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Bound state in a giant atom-modulated resonators system
Han Xiao 1,7, Luojia Wang1,7, Zheng-Hong Li 2,3✉, Xianfeng Chen 1,4,5,6 and Luqi Yuan 1✉

It is of fundamental interest in controlling the light–matter interaction for a long time in the field of quantum information
processing. Here, we explore a model by coupling a giant atom with the dynamically-modulated coupled-resonator waveguide and
find the bound state, where the light shows the localization effect and the atomic decay into resonator modes is inhibited, excited
by a propagating photon. An analytical treatment based on the separation of the propagating states and localized states of light
has been proposed and provides inspiring explanation of our finding, i.e., there supports a quantum channel where the
propagating photon can be converted to the localized state through the quantum interference from light–atom interactions in
three resonators at different frequency detunings. Our work therefore shows the potential for actively localizing the photon in a
modulated coupled-resonator waveguide system interacting with the giant atom, and also points out a way to study the light–atom
interaction in a synthetic frequency dimension that holds the similar Hamiltonian.
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INTRODUCTION
It is of great importance in achieving flexible manipulations of
photons in atom-waveguide systems and exploring fundamental
physics associated with strong light–atom interactions and atom-
mediated photon–photon interactions, which also shows potential
applications towards quantum communications and quantum
networks1–13. Similar with but different from the continuum
waveguide, the coupled-resonator waveguide provides an alter-
native structure for manipulating the spatial and spectral proper-
ties of photons, where photon transport can be controlled by
designing combinations of resonators with the nonlinearity of the
resonator14–19 or by actively connecting resonators with dynamic
modulations20–22. In both cases, atoms (or quantum emitters) can
be added into the coupled-resonator waveguide and hence
further possible controllability of photons has been discussed23–28.
Although theoretical models may be originally studied in photonic
structures, such coupled-resonator waveguide has also been
discussed in the on-chip platform of superconducting transmis-
sion line resonators29–31, where microwave photons transport and
can be interacting with the artificial superconducting qubit26,32–34.
Recently, the atom-waveguide system has been generalized to

studies of interactions between the photon in the waveguide and
a giant atom, where an artificial atom (quantum emitter) is
fabricated to couple multiple locations on the waveguide35. Due
to the fact that multi-path quantum interferences are included in
interactions between waveguide photons and giant atoms, a
variety of interesting quantum optical phenomena have been
explored, including bound states or dressed states28,36–39,
decoherence-free interaction40–43, electromagnetically-induced
transparency44–47, and many others48–56. Relevant experiments
have also been demonstrated that microwave photons or
propagating phonons have been successfully coupled to an
artificial gaint atom41,45,57. Hence, explorations of different
opportunities in seeking exotic manipulations of photons via
quantum interferences from the photon–giant-atom interaction in

the coupled-resonator waveguide trigger further theoretical
interests.
In this work, we study a theoretical model of an artificial two-

level giant atom coupled with dynamically-modulated coupled-
resonator waveguide (see Fig. 1), where each resonator (labeled
by m) supports a resonant mode at the frequency ωm= ω0+mΩ
with ω0 being the transition frequency of the atom. The giant
atom couples to the middle three resonators (0-th and ±1-st)
through three separate paths. We find that, for the choice of
modulation parameters, the wavepacket of the photon that
transports inside the waveguide exhibits the localization effect,
together with the time of the photon–atom interaction lasting
longer than the decay rate between the atom and the resonator,
i.e., namely bound state. The key feature here is the excitation of a
bound state corresponding to photon modes with group
velocities close to zero by the traveling photon, which is
counter-intuitive. We provide the analytical analysis based on
the separation of propagating states and localized states of light,
and find the quantum transition channel from propagating states
to localized states. Moreover, our studied Hamiltonian also
describes an artificial lattice in the synthetic frequency dimen-
sion58–61, which could trigger further research interest in the
photon–atom interaction with synthetic dimensions. Therefore,
this work shows the photon manipulation through quantum
interferences in a system composed by the giant atom and the
dynamically-modulated coupled-resonator waveguide, which shall
find potential applications in the quantum information
processing62,63.

