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Demonstration of optimal non-projective measurement of
binary coherent states with photon counting
M. T. DiMario1,2 and F. E. Becerra 1✉

Quantum state discrimination is a central problem in quantum measurement theory, with applications spanning from quantum
communication to computation. Typical measurement paradigms for state discrimination involve a minimum probability of error or
unambiguous discrimination with a minimum probability of inconclusive results. Alternatively, an optimal inconclusive
measurement, a non-projective measurement, achieves minimal error for a given inconclusive probability. This more general
measurement encompasses the standard measurement paradigms for state discrimination and provides a much more powerful
tool for quantum information and communication. Here, we experimentally demonstrate the optimal inconclusive measurement
for the discrimination of binary coherent states using linear optics and single-photon detection. Our demonstration uses coherent
displacement operations based on interference, single-photon detection, and fast feedback to prepare the optimal feedback policy
for the optimal non-projective quantum measurement with high fidelity. This generalized measurement allows us to transition
among standard measurement paradigms in an optimal way from minimum error to unambiguous measurements for binary
coherent states. As a particular case, we use this general measurement to implement the optimal minimum error measurement for
phase-coherent states, which is the optimal modulation for communications under the average power constraint. Moreover, we
propose a hybrid measurement that leverages the binary optimal inconclusive measurement in conjunction with sequential,
unambiguous state elimination to realize higher dimensional inconclusive measurements of coherent states.
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INTRODUCTION
Quantum measurement theory provides a fundamental under-
standing of the limits on the achievable sensitivity for distinguish-
ing quantum states1–3. Physically realizable strategies that attain,
or even approach, the ultimate sensitivity limits for distinguishing
nonorthogonal coherent states have a wide range of applications
in optical communication4–9, cryptography10–17, and quantum
information processing18–20. A central problem in quantum
measurement theory and quantum information processing is the
discrimination between two quantum states ψ1j i and ψ2j i with a
certain optimal measurement given an optimality criterion,
depending on the specific application2,21,22.
Two fundamental measurement paradigms for quantum state

discrimination involve either minimum error or unambiguous
state discrimination. Minimum-error state discrimination (MESD)
aims to achieve minimal probability of error PE23–34. The Helstrom
bound24 gives the ultimate limit for PE, which is achieved by
projective measurements onto complex superpositions of quan-
tum states. Notably, the optimal MESD measurement for binary
coherent states can be realized with linear optics, single-photon
detection, and fast feedback35,36. In contrast, unambiguous state
discrimination (USD) allows for perfect discrimination with PE= 0,
but requires a non-zero probability of inconclusive results PI ≠ 0.
Such a non-projective measurement is described by a positive
operator-valued measure (POVM) with three elements2,37,38, and
aims to achieve the smallest possible PI39–47. The realization of
optimal USD of binary coherent states does not require feed-
back12,48,49, allowing for simpler implementations45,50 compared
to optimal MESD.
While optimal projective measurements exist for certain binary

discrimination tasks2,24,51,52, quantum measurement theory allows

for a broader class of generalized quantum measurements that are
not projective. These generalized measurements provide a more
powerful tool for quantum information processing and commu-
nications2. Among these general quantum measurements, the
optimal inconclusive measurement achieves the smallest possible
error probability for a fixed probability of inconclusive results37,53.
This measurement is a non-projective measurement, and thus
described by a non-projective POVM, that encompasses MESD and
USD measurement paradigms. Moreover, non-projective quantum
measurements allow for more exotic discrimination tasks such as
quantum state elimination54, state comparison55–57, and discrimi-
nation with a fixed error margin58. Furthermore, understanding
optimal inconclusive measurements for binary states may provide
a path for realizing arbitrary non-projective POVMs in a two-
dimensional Hilbert space59,60.
Theoretical work on quantum measurement theory has shown

that it is possible to realize an optimal inconclusive measurement
for a broad class of quantum states based on local operations and
classical communications58,61,62. However, the corresponding
measurement operators for the discrimination of optical coherent
states do not necessarily have a feasible physical realization. While
suboptimal inconclusive measurements of coherent states can be
realized based on linear optics and single-photon detection63,
their performance falls short of the performance of the optimal
inconclusive measurement. Recent work in ref. 64 proposed a
physical realization of a strategy for the optimal inconclusive
measurement of binary coherent states. It was shown that such a
non-projective measurement can be realized using displacement
operations, single-photon detection, and feedback64, which are
the same physical elements needed for implementing arbitrary
binary projective measurements52,65.
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In this work, we experimentally demonstrate the optimal
inconclusive measurement for binary coherent states64. The
measurement splits the energy of the input state into two
temporal modes. It performs a MESD measurement in the first
mode providing conclusive results with a certain probability of
error, and an optimal inconclusive measurement in the single-
state domain in the second mode determining whether the
measurement result is inconclusive. Our demonstration uses low
noise, high bandwidth real-time feedback conditioned on single-
photon detections to prepare the optimal displacement opera-
tions required for the optimal inconclusive measurement. We
further use this generalized optimal measurement to realize the
optimal MESD for phase-coherent states, which is the optimal
modulation for optical communications under the average power
constraint, thus demonstrating the optimal quantum receiver for
coherent optical communications. Lastly, we show that the binary
optimal inconclusive measurement enables the realization of
inconclusive discrimination of three coherent states when used
together with measurements for unambiguous state elimination
based on hypothesis testing. This proposed method can in
principle be extended to high dimensional inconclusive measure-
ment strategies of coherent states.

