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Demonstration of universal control between non-interacting
qubits using the Quantum Zeno effect
E. Blumenthal 1✉, C. Mor1, A. A. Diringer 1, L. S. Martin2, P. Lewalle 3,4, D. Burgarth 5, K. B. Whaley 3,4 and S. Hacohen-Gourgy1

The Zeno effect occurs in quantum systems when a very strong measurement is applied, which can alter the dynamics in non-trivial
ways. Despite being dissipative, the dynamics stay coherent within any degenerate subspaces of the measurement. Here we show
that such a measurement can turn a single-qubit operation into a two- or multi-qubit entangling gate, even in a non-interacting
system. We demonstrate this gate between two effectively non-interacting transmon qubits. Our Zeno gate works by imparting a
geometric phase on the system, conditioned on it lying within a particular non-local subspace. These results show how universality
can be generated not only by coherent interactions as is typically employed in quantum information platforms, but also by Zeno
measurements.
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INTRODUCTION
Control of quantum systems can be divided into two distinct
schemes, coherent and incoherent control. Coherent control is
achieved by application of control Hamiltonians to evoke
deterministic time evolution. In contrast, incoherent control is
based on non-deterministic measurement outcomes to prepare
the system for the desired state. The two schemes may
complement each other to enrich quantum control1–8. On the
boundary between the two schemes lies the quantum Zeno effect,
in which frequent measurements effectively freeze the system
dynamics, holding the system at an eigenstate of the measure-
ment observable. A more precise description shows that
measurements divide the Hilbert space into subspaces with
distinct eigenvalues of the measured observable, and give rise to
‘Zeno dynamics’ within each9. Transitions between subspaces are
suppressed by measurement, but the evolution inside each
subspace is completely coherent. In particular, previous work
has shown that Zeno dynamics can theoretically transform a trivial
(e.g., non-interacting with local control only) quantum system into
one with universal control within the Zeno subspace10 and several
state entangling schemes have been proposed11–13.
In this letter we show an explicit construction of such universal

control, and demonstrate it in a circuit QED system14. Our
construction performs in a single operation, an N-Control-phase
gate on N qubits, where the last qubit is required to have only one
extra level, i.e., it is a qutrit. We refer to this as a Zeno gate.
Specifically, we demonstrate the gate between two non-interacting
transmon qubits15. This work is distinct from other measurement
based methods that prepare entangled states5,16,17, in that the
dynamics here are coherent, deterministic, and allow for universality.
Technically our experimental system has a resonator induced

interaction, which can yield a high fidelity gate (RIP-gate)18,19. We
actively cancel these interactions to make our system effectively
non-interacting. We can then demonstrate dynamics due to the
Zeno effect alone. Our purpose is to show how universality can be
switched on and off just by looking at a single level within a
quantum system.

The Zeno dynamics we explore here rely on local operations
together with non-local projections. Locally driving one transition
for a full 2π rotation imparts a geometric phase of π on the initial
state. Adding rapid projections blocks transitions between the
Zeno subspaces defined by the projector, and allows phase
accumulation only for certain states. Choosing an appropriate
non-local projector conditions the resulting phase on the state of
both qubits and thereby leads to entanglement. This process is
similar to entangling operations based on Rydberg blockade with
neutral atoms20,21 in the sense that a certain non-local state can
not be reached by the system. The main difference is that while
the Rydberg blockade is a result of strong coherent interactions22,
we use incoherent measurements to perform the Zeno block.
Consider first an ideal qutrit-qubit system and infinitely rapid

projections, where the qutrit fj i level is an auxiliary state. We apply
a Rabi drive of frequency ΩR between ej i and fj i, and at the same
time apply rapid projective measurements of the projector P ¼
1� fej i feh j (as depicted in Fig. 1b). Note that throughout this
paper, except if explicitly subscripted, the state of the qutrit is
denoted to the left of the state of the qubit. In the limit of
infinitely rapid projections the Hamiltonian reads9

HZeno ¼ PHP

¼ i_ ΩR
2 P ej i fh j � fj i eh jð Þ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

qutrit

� gj i gh j þ ej i eh jð Þ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
qubit