RESULTS
Model
As schematically shown in Fig. 1, we consider a one-dimensional
photonic resonator lattice, with each resonator supporting a single
resonance at ωm. The dynamic modulation can be applied in-
between two adjacent resonators by modulating two resonances
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in the auxiliary resonator with a sinusoid external source 2η cosΩt
where Ω≪ω0 is the frequency and η is the modulation
amplitude20,64. A two-level giant atom is designed to couple with
the 0-th and ±1-st resonators with the coupling strength κ. By
assuming ℏ= 1, the corresponding Hamiltonian is

H ¼ ω0
σz

2
þ
X
m

ωma
y
mam þ

X
m

2η cosðΩtÞðaymamþ 1 þ aymþ 1amÞ

þ
X

m0 ¼�1;0;1

κðaym0σ� þ am0σþÞ:
(1)

Here, σz= [σ+, σ−]. σþ ¼ ej i gh j (σ� ¼ gj i eh j) is the ladder
operator that transits the atom from ground state gj i to excited
state ej i (and vice versa), and aym (am) is the creation (annihilation)
operator for the photon in the m-th resonator. One can rewrite the
Hamiltonian in the interaction picture under the rotating-wave
approximation (RWA)65

VðtÞ ¼
X
m

η aymamþ 1 þ aymþ 1am
� �

þ
X

m0 ¼�1;0;1

κ aym0σ�eim
0Ωt þ am0σþe�im0Ωt

� �
:

(2)

To simulate the dynamics of photon transport, we write the
single-excitation wave function

ψðtÞj i ¼
X
m

vmðtÞaym 0; gj i þ ξðtÞ 0; ej i; (3)

where vm is the probability amplitude for creating the photon
from the vacuum state 0j i in the m-th resonator while the atom
remains at the ground state gj i, and ξ is the probability amplitude
for the atom being excited (to ej i) by the propagating photon. By
using the Schrödinger’s equation, we obtain

_vm ¼ �iη vmþ 1 þ vm� 1ð Þ � iκ
X

m0 ¼�1;0;1

ξeim
0Ωtδm;m0 ; (4)

_ξ ¼ �iκ
X

m0 ¼�1;0;1

vm0e�im0Ωt: (5)

In simulations, we consider a coupled-resonator waveguide
composed by 401 resonators (m=−200,⋯ , 200). A Gaussian-
shape pulse S ¼ e�ðt� t0Þ2=τ2 is used to excite the leftmost
resonator, where τ ¼ 5

ffiffiffi
2

p
η�1 and t0= 25η−1. We first consider

the case that κ= 0.5η and Ω= 3η. In Fig. 2a, we plot the
distribution of ∣vm∣2 on different resonators and ∣ξ∣2 versus the
time t. One sees that the photon is injected into the system from
the left and then propagates towards the right. Once it interacts
with the atom, a portion of the wavepacket of the photon is
reflected while the atom is excited, which shows consistence with
the propagating photon interacting with a resonant atom in a
waveguide66,67.
The striking feature of the system is found when we choose

Ω= 2.05η while keeping other parameters unchanged, with
simulation results plotted in Fig. 2b. One sees that, once the light

interacts with the atom, the wavepacket of the photon is stored for a
relative long time in the vicinity of middle resonators
(~150η−1≫ κ−1) and the excitation of the atom also gives a relative
long decay tail. Such the phenomenon denotes a bound state of
photon and atom where the light shows the localization effect near
middle resonators and atom exhibits the inhibited decay. Besides
the bound state, together with the transmission of a portion of
wavepacket at the original group velocity, other small portions of
wavepacket are transmitted and reflected at a smaller group
velocity. By further studying cases for Ω nearby 2.05η, we find that
the existence of the bound state is critically dependent on the
choice of Ω (see Supplementary Note 1 for details), with detailed
physical mechanism will be analyzed analytically in the following.