RESULTS
Optimal inconclusive measurement
The optimal inconclusive measurement is a non-projective
quantum measurement that encompasses the MESD and USD
paradigms and optimizes the tradeoff between errors and
inconclusive results37,53. By construction, the optimal inconclusive
measurement achieves the minimal error probability PE for a
specified inconclusive probability PI2,64. A feasible realization of
the POVM for the optimal inconclusive measurement fΠ̂1; Π̂2; Π̂?g
for binary coherent states was recently proposed in ref. 64.
Notably, this optimal non-projective measurement can in principle
be realized by a generalization of the optimal receiver for MESD,
called the Dolinar receiver. This optimal MESD receiver is based on
displacement operations in phase space implemented by inter-
fering the input state with a local oscillator (LO) field, single-
photon detection, and feedback with an optimal feedback policy.
The displacement has a magnitude given by an optimal waveform
and a phase conditioned to photon detection35,36,66.
Figure 1a shows the concept of the optimal inconclusive

measurement. The input state ±αj i and strong LO field interfere

on a high transmittance beam splitter to implement a displace-
ment operation D̂ðuðtÞÞ. The receiver implements the optimal
displacement waveform u(t), where the phase of the LO switches
between 0 and π based on the photon detection outcomes from
the single-photon detector (SPD) during the measurement time. In
the proposal for the optimal inconclusive discrimination strat-
egy64, the generalized receiver performs optimal measurements in
two temporal modes during the measuring time 0 ≤ t ≤ 1 using
displacement operations, single-photon detection, and feedback.
In the first temporal mode (0 ≤ t ≤ t1), the receiver performs an
optimal MESD measurement to discriminate between f ±αj ig with
minimal error using the optimal displacement waveform35,36,64,66.
In the second temporal mode (t1 < t ≤ 1), the receiver performs an
optimal inconclusive measurement in the so-called single-state
domain, where the measurement becomes a projective measure-
ment such that the POVM element for the least probable state is
zero, e.g., Π̂2 ¼ 058,64. Without loss of generality, the most
probable state after the first mode is αj i, and the non-zero POVM
elements are Π̂1 and Π̂?. Therefore, the receiver in the second
temporal mode attempts to determine whether the measurement
result is inconclusive, i.e., the receiver realizes a MESD measure-
ment between the correct and inconclusive outcomes.
Reference 64 shows that this projective measurement in the
second temporal mode (single-state domain) can be realized by a
Dolinar-like receiver with a different optimal displacement wave-
form, which is the key element that we leverage for demonstrat-
ing the optimal inconclusive measurement. The total
displacement waveform u(t) that implements the optimal incon-
clusive measurement is given by64:

uðtÞ ¼
ð�1ÞN1ðtÞαffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�4pð1�pÞK2t

p 0 � t � t1

ð�1ÞN2ðtÞþN0 αffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�4vð1�vÞK2ðt�t1Þ

p t1 < t � 1:

8><
>: (1)

Where N1(t) and N2(t) are the total number of photons detected up
to time t for the first and second temporal mode, respectively, and
N0∈ {0, 1} based on ∣α∣2, PI, and p64. The total optimal waveform
u(t) is comprised of u1(t) and u2(t), each of which are optimal for
the two temporal modes (see “Methods” section for details). The
magnitude of u(t) is predetermined based on the values of ∣α∣2, PI,
and p, but the sign of u(t) (phase of the LO) adaptively switches
between positive and negative (LO phase of 0 and π) each photon
detection due to the ð�1ÞN1ðtÞ and ð�1ÞN2ðtÞþN0 terms.
The top panel of Fig. 1b shows the displacement magnitude