P

¼ i_ ΩR
2 ð egj i fgh j � fgj i egh jÞ

(1)

where H ¼ 1
2 i_ΩR ej i fh j � fj i eh jð Þ � 1 is the Rabi oscillation

Hamiltonian without projections. The egj i $ fgj i transition is
allowed and the eej i $ fej i transition is blocked and does not
appear in the last line of Eq. (1), as shown in Fig. 1b with solid and
dotted arrows, respectively. Assuming the system started in the
subspace defined by P, it will remain there and undergo coherent
evolution governed by UZeno ¼ expð�iHZenot=_Þ. Applying the
operation for a time t= 2π/ΩR, one full oscillation, the egj i state
acquires a π phase. Thus, our operation is equivalent to a Control-
phase gate up to local operations. This scheme can be expanded
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to entangle multiple qubits and one qutrit by measuring the
projector P ¼ 1� fee:::ej i fee:::eh j. A π phase will be acquired by
states exx::xj i, except for ee::ej i, where x∈ [e, g]. This operation is
equivalent to a N-Control-phase gate. Explicitly, applying another
2π rotation between ej i $ fj i of the qutrit, without the
measurement tones, would impart another π phase on all states
where the qutrit started in ej i, and thus only ee:::ej i ends up with
a π phase.
The key experimental requirement is the ability to apply the

projector P. In a realistic setup, the projection application rate is
not infinite, and the system may be described either by a
sequence of projections with a finite time interval between them,
or by a continuous measurement9. We focus on the latter case as it
fits our experimental circuit QED scheme. Evolution under
Hamiltonian H combined with continuous measurements of the
projector P at a rate of Γ can be modeled by the master equation

dρ
dt

¼ �i½H; ρ� þ ΓD½P�ρ (2)

where D½�� is the standard Lindblad dissipator that models
coupling to a Markovian bath. The finite measurement rate
introduces a chance for the system to escape the Zeno subspace.
The corresponding gate error in diamond norm23 can be bounded
as E < 38 ΩR=Γ (see Supplementary Note 1).
Equation (2) describes the system in the Markovian regime

where the bath “loses its memory” faster than the system
evolution rate. This timescale puts an upper bound on the Rabi
frequency ΩR. Beyond this frequency, in the non-Markovian
regime, the system cannot be described by the simple form of
Eq. (2). In our system this time scale is given by the cavity
linewidth κ. However, to maximize our gate fidelity, we perform
the gate at a rate faster than the system decoherence, and show
that Zeno dynamics are qualitatively the same, differing only in
showing a limited blocking ability. This is in line with a recently
predicted unification of Zeno physics arising through a wide range
of mechanisms24,25.

RESULTS
Implementation in circuit QED
We implement the Zeno gate on a circuit QED system composed
of two transmons15 dispersively coupled to a superconducting 3D
cavity, Fig. 1a. The system was designed to optimize implementa-
tion of the non-local measurement P, while minimizing qubit-
qutrit interactions. The transmons were fabricated with far
detuned transition frequencies of ωq1/2π= 3.28 GHz, ωq2/
2π= 6.24 GHz and anharmonicities of α1/2π=−175MHz and α2/
2π=−225MHz respectively. We use q1 as the qutrit. The cavity
mode frequency was ωc/2π= 7.32 GHz. The linewidth κ/2π= 0.15
MHz, was predominantly set by the strongly coupled port. The
transmon-cavity dispersive couplings were χ1/2π=−4.25 MHz, χ2/
2π=−4.35 MHz and the fj i state was χf/2π=−10MHz. The
system–cavity interaction is well described by the dispersive
Hamiltonian in the interaction picture14

Hdisp=_ ¼ χ1 e1j i e1h j þ χ2 e2j i e2h j þ χf fj i fh jð Þaya
þ α1 fj i fh j (3)

where a† and a are the creation and annihilation operators of
photons in the cavity, and subscripts in the kets label the qubits.
We omitted the residual direct qutrit-qubit interaction, which was
measured using Ramsey interferometry, between the gej i and eej i
states and between the ggj i and egj i states. The difference
between the detunings in both cases gave ZZ interaction strength
of 30 kHz, negligible for the timescales of our experiment.
Equation (3) shows that the cavity acquires a frequency shift

that depends on the qutrit-qubit state. In the ∣χ∣ ≫ κ regime, the
cavity resonance frequencies for each state of the qubits are
well separated, Fig. 1c. Probing the cavity resonance frequency
allows us to deduce the qutrit-qubit state. We do this by driving
the cavity through the weakly coupled port, and monitoring the
output through the strongly coupled port. We continuously
measure the projector P by driving the cavity at a frequency of
ωfe= ωgg + χf + χ2, which is the resonance frequency when the
system is in fej i. We refer to such a measurement as a “Zeno
drive". The output signal is amplified using a flux-pumped

Fig. 1 Experiment schematic. a Two transmons coupled to electromagnetic-mode of a superconducting cavity. b Qutrit-qubit energy level
diagram, where the energy levels of each element are labeled g (ground), e (excited), and f (second excited level). The colored domain is the
subspace defined by the projector P ¼ 1� fej i feh j. The ej i $ fj i transition of the qutrit q1 is Rabi driven with frequency ΩR. Dotted and solid
lines are blocked and allowed transitions, respectively. c Cavity spectra conditioned on transmon state (red) and the applied Zeno
measurement drive and symmetric drive (blue).