Analytical analysis
In order to understand the bound state in our proposed model,
we next analyze the Hamiltonian (2) analytically in details. The
first term in Eq. (2) gives couplings between resonators driven
by an external source, while the second term describes
atom–resonator interactions, where ±Ω represents the detuning
between the ±1-st resonator and the atom. Since the atom only
couples with the middle three resonators, and we consider a
finite number of resonators (−M ≤m <M with M being a positive
integer), the influence of the photon state in resonators at two
boundaries is negligible for M≫ 1. We hence can take the state
kj i ¼ PM� 1

m¼�M aym 0j ieimkπ=M=
ffiffiffiffiffiffiffi
2M

p
(k=−M,⋯ ,M− 1 as an inte-

ger) in the momentum space which is the eigenstate ofPM� 1
m¼�M ηðaymamþ 1 þ h:c:Þ and is regarded as the Bloch wave

in the lattice with the frequency ωk ¼ 2η cosðkπ=MÞ. Note here
we set the spatial distance between two resonators as 1 for the
simplicity. The corresponding group velocity of the wavepacket
is vk ¼ �2η sinðkπ=MÞ. Obviously, when ωk= ±2η, the wave-
packet has the group velocity vk= 0 and therefore does not
move in the lattice. We will refer to them as localized modes in
the following discussions.
Along with the atomic states ej i and gj i, now we can rewrite V

in the k-space, which leads to ~V ¼ ~V0 þ ~V1. Here

~V0 ¼
XM� 1

k¼�M

ωk kj i kh j; (6)

~V1 ¼
XM� 1

k¼�M

X1
m0 ¼�1

κffiffiffiffiffiffiffi
2M

p e�im
0kπ
M eim

0Ωt k; gj i 0; eh j þ h:c:
� �

: (7)

In the interaction-picture Hamiltonian under the k representa-
tion, i.e.,

ei
~V0t~V1e

�i~V0t ¼
XM� 1

k¼�M

X1
m0 ¼�1

κffiffiffiffiffiffiffi
2M

p e�im
0kπ
M eiðm

0ΩþωkÞt k; gj i 0; eh j þ h:c:
� �

; (8)

one clearly sees that each state kj i interacts with the atom
through the middle three resonators with m0 ¼ 0; ±1, while
m0Ω þ ωk represents the detuning between the atom and the
Bloch-wave state for the m0-th resonator. Following this argument,
we can assume that each state kj i is only coupled with the
resonator with the smallest detuning. Hence, we obtain the
Hamiltonian as

~V �
XM� 1

k¼�M

ωk kj i kh j þ κffiffiffiffiffiffiffi
2M

p
X1

m0 ¼�1

X
k2Km

e�im
0kπ
M eim

0Ωt k; gj i 0; eh j þ h:c:

 !
; (9)

where we divide k into three regions. In region K0, the photon
state of the Bloch wave has ωk 2 ð� ffiffiffi

2
p

η;
ffiffiffi
2

p
ηÞ, and is only

coupled with the 0-th resonator. Similarly, in region K±1,
ωk 2 ð ∓ ffiffiffi

2
p

η; ∓ 2η�, and the photon state is coupled with the
±1-st resonator. We emphasize that, according to the resonance
condition (m0Ω þ ωk ¼ 0), the photon state that make most
contributions have frequencies ωk= 0, ±2η. Therefore, except for