∣u(t)∣ for the optimal inconclusive strategy with inconclusive
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Fig. 1 Implementation of the optimal inconclusive measurement. a Schematic of the generalized receiver for the optimal inconclusive
measurement. The input states are displaced in phase space using an optimal waveform u(t) for the LO field and followed by a single-photon
detector (SPD) and feedback operations. b Optimal waveform magnitudes ∣u(t)∣ for different mean photon numbers |α|2 (top panel). The
bottom panel shows an example of the waveform u(t) for a particular measurement record where the LO phase switches between 0 and π
every photon detection (Photon Detections, middle panel). The circles along the x-axis show the current hypothesis for the input state as the
measurement progresses. c Error probability PE for the optimal inconclusive measurement as a function of the specified probability of
inconclusive results PI for ∣α∣2= 0.2, 0.4, and 0.6. The colored circles along the y-axis (PI= 0) correspond to the smallest possible PE in the
paradigm of MESD, and the colored squares along the x-axis (PE= 0) correspond to the smallest possible PI in the paradigm of USD.
d Experimental setup used for demonstrating the optimal inconclusive measurements of binary coherent states.
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probability PI= 0.19 for ∣α∣2= 0.2, 0.4, and 0.6. The discrete jumps
in ∣u(t)∣ for each ∣α∣2 correspond to the time t1 when the receiver
switches between the measurements two temporal modes. The
receiver implements a minimum-error measurement with a
Dolinar receiver during 0 ≤ t ≤ t1 with u1(t) between ±αj i. The
receiver then implements the optimal inconclusive measurement
in the single-state domain fΠ̂1; Π̂?g with a Dolinar-like receiver
during t1 < t ≤ 1 with u2(t). The final outcome of the measurement
is either an inconclusive result with probability PI, a correct
discrimination result with probability PC, or an error with
probability PE= 1− PC− PI64. The bottom panel of Fig. 1b shows
the displacement amplitude u(t) for an example measurement
record. The provisional hypothesis (circles) and the phase of the
waveform change each time a photon is detected. The red dashed
line (t1 ≈ 0.70) shows where the receiver switches from MESD of
the two input states in the first temporal mode, to MESD between
the more likely state given the current detection record and the
inconclusive outcome in the second temporal mode.
Figure 1c shows the resulting probabilities {PI, PE} of the optimal

inconclusive measurement for equiprobable coherent states
f ±αj ig with ∣α∣2 = 0.2, 0.4, and 0.6, in blue, orange, and yellow,
respectively. The colored circles along the y-axis (PI= 0) corre-
spond to the smallest possible PE in the paradigm of MESD
(Helstrom Bound), and the colored squares along the x-axis
(PE= 0) correspond to the smallest possible PI in the paradigm of
USD (sometimes referred to as the IDP bound39–41). Thus, the
optimal inconclusive measurement is the generalization of MESD
and USD and interpolates between these measurement para-
digms in an optimal way using more general non-projective
measurements. In general, the optimal inconclusive measurement
for the discrimination of two general quantum states f ψ1j i; ψ2j ig
is represented by three POVM elements fΠ̂1; Π̂2; Π̂?g where a
positive outcome of fΠ̂1;2g indicates that the state ψ1;2

�� �
is

present, and Π̂? ¼ Î � Π̂1 � Π̂2 corresponds to an inconclusive
result. Optimality indicates that this non-projective measurement
achieves the minimum error for a fixed probability of inconclusive
outcomes.
While the proposed implementation of this non-projective

quantum measurement in ref. 64 is in principle feasible, its
demonstration requires a high degree of control for the
preparation of optimal waveforms with high fidelity, and the
ability to realize feedback measurements with high bandwidth
and low noise (see Supplementary Note I). Moreover, the
validation of optimal performance requires absolute power
measurements at the single-photon level. In our experimental
demonstration we address the issues to satisfy these stringent
requirements, which allows us to demonstrate experimentally this
complex quantum measurement with high fidelity. Figure 1d
shows our experimental setup for the demonstration of the
optimal inconclusive measurement for binary coherent states. We
use an interferometric setup to generate the input states and local
oscillator field, a single-photon detector (SPD), and an FPGA
(Altera Cyclone IV, 50 MHz base clock) connected to a digital-to-
analog converter (DAC) to implement the required optimal
displacement waveform u(t) for the optimal inconclusive mea-
surement using fiber-coupled amplitude (AM) and phase (PM)
modulators (see “Experimental setup details”, “FPGA implementa-
tion”, and “Optical modulators” in the Methods section for details).
We actively stabilize our interferometer using a second 780 nm
laser and a feedback loop to maintain a well-defined relative
phase (see “FPGA implementation” in the Methods section for
details). Our implementation achieves an overall detection
efficiency η= 0.72(1) (η= ηSPDηsys where ηSPD= 0.82(1) is the
SPD efficiency and ηsys= 0.88(1) is the system transmittance),
interference visibility ξ= 0.998(1), and dark counts ν= 0.03(1) per
pulse. The experiment operates at a 4 kHz repetition rate,
alternating between experimental trials (1024 time bins, 160 ns
each) and interferometer stabilization with a ≈66% duty cycle. We

have also realized numerical investigations of the effects of
realistic imperfections described in Supplementary Note I. Based
on these studies, we observe that reduced detection efficiency
degrades the achievable performance for all errors and incon-
clusive probabilities. Reduced interference visibility and increased
dark counts mainly degrade the performance of strategies where
the desired PE or PI are small, i.e., near the MESD and USD regimes.