E. Blumenthal et al.

2

npj Quantum Information (2022)    88 Published in partnership with The University of New South Wales

1
2
3
4
5
6
7
8
9
0
()
:,;



Josephson Parametric Amplifier (JPA), with design as in26.
Changing the pumping frequency, we sequentially amplify
signals of different frequencies. We amplify the Zeno drive
signal at ωfe first, followed by the readout signal at ωgg. The
former enables us to detect whether the system escaped the
Zeno subspace during the gate operation, the latter is used for
tomography. We note that for the Zeno block to occur, the
measurement may be performed by the “environment". High
quantum efficiency is not required to implement the gate and is
not even necessary to observe the measurement outcome.
However, this is important for high fidelity post-selection.

Zeno blocking chance
Before proceeding to the entangling dynamics, we first
characterize the Zeno block probability as a function of the
drive amplitude ε. We demonstrate this here on the two lowest
states of the qutrit q1. We apply a Zeno drive at ωeg and Rabi
drive the transition for t= π/ΩR. We measure the probability to
stay in ggj i, as a function of the Zeno drive amplitude for three
different Rabi frequencies, see Fig. 2. This procedure resembles
that in27, with slight differences because that experiment was
conducted using a quantum trajectory approach in the steady
state. Furthermore, ref. 27 operated in the ΩR < κ regime,
meaning the cavity could be modeled as a Markovian bath
and the textbook jump rate value of Pjump ¼ Ω2

R=2Γ
9,28 was

observed. Here we show that even beyond this regime, the Zeno
effect still blocks, albeit with a reduced effectiveness.
Figure 2 shows the expected qualitative behaviour where the

blocking probability increases with the drive amplitude, and
decreases with increasing Rabi frequency. Quantitatively the
data agree with the numerical simulation of the master
equation of the full qutrit-qubit-cavity system. However, our
system can be simplified to Eq. (2) only in the limit ΩR ≪ κ. In
that limit, Γ= 4ε2/κ29. Even at ΩR/2π= 0.1 MHz= 2κ/3 (red
symbols) we can still see a deviation from Eq. (2), with a
reduced blocking probability relative to that expected for this
value of Γ. Recent experiments have probed pertinent regimes
in greater detail30,31, and begun to illustrate how lag in the
cavity state “following” a qubit on a timescale κ−1 impacts
subsequent measurement mediated by the cavity. While a
slower Rabi frequency is better in terms of realizing the Zeno
effect, our gate time needs to be significantly shorter than the
system coherence times, specifically the population relaxation
time T1 and Ramsey decay time T�

2 (Te!g
1 ¼ 52 μs,

Tf!e
1 ¼ 12:9 μs, T�e$g

2 ¼ 22:2 μs, T�f$e
2 ¼ 5:8 μs for the qutrit,

and T1 = 18.9 μs, T�
2 ¼ 15:7 μs for the qubit). We set ΩR/

2π= 1 MHz (blue in Fig. 2) (see Supplementary Note 6 for a
simulation of the gate with ΩR/2π= 0.1 MHz).

Residual effects of the Zeno drive
Until now we have discussed only the effect of the Zeno drive on
the transition that we wish to block. However, residual effects on
the rest of the states also emerge. Due to the non-zero cavity
linewidth, driving at ωfe will create a small coherent displacement
even if the system is not in fej i. In the frame rotating with the
drive frequency, at a steady state this coherent state is
αij ¼ ε

iΔij þ κ=2, where ε is the drive amplitude, and Δij is the

detuning between the cavity resonance frequency ωij and the
drive frequency when the qubits are in ijj i. In our ∣χ∣ ≫ κ regime,
we can write ρij;kℓðtÞ ¼ eiμij;kℓtρij;kℓð0Þ, where μij;kℓ ¼ ðωij �
ωkℓÞα�kℓαij such that a phase will be acquired between each pair