Fig. 1 Schematics for a 1D dynamically-modulated coupled-
resonator waveguide coupling to a two-level giant atom. The
excited source is injected into the waveguide (yellow). After it
interacting with the giant atom, the field is transmitted (blue) or
reflected (red).
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the states near these three frequencies, other states in the k-space
are negligible in our analytical analysis, and the choice of the limit
of the above-mentioned regions is for the convenience purpose.
The wave function of the photon state in the k-space has the

form

ψðtÞj ik ¼
XM� 1

k¼�M

CkðtÞ k; gj i þ χðtÞ 0; ej i; (10)

and together with Eq. (9), we can get the corresponding dynamic
evolution equations. However, we notice that, there are 4
corresponding states kj i at each ∣ωk∣. For the sake of simplicity,
we hence define linear combinations of states for the same ∣ωk∣:

Jk;s± ðtÞ ¼ 1
2

CkðtÞe�ikπM þ C�kðtÞeikπM
h i

eiΩt
n

± CM� kðtÞeiðπ� kπ
MÞ þ C�ðM� kÞðtÞe�iðπ� kπ

MÞ
h i

e�iΩt
o
;

(11)

Jk;0 ± ðtÞ ¼ 1
2

CM=2� kðtÞ þ C�ðM=2� kÞðtÞ
� �

± CM=2þ kðtÞ þ C�ðM=2þ kÞðtÞ
� �� �

;

(12)

with k∈ [0,M/4), and obtain

i
∂

∂t
Jk;sþðtÞ ¼ 2κffiffiffiffiffiffiffi

2M
p χðtÞ � ðΩ � ωkÞJk;s�ðtÞ; (13)

i
∂

∂t
Jk;s�ðtÞ ¼ �ðΩ � ωkÞJk;sþðtÞ; (14)

i
∂

∂t
χðtÞ ¼ κffiffiffiffiffiffiffi

2M
p J0;sþðtÞ þ 2

XM=4� 1

k¼ 1

Jk;sþðtÞ
" #

þ κffiffiffiffiffiffiffi
2M

p J0;0þðtÞ þ 2
XM=4� 1

k¼ 1

Jk;0þðtÞ
" #

;

(15)

i
∂

∂t
Jk;0þðtÞ ¼ 2κffiffiffiffiffiffiffi

2M
p χðtÞ � vkJk;0�ðtÞ; (16)

i
∂

∂t
Jk;0�ðtÞ ¼ �vkJk;0þðtÞ: (17)

Here Jk,s± (k∈ [0,M/4)) denotes the modes of the photon state
whose group velocity is in the range of ð± ffiffiffi

2
p

η; 0� (where J0,s±
corresponds to modes with vk= 0, i.e., localized states), and Jk,0±
denotes those modes whose group velocities vk 2 ð± ffiffiffi

2
p

η; ± 2η�
(where J0,0± corresponds to modes with vk= ±2η, i.e., propagating
states). Eqs. (13)–(17) indicate that Jk,s± and Jk,0± form two sets of

subsystems, connected by the atom [see Eq. (15)]. We then focus
on the subsystem described by Eqs. (13)–(15), where localized
modes are included. In order to erase the impact of the other
subsystem, we discard the second term on the right-hand side of
Eq. (15). Then, by setting that Jk;s± ðtÞ ¼ jk;s± e

�iλst and
χðtÞ ¼ xse�iλst , we find the special solution with λs= 0, which
gives

xs ¼
ffiffiffiffiffiffiffi
2M

p

2κ
ðΩ � ωkÞjk;s�; (18)

jk;sþ ¼ 0: (19)

Equations (18), (19) are solvable with the normalization condition
involved. Equation (18) suggests that when Ω > 2η, ∣jk,s−∣
decreases as k increases, which implies that the mode distribution
of the photon state is concentrated near ωk= ±2η. Notice that ∣jk,s
−∣ is proportional to ∣xs∣. Once the atom is excited, it is possible to
observe the localized state with vk= 0. This is a bound state in
which the photon is stored and the atom keeps excited with the
inhibited decay. However, we need to point out that when Ω
becomes large, the proportion of the atomic excited state in the
bound state is also increasing. Due to normalization condition, the
probability that the system is in the localized state in the vicinity
of k= 0 is suppressed. On the other hand, when Ω < 2η, ∣jk,s−∣
increases as k increases, and hence the maximum value of ∣jk,s−∣ is
at k ≠ 0 (vk ≠ 0). In such case, the localized state is nearly
impossible to be generated. Therefore, we only have a very
narrow window of Ω to obtain a significant localized photon state,
which is consistent with our previous numerical results.
The above discussion shows that through the interaction with