Demonstration of the optimal inconclusive measurement
We implement the optimal inconclusive measurement for
equiprobable coherent states. In our experimental demonstration,
we obtain the time evolution of the error PexpE ðtÞ, correct PexpC ðtÞ,
and inconclusive PexpI ðtÞ probabilities by reconstructing the results
in post-processing, and compare them to the expected prob-
abilities {PE(t), PC(t), PI(t)}64. The final inconclusive PexpI ðt ¼ 1Þ and
error PexpE ðt ¼ 1Þ probabilities for a given ∣α∣2 correspond to a
single realization of the optimal inconclusive measurement. Figure 2a
shows the experimental results for ∣α∣2= 0.2, 0.4, and 0.6 in blue,
orange, and yellow, respectively. The points show the experimental
data fPexpI ð1Þ; PexpE ð1Þg and the error bars represent one standard
deviation from five experimental runs of 5 × 104 independent
experiments each. The black lines show the theoretical expectation
from Monte-Carlo simulations of the experiment incorporating
experimental imperfections (See Supplementary Note IV). We note
that we obtain the expected performance of our demonstration by
directly simulating the experiment including experimental imperfec-
tions and other effects without requiring any fitting procedures. The
dashed gray lines show the ideal (η= 1) performance for each mean
photon number. The colored circles and squares on the y-axis and x-
axis show the optimal PE and PI for ideal MESD and USD, respectively,
for each ∣α∣2.
We observe that our demonstration of the optimal inconclusive

measurement with η= 0.72 for ∣α∣2= 0.2, 0.4, and 0.6 reaches
errors below the ideal Helstrom bound when PI⪆ 0.18. This shows
that a non-ideal implementation of the optimal inconclusive
measurement can surpass the ideal Helstrom bound at the
expense of having inconclusive results (We note that while the
Helstrom bound is the minimum discrimination error that can
be achieved by a deterministic measurement, this bound is not
the lowest error for a general quantum measurement that allows
for inconclusive results53. As such, the optimal inconclusive
measurement then allows for errors below the Helstrom bound
for PI ≠ 0, and achieves zero error at a rate of inconclusive results
given by the IDP bound39–41). The inset of Fig. 2a shows an
example of the evolution of PE(t) (blue), PC(t) (orange), and PI(t)
(yellow) as the measurement progresses for ∣α∣2= 0.2 and
PI ≈ 0.31. The solid lines show the theoretical expectation
including experimental imperfections and the points show the
experimental results for PexpE ðtÞ, PexpC ðtÞ, and PexpI ðtÞ every 50-time
bin steps. Note that the measurement switches from a MESD
measurement to an optimal inconclusive measurement in the
single-state domain at t1 ≈ 0.57.

Optimal MESD of binary phase states
The optimal inconclusive measurement generalizes MESD and
USD64, and can be used to demonstrate the optimal MESD
measurement, the Dolinar receiver35, by setting PI= 0. The
previous work36 demonstrated a Dolinar receiver for intensity-
modulated coherent states f 0j i; αj ig and achieved performance
below the shot noise limit after correcting for system losses and
detection efficiency. However, phase-encoded coherent states
f ±αj ig are the optimal modulation for binary coherent commu-
nications under the energy constraint. This is because this
alphabet has the smallest overlap, and therefore the highest
distinguishability, for a fixed average energy of the states48,67,68.
To this end, we use the optimal inconclusive measurement to
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demonstrate a Dolinar receiver for the phase-encoded binary
coherent states, and thus demonstrate the optimal quantum
receiver for coherent optical communications.
Figure 2b shows the experimental results (blue points) and the

expected error probability (solid black) for the optimal MESD
measurement, the Dolinar receiver, for phase-coherent states
together with the Helstrom (solid) and homodyne limits (dashed).
The Helstrom bound and the homodyne limits corrected to our
overall efficiency (η= 0.72) are included for reference. We observe
that our demonstration of the Dolinar receiver approaches the
corrected Helstrom bound and shows an excellent agreement
with the theoretical predictions (solid black line). We note that our
implementation of the optimal MESD measurement for BPSK
states with overall efficiency of η= 0.72 achieves PE= 0.18 for
∣α∣2= 0.2, which is below the ideal homodyne limit that
corresponds to the optimal Gaussian measurement for BPSK67.
This error rate is similar to the one achieved by a sub-optimal
receiver without feedback in ref. 27 using a high efficiency
(η= 0.99) superconducting detector resulting on an overall
system efficiency of η= 0.91. Thus, we conclude that the strategy
demonstrated here based on complex adaptive measurements
can potentially provide overall higher sensitivities than the sub-
optimal strategy under the same loss and realistic experimental
noise and imperfections. In principle, the optimal inconclusive
measurement also allows for the construction of the optimal USD
measurement where PE= 0. However, the experimental imperfec-
tions such as dark counts and non-ideal interference visibility
prevent the receiver from achieving PE= 0 (see Fig. 2). Never-
theless, the above framework allows for finding the optimal
waveform to implement this optimal measurement.