of states at a rate of Re½μij;kℓ� ¼ ðωij �ωkℓÞjεj2
ΔijΔkℓ

and coherence will be

lost due to measurement-induced dephasing at a rate of

Im½μij;kℓ� ¼ ðωij �ωkℓÞ2jεj2κ
2Δ2

ijΔ
2
kℓ

. This is the RIP-gate, where conditional

phase accumulation leads to entanglement of the qubits18,19. To
demonstrate the entanglement caused only by Zeno dynamics,
we negate this effect by applying an additional drive. It is applied
to the cavity, at a frequency that is symmetric to the Zeno
measurement drive frequency with respect to ωeg and ωge, so that
ωsym=ωc− (χf+ χ2)+ (χ1+ χ2)=ωc+ χ1− χf, as depicted in Fig. 1.
This symmetric drive balances the phase accumulation, such that
this no longer generates entanglement. We note that while the
phase accumulation is given above for the steady state, a
cancellation of the phase by the symmetric drive should also
occur in the transient regime. We confirmed this by numerical
simulation as well as by Ramsey interferometry between ggj i $
egj i and gej i $ eej i while applying both the Zeno and the
symmetric drives to the cavity (see Supplementary Note 3). The
driven system Hamiltonian with both the Zeno drive and the
symmetric drive, in the frame rotating at ωgg reads

Hdriven=_ ¼ Hdisp=_ þ iε ae�iðχfþχ2Þt � ayeiðχfþχ2Þt
� �

þ iε ae�iðχ2�χf Þt � ayeiðχ2�χf Þt
� �

:
(4)

Zeno gate
To perform the Zeno gate we turn on the above drives and then
initialize the system in the ð gj i þ ej iÞð gj i þ ej iÞ=2 state, see Fig. 3a
(for other initial states see Supplementary Note 4). We then apply
the Rabi drive e1j i $ fj i at the Stark shifted frequency for a time
of 2π/ΩR. Finally, we apply a set of tomography pulses (see
Methods), and apply a readout pulse.
We sample the time evolution of the system, as shown in Fig.

3b. We see that the final state, after 1 μs, is entangled since egj i
has acquired a phase of π. The main discrepancy between the
experiment and simulation is the population of fej i, which is much
smaller in the experiment than in the simulation (see Supple-
mentary Note 2 for simulation details). This is most likely due to
the Zeno drive populating the cavity with a large coherent state
once an escape occurs, thus shifting the qutrit resonance
frequency and preventing the tomography pulse from correctly
mapping fej i (see Supplementary Note 4). The lost fej i population
is then translated to a completely mixed state, therefore
increasing the computational subspace population, which can
cause a calculated fidelity increase, as discussed below. In
addition, the relaxation rate may be increased during the gate
due to the large Zeno drive amplitude32–35.
We performed this procedure with varying Zeno drive

amplitudes and calculated the fidelity and concurrence of the
final state, as shown in Fig. 4a. Since we start with the state ð gj i þ
ej iÞ � ð gj i þ ej iÞ=2 it is reasonable to use the fidelity of the final
state as a proxy for the gate fidelity. As a check, we applied the
gate to other initial states, obtaining similar quality results (see

Fig. 2 Zeno blocking chance. ggj i population after starting in ggj i
and Rabi driving the qutrit gj i $ ej i transition for t= π/ΩR, while
simultaneously Zeno driving the cavity at ωeg, as a function of Zeno
drive amplitudes ε. Circles are experimental results, squares are
numerically simulated results and triangles are an ideal simulation
assuming the cavity is a Markovian bath, Eq. 2 (the solid lines are
provided to guide the eye).
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Supplementary Note 4). Concurrence is a measure of entangle-
ment between qubits that is non-zero only for entangled states36.
We calculate this on the states in the computational subspace.
Increasing the Zeno drive amplitude increases the measurement
rate, leading to a higher blocking probability and therefore higher
fidelity and concurrence; on the other hand, this also leads to an
increased dephasing rate Im½μij;kℓ�, due to the finite κ. This causes
the reduced fidelity and concurrence observed at higher drive
amplitudes ε. Furthermore, we can see that the experimental
results consistently achieve higher fidelity than the simulated
results, while the experimental concurrence does not. This small
discrepancy in state fidelity between the experimental results and
the numerical simulation is caused primarily by the incorrect
mapping of fej i in the tomography process, as explained above.
The main source of infidelity for the gate is escaped from the

Zeno subspace, which can be detected using the JPA. This

capability allows us to perform the gate probabilistically but with a
higher chance of success by post-selecting on the JPA signal. To
demonstrate this, we post-selected our tomography results based
on the amplitude of the transmitted signal, for the case of ε/
2π= 2 MHz (see Supplementary Note 5). Figure 4b shows an
increase in both state fidelity and concurrence with the
percentage of excluded trials. The increase is limited by the
fidelity of our error-detection, which was ~75% although our
single-shot readout fidelity was ~ 93%, due to the measurement
time being limited by the gate time and by the increased
relaxation rate from the state fej i.