the ±1-st resonators and the atom, the photon may move slowly
or even stay localized in the waveguide. The next question is how
to excite such localized state, since the initial wavepacket of the
photon is prepared centered at ωk= 0 with spectral width ~1/τ
nearly does not contain any component of ωk= ±2η (vk= 0). From
Eq. (15), one finds that the coupling strengths of the two
subsystems and the atom are similar, which means that the effects
of the two subsystems on the atom are comparable. Conse-
quently, we have the following physical picture: An initial state of
the photon is prepared in one subsystem (corresponding to Jk,0±)
where the center frequency of the initial wavepacket is ωk= 0 and
vk ~ 2η for example. Such wavepacket of the photon propagates
inside the waveguide and causes the excitation of the atom, which
in turn leads to the excitation of another subsystem (correspond-
ing to Jk,s±), i.e., creating the bound state with the localized photon
state and an excited atom lasting for a long time. This picture is
consistent with our simulation result in Fig. 2b.

Fig. 2 The evolution of photonic states. Normalized probability distributions of photon in different resonators versus the time, when (a)
Ω= 3η and (b) Ω= 2.05η, respectively. The insets show the corresponding normalized atomic excitation probability in the logarithm scale.
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Finally, we perform simulations in the k-space with the
separation approximation that we analytically discussed above
to verify our analytical analysis. By combining Eq. (9) and the
Schrödinger’s equation, we simulate the evolution of the states in
the k-space over time with Ω= 2.05η and plot the result in Fig. 3a.
The initial state of the system is assumed to be a Gaussian
wavepacket in real space, with its center position at m0=− 250
and propagating toward the right at a group velocity 2η, i.e.,
ψIj i ¼ PM

m¼�M e�ðm�m0Þ2=2δ2me�iπðm�m0Þ=2 mj i, with δm= 10. (This
choice of the initial wavepacket is consistent with the boundary-
excitation source in simulations for Fig. 2) Therefore, the Fourier
transformation of the initial state (with taking M= 500) here gives
the initial wave function in Eq. (10) for simulations, with the central
momentum being kπ/M=−π/2. Figure 3a indicates that the
mode separation approximation we used in the above discussion
is feasible, because one can see that the energy distribution of the
photon’s wavepacket is centered near kπ/M=− π,−π/2, 0, π/2
with clear separations. Next, we follow the mode separation
approximation and use Eqs. (13)–(17) with the same parameters
for Fig. 3a and numerically calculate the photon distribution in the
k-space. After we Fourier-transform the simulation results back
into the real space, we plot the resulting probability distribution of
photon in Fig. 3b. One can see that evolutions of the photon in
both Figs. 3b, 2b match quite well, indicating our analytical
analysis is valid in understanding such light localization
phenomenon.

DISCUSSION
There are several notes we want to provide further discussions.
Different from previous works studying bound states in atom-
waveguide systems using either giant atoms36 or small atoms68,69,
the energy of bound states is explicitly out of the regime for the
propagating band of the waveguide. Hence, it is fundamentally
difficult to excite such photonic bound states through the
propagating waveguide photon. On the contrary, in our model,
we find that the coupling between the giant atom and the 0-th
resonator provides the excitation of giant atom and the couplings
between the ±1-st resonators converts the atomic excited state to
a hybrid bound state, which shows the possibility for exciting a
bound state by the propagating photon without using external
drive fields (see Supplementary Note 2 for details). This unique
feature therefore provides potential important applications in
quantum storage. Moreover, in simulations, we use an initial
Gaussian-shape excitation to provide the input pulse of the
incoming propagating photon, where a narrow spectrum of the