Higher dimensional inconclusive strategies
We investigate how to leverage the optimal inconclusive
measurement of binary coherent states to enable inconclusive
state discrimination of higher dimensional encodings. We propose
a hybrid measurement that utilizes binary optimal inconclusive
measurements in conjunction with unambiguous state elimina-
tion, which can realize such a non-projective inconclusive
measurement of ternary phase-shift keyed (TPSK) states

f αj i; αei2π=3
�� �

; αei4π=3
�� �g, and can be extended to higher dimen-

sions. This measurement first aims to eliminate all but two
possible input states via hypothesis testing, and then utilizes the
optimal inconclusive measurement in the remaining binary states.
Figure 3a shows the measurement operations conditioned to
single-photon detection, realized by the proposed high-
dimensional inconclusive measurement. The receiver realizes an
elimination measurement based on hypothesis testing (red region,
Fig. 3a-i) for the state αj i on a fraction f/3 of the total input state.
This state elimination measurement is based on a displacement
operation of αj i to the vacuum state 0j i and single-photon
detection, such that detection of a photon unambiguously
eliminates αj i as a possible input state. If a photon is detected
in the first stage (Stage 1), the receiver then performs an optimal
binary inconclusive measurement (blue region, Fig. 3a-i) to
optimally discriminate between αei2π=3

�� �
and αei4π=3

�� �
using the

remaining fraction 1− f/3 of the input energy. If no photons are
detected during the first stage, the receiver then realizes a state
elimination measurement for the input state αei2π=3

�� �
also using a

fraction f/3 of the total input power (Fig. 3a-ii) . Now if a photon is
detected in the second stage (Stage 2), an optimal inconclusive
measurement discriminates between the remaining two possible
input states using a fraction 1− 2f/3 of the input power, where
the factor of 2 comes from the first stage. If no photons are
detected in the second stage, then the receiver tests for the state
αei4π=3
�� �

in Stage 3, also using a fraction f/3 of the total input state
(Fig. 3a-iii). If a photon is detected, an optimal inconclusive
measurement discriminates between the remaining two states
now using a fraction 1− 3f/3 of the input power. If no photons are
detected in the third hypothesis test for unambiguous state
elimination, we define the measurement outcome to be
inconclusive.
Figure 3b shows the simulation results for the proposed

inconclusive measurement of TPSK states based on the optimal
inconclusive measurement for binary states for mean photon
numbers ∣α∣2= 0.2, 0.4, and 0.6. The x-axis corresponds to the
inconclusive probability and the y-axis corresponds to the
conditional error probability PE/(1− PI), i.e., the error probability
given that a conclusive outcome was obtained. The solid and
dashed lines show the proposed inconclusive measurement of
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Fig. 2 Experimental Results. a Experimental results for the optimal inconclusive measurement for ∣α∣2= 0.2, 0.4, and 0.6, in blue, orange, and
yellow, respectively. Each point corresponds to the measured values of fPexpI ð1Þ; PexpE ð1Þg and the error bars represent one standard deviation
from five sets of 5 × 104 individual experiments each. The solid lines show the expected results and the dashed gray lines show the ideal
performance for each ∣α∣2. The colored circles and squares on the y-axis and x-axis show the optimal PE and PI for ideal MESD and USD,
respectively. Inset (i): evolution of PexpE , PexpC , and PexpI for ∣α∣2= 0.2 and and PexpI =0.31. b Experimental results (blue points) of an optimal MESD
measurement, the Dolinar receiver, for phase coherent states f ± αj ig. The gray and red solid lines show the Helstrom bound for η= 1.0 and
η= 0.72, respectively, and the dashed lines show the corresponding error for a homodyne measurement.
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three coherent states with f= 0.66 and f= 0.90, respectively. The
dotted lines show the result PHetE =ð1� PHetI Þ for using ideal
heterodyne detection, where measurement outcomes with the
largest error probability are designated as inconclusive until the
desired inconclusive probability is achieved as in ref. 45. The
optimal limits for USD and MESD for three states are represented
with squares and circles in the x-axis (PE= 0) and y-axis (PI= 0),
respectively49,69.
The overall PI achieved by this strategy contains two contribu-

tions PI ¼ Pð1ÞI þ Pð2ÞI , where Pð1ÞI comes from the state elimination

stage, and Pð2ÞI from the binary optimal inconclusive measure-
ment. In the state elimination stage, the detection of vacuum
during all three hypothesis tests results in an inconclusive
outcome as each state is equally likely. This produces a lower