DISCUSSION
We have presented a system where universal control was turned
on by a Zeno measurement alone. Although the measurement acts

Fig. 3 Zeno gate time evolution. a Pulse sequence for the Zeno dynamics. b The qutrit-qubit density matrix at different times with ε/2π= 2
MHz, starting with an initial þþj i state, where þj i ¼ gj i þ ej ið Þ= ffiffiffi

2
p

. Black squares are partially filled to represent the amplitude, where a full
square stands for an amplitude of 0.4, and the color of the filling represents the phase according to the color bar. Experimental results (top
row), numerical simulation (bottom row).

Fig. 4 Zeno gate performance. State fidelity (blue) and concurrence (red) versus the amplitude of the Zeno drive a, and as a function of the
percentage of trials that were excluded in the post-selection procedure for a Zeno drive amplitude of 2 MHz b. The fidelity is calculated with
respect to an ideal state, obtained by applying 1� 2 egj i egh j to our initial state þþj i. Circles are experimental results and squares are
numerical results (lines are guide to the eye). The error bars in b represent the standard error of the means.
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trivially in the computational subspace, it nevertheless has a non-
trivial effect on the dynamics within that subspace. To demonstrate
universality, we performed an explicit gate on 2 qubits. The
concept can be extended and works simultaneously on multiple
qubits, under the condition that they are all coupled to the same
cavity or resonator. Therefore, the number of qubits is effectively
limited by frequency crowding and interqubit couplings.
To increase the fidelity of the gate, one must go further into

the ∣χ∣ ≫ κ regime. This would allow to further increase ε while
keeping the measurement-induced dephasing and entangling
phase accumulation rate small. However, the realistic upper
bound of the dispersive coupling is 10’s of MHz for current
circuit QED setups.
To create an effectively non-interacting system and observe

dynamics due to Zeno alone, we actively cancelled the RIP-gate
mechanism. In our system, the RIP-gate alone would yield better
performance for computational purposes. However, if we consider
a hypothetical system with no interactions between the qubits
(possibly different type of qubits) and where the measurement
drive performs only the measurement with no additional
entangling effect, then the Zeno will truly be the only coherent
control mechanism.
Overall this experiment emphasizes the ability of the Zeno

effect to turn the trivial dynamics of an apparently non-interacting
system into universal control, providing proof-of-concept for
measurement based, yet coherent, control strategy.

METHODS
Device parameters
The superconducting 3D cavity was made of tin plated copper, and sealed
with indium. The cavity supported a TEM101 mode of ωc/2π= 7.32 GHz. The
transition frequencies of the transmons were far detuned from each other
and from the cavity mode in order to achieve dispersive coupling and
suppress 2nd-order interactions (through the cavity mode) between the
transmons. In order for the dispersive coupling constant χ to be roughly
equal for both transmons, q1 was fabricated with longer pads compared
with q2. Thus, setting the dipole coupling g1 ≈ 430MHz for q1 and
g2 ≈ 110MHz for q2. The transmons and JPAs were fabricated by Aluminum
deposition on resist patterns formed by electron beam lithography, with a
layer of ZEON ZEP 520 A resist on a layer of MicroChem 8.5 MMA EL11
resist on top of a silicon substrate. Development of the resist was done at
room temperature for MMA and at 0C for ZEP. The Al/AlOx/Al Josephson
junctions were fabricated using a suspended bridge fabrication process37

for the JPAs and a bridge-free process38 for the transmons.
We used a JPA in phase-sensitive mode to amplify the Zeno drive signal

of frequency ωfe by 12 dB and our readout signal of frequency ωgg by
15 dB. The frequencies are separated by 14MHz, and amplifying was
enabled by changing the flux-pump frequency. The pumps were applied
to the system sequentially, with a 256 ns delay, giving the JPA enough time
to decay. The JPA had a 3.6 MHz bandwidth, corresponding to a single
photon decay rate of 1/κJPA ≈ 50 ns.
The full system schematics are described in Supplementary Fig. 1.

Tomography details
To perform full state tomography, we measure all the operators that span
the Hilbert space, which is a total of 36 operators for a qutrit and a qubit.
We partially map each operator to the projector that we measure ggj i ggh j,
as was done in39. We then acquire the expectation value of each of the 36
operators. To reconstruct the density matrix, we use a method of
maximum likelihood estimation (MLE) as described in ref. 40 to find the
most likely valid density matrix. If the trace of the density matrix is less
than 1, the MLE process will effectively add an appropriately scaled
completely mixed state to achieve Tr½ρ� ¼ 1.
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