input wavepacket is used to excite the giant atom. For seeing clear
effects of the propagating photon and the light localization, we
use the waveguide with hundreds of resonators. In reality, a
shorter waveguide with tens of resonators is also feasible, as long
as it can carry the entire single-photon pulse before the photon
interacting the giant atom. In this case, one can inject the
waveguide at the end of resonator from outer connecting
waveguide where the effect of boundary reflections should be
negligible. As an example, in Supplementary Note 3, we study the
case of exciting the waveguide consisting 21 resonators with the
same Gaussian-shape input photon source, and see the bound
state still existing, which is experimentally feasible69. The energy
distribution of such bound state could be further enhanced by
increasing the full width at half maximum of the Gaussian-shape
pulse, which corresponds to a narrower width in the spectrum and
larger portion of the wavepacket can then interact with the giant
atom to excite the bound state. In Supplementary Note 4, we
showcase the result with τ ¼ 10

ffiffiffi
2

p
η�1 where a significant

increase in the energy distribution of the photonic localized state
together with the extension of the inhibited atomic decay time
exists.
Before we conclude our paper, we point out that our studied

model naturally supports a synthetic lattice along the frequency
axis of light, which is constructed in a modulated ring resonator
and is similarly described by the Hamiltonian

P
m ωma

y
mam þP

m 2η cosðΩtÞðaymamþ1 þ aymþ 1amÞ (the same as with the wave-
guide part in Eq. (1) with ωm being resonant frequencies and Ω
being the frequency of the modulator61. Once a two-level atom at
the transition frequency ω0 is added to couple with the ring, an
effective giant atom coupled with the synthetic lattice with the
linear-gradient detuning (ωm−ω0) at each connection is built, as
shown in Fig. 4. We find that the affects from far-from-resonance
couplings weakly affect the system, and our findings in this work
shall also map to the dynamics in the synthetic dimension (see
Supplementary Note 5 for details). However, detailed conse-
quences in the output of the single-photon spectrum desires
further studies with the input-output formalism carefully included,
which is beyond the scope of this paper. Yet, our work is still
useful in the future understanding of the photon-transport
problem with the recent-developed synthetic dimensions70–72

coupled to a atom, which opens an avenue to study quantum
optics in a synthetic waveguide coupled with an effective giant
atom with coupling positions reaching the order of 103 73.
In summary, we study the photon propagation problem inside a

coupled-resonator waveguide under the dynamic modulation
with the middle three resonators coupled with the giant atom,

Fig. 3 The generation of photonic bound states in the k-space. a Normalized wave function of the photon in the k-space. b The normalized
probability distribution of photon in different resonators versus the time. In both figures, simulations are performed in the k-space with
Ω= 2.05η.
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where the dynamic modulation frequency precisely equals to the
frequency difference between two nearby resonators. We find
that, through multi-resonator couplings, one can excite the Bloch-
wave state in the system by a propagating input photon, so the
light field can be localized for a long time and the excitation of the
atom exhibits the inhibited decay. An analytical approach is built
to understand the intrinsic quantum interference dynamics. Our
model is valid for a variety of potential experimental platforms,
including photonic-crystal waveguide20,74, coupled cavities in free
space75,76, superconducting transmission line resonators77–80.
Moreover, such a model can also be useful in understanding a
synthetic lattice along the frequency axis of light coupling to a
two-level atom that has the similar Hamiltonian. The bound states
with near zero group velocity for photons localize the energy of
information and has extensive applications in quantum
storages81,82. Our work therefore shows a theoretical perspective
for studying photon–atom interactions in waveguide systems and
seeks additional external control of the propagating photon,
which can find applications in quantum manipulations of a single
photon.
Note.—When we prepare our paper, we notice an independent

preprint, which is related but different from our work83.
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