bound (Pð1ÞI ) on the attainable inconclusive probability PI
depending on the values of f and ∣α∣2. In the binary optimal
inconclusive measurement stage, the proposed measurement

defines a “target” inconclusive probability (Pð2ÞI ) which can be set
for any ∣α∣2 to achieve the desired overall PI of the strategy. We
observe that the proposed measurement with both values of the
parameter f, which parameterizes the unambiguous state
elimination stages, can outperform heterodyne detection. More-
over, we note that a smaller value of f= 0.66 achieves a smaller

error probability, but this also puts a limit on the smallest
attainable inconclusive probability of PI ≈ 0.76, 0.58, and 0.45 for
∣α∣2= 0.2, 0.4, and 0.6, respectively. On the other hand, a larger
value of f= 0.90 (dashed lines) allows for a smaller inconclusive
probability but at the cost of a larger error probability compared
to f= 0.66 (solid lines). This trade-off is due to the fact that a larger
value of f results in a smaller contribution to PI from the
inconclusive outcome during the state elimination stage (detect-
ing vacuum during all stages). However a larger value of f results
in a smaller fraction of the total input energy of the state for the
binary optimal inconclusive measurement, which results in a
larger error probability. Then, the optimal choice of energy
fraction f will depend on the particular application of this
proposed measurement. For example, if we are willing to tolerate
more inconclusive results PI to achieve a given small target error
threshold PE such as for communications with error detection,
correction, and erasures70, we should choose a small value of f.
The proposed inconclusive measurement for three states can be

extended to higher dimensions. Using this technique, an inconclusive
measurement ofM input coherent states can be realized through the
implementation of M− 1 hypothesis testing stages for unambiguous
state elimination45,49, followed by the binary optimal inconclusive
measurement. Given that the binary optimal inconclusive measure-

ment can always achieve PE= 0 for Pð2ÞI < 1, there is always a range of
error probabilities for which this strategy will outperform heterodyne
detection (note PHetE ¼ 0 only when PHetI ¼ 1), i.e., there is always an
error regime where PI < PHetI . Ideally, this performance is achieved at
the smallest possible value of PI, which will depend on the number of
possible states (See Supplementary Note III).
We note that the proposed measurement uses similar

techniques in the state elimination stage as the Bondurant
receiver for MESD of multiple states71, and the USD receiver based
on feedback and state elimination48. However, the proposed
strategy in here makes use of the optimal inconclusive measure-
ment of two states for allowing to transition between the
measurement paradigms of MESD and USD to realize an
optimized inconclusive measurement of multiple coherent states.
While the performance of the strategy for more states will degrade
due to the increased inconclusive probability in the state
elimination stage, we expect that this strategy will serve as the
basis for designing optimized inconclusive strategies in higher
dimensions. A possible example for inconclusive measurement
strategies could use hybrid measurement schemes combining
Gaussian measurements, such as homodyne, with photon
counting72,73. In these schemes, the Gaussian measurement can
eliminate a sub-set of the states, and photon counting would be
used for state elimination in a smaller sub-set of states followed by
the binary optimal inconclusive measurement.

DISCUSSION
Optimal inconclusive measurements are generalized quantum
measurements that encompass standard paradigms of state
discrimination including MESD and USD. These non-projective
measurements allow for diverse state discrimination tasks and
provide a more powerful tool for classical and quantum
information processing17,63. In optical communication, inconclu-
sive measurement results can be treated as an erasure channel,
and optimal inconclusive measurements can be leveraged to
increase the amount of information transfer by utilizing commu-
nication codes well suited for erasure channels70. These optimal
inconclusive measurements can also enable hybrid repeater
schemes where inconclusive measurements of coherent states
are used to entangle remote quantum memories74,75. Recent
advancements in quantum measurement theory showed that
such complex quantum measurements for binary coherent states
can be realized using single-photon detection and local
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Fig. 3 Inconclusive discrimination of the ternary phase-shift
keyed (TPSK) coherent states using the binary optimal incon-
clusive measurement. a The proposed inconclusive measurement
for TPSK states uses sequential unambiguous state elimination,
followed by the optimal binary inconclusive measurement (See
main text for details). b Conditional error probability PE/(1− PI) as a
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(orange), and 0.6 (yellow). We compare the proposed measurement
with the parameter f= 0.66 (solid) and f= 0.90 (dashed) to the
performance of ideal heterodyne detection (dotted). See text for
details.
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operations and classical communication in a two-mode measure-
ment64. This measurement strategy splits the energy of the input
state into two temporal modes. It performs a MESD measurement
of the input state in the first mode with a certain probability of
error, and an optimal inconclusive measurement in the single-
state domain in the second mode determining whether the
measurement result is inconclusive. The optimality of this
measurement makes it possible to achieve minimal error for a
given inconclusive probability. Moreover, such generalized quan-
tum measurements can be realized with Dolinar-like optimal
receivers for coherent states.
Here, we experimentally demonstrate the optimal inconclusive

