed and the corresponding parameters can be different as
well. The entangler set fÛcig only acts on the corresponding cluster i, and
fÛcijg represents the entanglers that couple clusters i and j. Consequently,
the cost function in Eq. (2) can be rewritten as

f ðθÞ ¼ Φrh jQ
i
Û
y
ci

Q
i≠j

Û
y
cij ĤÛcij

" #
Ûci Φrj i

¼ Φrh jQ
i
Û
y
ci ĤdÛci Φrj i

(8)

where Ĥd � Q
i≠j Û

y
cij ĤÛcij is the dressed Hamiltonian. Because the Ĥd can

be represented in terms of Pauli words where each Pauli word can be
trivially rewritten as the tensor product of different clusters, i.e., Ĥd ¼P

kαk P̂k ¼
P

kαk
Q

i P̂kðciÞ and the initial state can be decomposed as
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∏iΦr(ci). The energy in Eq. (8) can be further rewritten as

EGS ¼ min
θ

X
k

αk
Y
i

ΦrðciÞh jÛy
ci P̂kðciÞÛci ΦrðciÞj i

" #
: (9)

Here each expectation value ΦrðciÞh jÛy
ci P̂kðciÞÛci ΦrðciÞj i only involves the

qubits in the cluster i. Hence, the energy of a larger problem can be
measured on M smaller quantum circuits after Hamiltonian dressing, as
shown by the schematic diagram in Fig. 7. In practice, like the qubit-
ADAPT-VQE algorithm, ClusterVQE adaptively grows the ansatz in Eq. (8).
The ansatz used in the jth iteration is denoted as Û j . However, in contrast to
the growing ansatz in qubit-ADAPT-VQE42 and growing Hamiltonian in
iQCC44, the ansatz in ClusterVQE is decomposed onto smaller quantum
circuits, and only the entanglers between different clusters are used to
dress the Hamiltonian. Consequently, the iterative construction breaks the
original VQE algorithm with deeper and wider quantum circuits into a
series of quantum circuits with a shallower depth and a smaller number of
qubits, as illustrated by Fig. 7.
The entangler Ûk chosen in the ansatz Û j for the jth iteration is

determined by its contribution to the energy weighted by the gradient
with respect to the parameter, i.e., the Ûk terms with largest gradients ∂E

∂θk
are selected42, where the gradient is defined as

∂E
∂θk

¼ ∂
∂θk

Φrh jÛy
kðθkÞĤd;j�1ÛkðθkÞ Φrj ijθk¼0

¼ i Φrh jÛy
kðθkÞ½Ĥd;j�1; P̂k �ÛkðθkÞ Φrj i:

(10)

Where Ĥd;j�1 is the dressed Hamiltonian of the j− 1 iteration. It should be
noted that Ĥd;j may be the same as the Ĥd;j�1 if the selected entangler of

the jth iteration is not used to dress the Hamiltonian. Since the
measurement of each gradient term is independent, all the gradients
can be measured in parallel with several uncoupled quantum computers42.
The flowchart of the ClusterVQE scheme is presented in Fig. 8. In the first

step, the qubit Hamiltonian and operator pool are prepared: (a) Provided
classical mean-field calculation of the molecule, map the second quantized
Hamiltonian into its qubit counterpart by using either Jordan-Wigner
(JW)60, Bravyi-Kitaev (BK)83, or parity48,84 encoding. (b) Generate the UCCSD
excitation operators and map them into Pauli words. Here only Pauli words
with the different flip indices (Supplementary Section II) are chosen and
added to the excitation pool fÂig. In addition, clustering of qubits is
performed if MI is provided. Otherwise, the qubits in the first iteration are
simply grouped according to their spin index. If the largest gradient in the
second step is smaller than the convergence criteria ϵ and the energy
minimization criteria are satisfied, the algorithm exits from the iterative
loop. The fifth step is only triggered if clustering on-the-fly is desired.
Since some of the entanglers in Û j are used to dress the Hamiltonian,

the circuit depth is smaller than that of qubit-ADAPT-VQE as shown by
Table 1. As a result, ClusterVQE is more robust to noise compared to qubit-
ADAPT-VQE, as shown and discussed later, making the ClusterVQE
algorithm more suitable for NISQ devices than qubit-ADAPT-VQE. Besides,
because the clustering minimizes the entanglement between different
clusters, the number of dressing entanglers is much smaller than that of
iQCC. Consequently, ClusterVQE can balance the computational costs
between the Quantum Processing Unit (QPU) and CPU. The exponential
scaling in the growing of the Hamiltonian in iQCC is avoided. Most
importantly, the circuit depth/width is further reduced compared to qubit-
ADAPT-VQE by splitting the measurement into cluster-wise measurements
(Eq. (8)). Thus, compared to previous approaches, ClusterVQE reduces the
circuit complexity (depth and width) and can solve larger problems on
smaller quantum circuits.
It should be noted that even though the ClusterVQE method can reduce

the number of qubits and ansatz complexity (depth and width) by
distributing the measurements on smaller quantum circuits, the Hamilto-
nian size increases exponentially with the number of dressing entanglers.
Consequently, the number of measurements is increased according to Eq.
(3). Future work will consider measurement reduction techniques69–75 to
reduce the number of measurements required. Among the many
measurement reduction techniques, the classical shadow approach is a
potential candidate for reducing the number of measurements for
ClusterVQE72,85.

Analytical gradients for VQE optimization
In order to improve the algorithm performance in the presence of noise, an
analytical gradient is essential for classical optimization. It should be noted
that the gradient for VQE optimization is different from the gradients in Eq.
(10) which are used to choose entanglers for each iteration. Ref. 86

suggests calculation of the analytical gradients by performing a measure-
ment on an ancillary qubit35,87. An analytical approach has been developed
in this work for the analytical gradient measurements but without
introducing an ancillary qubit. The gradient of energy with respect to
the variational parameter reads as follows.

∂E
∂θi

¼ 2Im Φrh jÛy
ĤP̂

eff
i Û Φrj i

n o
(11)

where P̂
eff
i is the dressed Pauli word as shown in Supplementary Section

III. Therefore, the energy gradient can be measured in the same way
as the energy measurement by replacing Ĥ with ĤP̂

eff
j and no ancillary

qubit is required. Moreover, a related approach without using an
ancillary qubit was recently proposed as well within the unitary block
optimization scheme88. On a noiseless simulator, VQE calculations with
numerical gradients or analytical gradients give the same results.
However, analytical gradients are much more stable on noisy simulators
and quantum computers.
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CODE AVAILABILITY
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Fig. 8 Flowchart of the ClusterVQE algorithm. The fifth step in the
red-dashed box is skipped if MI is provided.

Fig. 7 Finding the lowest eigenvalue of a given qubit Hamiltonian
Ĥ ¼ P

JP̂J with VQE and ClusterVQE, where 2N is the number of
qubits. VQE uses a quantum circuit defined on 2N qubits. In
contrast, ClusterVQE splits the original 2N-qubit circuit into 2
N-qubit circuits by removing the entanglement between them.
Here, shorter circuits are achieved at the expense of a dressed
Hamiltonian Ĥd .
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