measurement proposed in64. Our demonstration uses coherent
displacement operations, single-photon detection, and fast feedback
to implement these general non-projective quantum measurements
with high fidelity in a real system. We further use this measurement
to demonstrate the optimal MESD for phase-encoded binary
coherent states, which is the optimal modulation for optical
communications under the average power constraint. While our
proof of principle demonstration of the optimal inconclusive
measurement was realized at moderate measurement rates, future
implementations based on integrated photonics with high-
bandwidth optical modulation and processing76 within small
footprints, together with advancements in high-bandwidth inte-
grated nanowire detectors will allow for demonstrations at GHz
bandwidths. These results show that Dolinar-like receivers can be
used to perform a wide variety of measurements within a two-
dimensional Hilbert space with current technologies. Furthermore,
we show how the binary optimal inconclusive measurement can be
leveraged to perform inconclusive measurements in higher dimen-
sions with hybrid measurements using sequential unambiguous
state elimination of multiple states. Our work contributes to our
understanding of the fundamental and practical limits of measure-
ments based on single-photon detection, coherent displacement
operations, and feedback, and can further our understanding of
quantum measurement theory59. Moreover, these measurement
techniques can potentially allow for implementations of more
general non-projective measurements in two-dimensional spaces
using linear optics and single-photon detection.

METHODS
Optimal displacement waveform
The optimal inconclusive measurement fΠ̂1; Π̂2; Π̂?g for binary coherent
states can be realized with a generalized Dolinar receiver64. In this
modified strategy64, the generalized receiver performs optimal measure-
ments in two temporal modes during the measuring time 0 ≤ t ≤ 1. In the
first temporal mode, 0 ≤ t ≤ t1, the optimal inconclusive receiver performs
an optimal MESD measurement to discriminate between f ± αj ig with
minimal error using the optimal displacement waveform35,36,64,66:

u1ð0 � t � t1Þ ¼ ð�1ÞN1ðtÞαffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4pð1� pÞK2t

p ; (2)

Here K2 ¼ j �αjαh ij2 ¼ e�4jαj2 , p is the prior probability of the most likely
state, and N1(t) is the total number of detected photons in the first mode
up to time t ≤ t1, where N1(0)= 0. Note that during the first temporal mode
the phase of the LO displacement field (sign of u1(t)) switches between 0
and π each time a photon is detected, similar to the Dolinar receiver77.
During the measurement in the first temporal mode, the provisional
hypothesis for the input state at time t is αj i if N1(t) is even and �αj i if N1(t)
is odd. The provisional probabilities for the two input states after the first

temporal mode are fPð1ÞC ; 1� Pð1ÞC g with:

Pð1ÞC ¼ 1
2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� pð1� pÞe�4t1 jαj2

q� �
; (3)

which corresponds to the Helstrom bound for the coherent states
f ±

ffiffiffiffi
t1

p
αj ig. The optimal waveform u1(t) in Eq. (2) and the evolution of

the probability of correct detection PC(t) at t can be obtained using
Bayesian updating64,78,79 or optimal control66.

In the second temporal mode (t1 < t ≤ 1), the receiver performs an
optimal inconclusive measurement in the so-called single-state domain,
where PI, P

ð1Þ
C , and (1− t1)∣α∣2 are such that Π̂2 ¼ 058,64. Without loss of

generality, the most probable state is αj i, and the non-zero POVM
elements are Π̂1 and Π̂?. This optimal inconclusive projective measurement
in the single-state domain can be realized by a Dolinar-like receiver with
optimal displacement waveform64:

u2ðt1 < t � 1Þ ¼ ð�1ÞN2ðtÞþN0αffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4vð1� vÞK2t

p ; (4)

where p in Eq. (2) is replaced by the quantity v, which depends on PI, p, and
∣α∣2 64. N2(t) is the number of photons detected in the second mode with
N2(t1)= 0, and N0 determines the phase of the LO at t1: N0= 0 if v > 0.5 and
N0= 1 otherwise.
The total displacement waveform for the optimal inconclusive receiver is

thus a combination of u1(t) in Eq. (2) and u2(t) in Eq. (4) resulting on the
total optimal displacement in Eq. (1) in main text. This strategy therefore
implements a standard Dolinar receiver during the first mode 0 ≤ t ≤ t1, and
then a Dolinar-like receiver during t1 < t ≤ 1 assuming the input states at
t= t1 have prior probabilities {v, 1− v}64.

Experimental setup details
In our experimental demonstration, optical pulses are generated from a
Helium-Neon laser and a pulsed acousto-optic modulator (AOM), and then
split into the signal arm (upper) and LO arm (lower), as shown in Fig. 1d.
The input states are prepared with an attenuator (Att.) and a phase
modulator (PM). The LO field is prepared by a PM with a multiplexer (MUX),
and an amplitude modulator (AM) with a digital-to-analog converter (DAC).
The input state and the LO field interfere on a 99/1 beam splitter (BS) to
implement the optimal displacement waveforms D̂ðuðtÞÞ conditioned on
photon detection events using a single-photon detector (SPD). A field
programmable gate array (FPGA) stores the magnitude of the optimal
waveform ∣u(t)∣ in Eq. (1) in memory, prepares the amplitude and phase of
the LO conditioned on N1(t), N2(t), and N0, and implements the strategy for
the optimal inconclusive measurement. We discretize time t into 1024 time
bins of 160 ns each where a photon can be detected to approximate a
continuous measurement. Our implementation achieves a feedback
bandwidth of about 6 MHz, which is limited by the APD output latency,
electronic bandwidth of controllers, switches and FPGA, accounting for
about 50 ns and optical delays in the interferometric setup (100 ns). The
FPGA processes and stores the photon detections during these time bins
and sends the detection histories to a computer. We reconstruct the
measurement probabilities in post-processing. The optimal inconclusive
measurement requires very large values of the ratio between mean photon
numbers of the displacement field and the input state, R= ∣u(t)∣2/∣α∣2.
However, experimentally there is a maximum ratio R that can be reliably
implemented. In our demonstration, we set the maximum of this ratio to
R= 50, which is limited by the extinction ratio (≈20 dB) of the AM in the LO
arm of the setup. The impact of finite values for R and other experimental
imperfections are discussed in Supplementary Notes I and II.

FPGA implementation
We use an Opal Kelly ZEM4310 to control the experiment, which is based on
an Altera Cyclone IV FPGA and has a base clock rate of 50MHz. We discretize
the discrimination measurements into 1024 time bins of 160 ns each such
that a single shot of the experiment corresponds to a pulse that is 163.8 μs
long. The magnitude of the LO waveform for each of the 1024 time bins is
pre-calculated for each ∣α∣2 and inconclusive probability PI and stored in a
look-up table within the FPGA as an 8-bit value. The phase of the LO flips
between 0 and π each time a photon is detected. This method for preparing
the optimal LO waveform given by Eq. (1) allows us to efficiently implement
the desired optimal inconclusive measurement in our demonstration.
The optimal inconclusive strategy requires precise and fast control of the

LO phase. We control the phase of the LO by changing the voltage applied
to the phase modulator between two values which correspond to a phase
of 0 and a phase of π. Each time the phase of the LO changes, we ignore
the output of the APD for 160 ns to avoid accidental photon detections.
This “blanking time” is obtained by noting that the combined electrical and
optical delay time between changing the modulation voltage and
observing the corresponding photons at the APD is ~150 ns. This also
has the benefit of reducing the effective after-pulsing probability to close
to zero. Typically, the probability of detecting an after-pulse is at its
maximum immediately after the dead-time of the APD (≈40 ns for our
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implementation), but this probability quickly decays with time. We note
that without any blanking, the cumulative after-pulsing probability of our
APD is PAP ≈ 0.015 and PAP < 0.001 with 100 ns of blanking.

Interferometer stabilization
In order to maintain a well-defined relative phase between the signal and
LO fields, we actively stabilize the interferometer. We run the experiments
with a 4 kHz repetition rate to give an experimental duty cycle of ≈66%
(experiment time of ≈165 μs, locking time of ≈91 μs). During the part of the
experimental duty cycle when the experiment is not taking place, the
relative phase between the two arms of the interferometric setup actively
stabilized with a feedback loop using a PID controller and a piezo on the
back of a mirror in the signal arm, see Fig. 2. We obtain the error signal for
stabilization of the interferometer using a narrow-band laser at 780 nm,
which is actively stabilized in frequency to an atomic line in rubidium using
saturated absorption spectroscopy. Light from this laser propagates in an
opposite direction through the interferometer compared to the light at
633 nm, and is detected with a differential detector to measure the phase
fluctuations. Slightly before the discrimination measurement begins, the
feedback loop is paused and voltage to the piezo is fixed at its current
value. The stabilization feedback loop resumes after the discrimination
measurement is completed.

Optical modulators
The setup uses fiber-coupled Lithium-Niobate, amplitude and phase
electro-optic modulators (AM and PM), with a 3 dB bandwidth of ≈1 GHz.
The phase modulators (PMs) have a π-voltage of Vπ= 1.5 V and the
amplitude modulator (AM) has a π-voltage of Vπ= 750mV with an
extinction ratio of ≈20 dB. The amplitude and phase of the LO and the
phase of the signal fields are adjusted using three 8-bit digital-to-analog
converters (DAC), voltage-controlled gain circuits, and summing amplifiers.

DATA AVAILABILITY
The data that support the findings of this study are available from the authors upon
request.
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